Calibration Guide

HP ESA Spectrum Analyzers

This manual provides documentation for the following instruments:

HP ESA-E Series HP E4401B HP E4402B HP E4404B HP E4405B HP E4407B

and

HP ESA-L Series HP E4403B HP E4408B HP E4411B

Manufacturing Part Number: E4401-90132 Printed in USA September 1999

Supersedes E4401-90108

© Copyright 1999 Hewlett-Packard Company

ii

The information contained in this document is subject to change without notice.
Hewlett-Packard makes no warranty of any kind with regard to this material, including but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.
The following safety symbols are used throughout this manual. Familiarize yourself with the symbols and their meaning before operating this instrument.
<i>Warning</i> denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a warning note until the indicated conditions are fully understood and met.
This is a Safety Class 1 Product (provided with a protective earthing ground incorporated in the power cord). The mains plug shall only be inserted in a socket outlet provided with a protected earth contact. Any interruption of the protective conductor inside or outside of the product is likely to make the product dangerous. Intentional interruption is prohibited.
If this product is not used as specified, the protection provided by the equipment could be impaired. This product must be used in a normal condition (in which all means for protection are intact) only.
<i>Caution</i> denotes a hazard. It calls attention to a procedure that, if not correctly performed or adhered to, could result in damage to or destruction of the instrument. Do not proceed beyond a caution sign until the indicated conditions are fully understood and met.

WARNING	This is a Safety Class 1 Product (provided with a protective earthing ground incorporated in the power cord. The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. Any interruption of the protective conductor inside or outside of the product is likely to make the product dangerous. Intentional interruption is prohibited.
WARNING	If this product is not used as specified, the protection provided by the equipment could be impaired. This product must be used in a normal condition (in which all means for protection are intact) only.
CAUTION	Always use the three-prong ac power cord supplied with this product. Failure to ensure adequate earth grounding by not using this cord may cause product damage.
CAUTION	This instrument has autoranging line voltage input, be sure the supply voltage is within the specified range.

Warranty

This Hewlett-Packard instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Hewlett-Packard. Buyer shall prepay shipping charges to Hewlett-Packard and Hewlett-Packard shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Hewlett-Packard from another country.

Hewlett-Packard warrants that its software and firmware designated by Hewlett-Packard for use with an instrument will execute its programming instructions when properly installed on that instrument. Hewlett-Packard does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error-free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

Where to Find the Latest Information

Documentation is updated periodically. For the latest information about HP ESA Spectrum Analyzers, including firmware upgrades and application information, please visit the following Internet URL: http://www.hp.com/go/esa.

vi

1. Calibrating	
Calibration	1-2
Calibration Cycle	1-3
Performance Verification Test Tables	1-3
Before You Start	-13
Recording the test results	-13
Self-Alignment	
Periodically verifying operation	
Test equipment you will need 1-	
2. Performance Verification Tests	~ .
Calibration	
1. 10 MHz Reference Accuracy	
Equipment Required	
Procedure	2-8
2. 10 MHz Precision Frequency Reference Accuracy: HP E4401B, E4402B, E4404B,	
E4405B, and E4407B, Option 1D5 2-	
Equipment Required	
Procedure	-12
3. Frequency Readout and Marker Frequency Count Accuracy: HP E4401B, E4402B,	
E4403B, and E4411B 2-	-15
Equipment Required 2-	-15
Additional Equipment for 75 Ω Input 2-	-15
Procedure	-16
4. Frequency Readout and Marker Frequency Count Accuracy: HP E4404B, E4405B,	
E4407B, and E4408B 2-	-18
Equipment Required	-18
Additional Equipment for Option BAB 2-	-18
Procedure	-18
5. Frequency Span Readout Accuracy: HP E4401B and E4411B 2-	-22
Equipment Required 2-	-22
Additional Equipment for 75 Ω Input 2-	-22
Procedure	-22
100 kHz and 100 MHz Frequency Span Readout Accuracy	-23
6. Frequency Span Readout Accuracy:	
HP E4402B, E4403B, E4404B, E4405B, E4407B, and E4408B 2-	-26
Equipment Required	
Additional Equipment for Option BAB	
Procedure	
7. Noise Sidebands 2-	
Equipment Required	
Additional Equipment for 75 Ω Input 2-	

Additional Equipment for Option BAB 2	
Procedure	
8. System Related Sidebands 2	2-35
Equipment Required	
Additional Equipment for 75 Ω Input 2	2-35
Additional Equipment for Option BAB	
Procedure	2-36
9. Residual FM	2-38
Equipment Required	2-38
Additional Equipment for 75 Ω Input 2	2-38
Additional Equipment for Option BAB	2-38
Procedure	2-39
Part 1: Residual FM	2-39
Part 2: Residual FM for Option 1DR and 1D5	2-41
10. Sweep Time Accuracy	2-43
Equipment Required	2-43
Additional Equipment for 75 Ω Input 2	2-43
Additional Equipment for Option BAB	
Procedure	2-44
11. Display Scale Fidelity	2-46
Equipment Required	-46
Additional Equipment for 75 Ω Input 2-	-46
Additional Equipment for Option BAB	
Procedure	
Section 1: Log Display Scale Fidelity, Analog Bandwidths	
Section 2: Log Display Scale Fidelity, Digital Bandwidths	2-51
Section 3: Linear Display Scale Fidelity, Analog Bandwidths	-54
Section 4: Linear Display Scale Fidelity, Digital Bandwidths	
12. Input Attenuation Switching Uncertainty	-60
Equipment Required	60
Additional Equipment for 75 Ω Input 2-	-60
Additional Equipment for Option BAB	
Procedure 2.	-61
13. Reference Level Accuracy: HP E4401B and E4411B	-67
Equipment Required	
Additional Equipment for 75 Ω Input 2-	
Procedure 2	
14. Reference Level Accuracy: HP E4402B, E4403B, E4404B, E4407B and E4408B 2-	
Equipment Required	
Additional Equipment for Option BAB	
Procedure	
15. Resolution Bandwidth Switching Uncertainty 2-	

Equipment Required for HP E4402B, E4403B, E4404B,
E4405B, E4407B and E4408
Additional Equipment for Option BAB 2-84
Procedure
16. Absolute Amplitude Accuracy (Reference Settings): HP E4401B and E4411B 2-87
Absolute Amplitude Accuracy
Equipment Required
Additional Equipment for 75 Ω Input
Procedure
17. Absolute Amplitude Accuracy (Reference Settings): HP E4402B, E4403B, E4404B,
E4405B, E4407B, and E4408B 2-93
Absolute Amplitude Accuracy 2-93
Equipment Required
Additional Equipment for Option BAB 2-93
Procedure
18. Overall Amplitude Accuracy: HP E4401B and E4411B 2-98
Equipment Required
Additional Equipment for 75 Ω Input 2-98
Procedure
19. Overall Amplitude Accuracy: HP E4402B, E4403B, E4404B, E4405B, E4407B and E4408B
2-105
Equipment Required 2-105
Additional Equipment for Option BAB 2-105
Procedure
20. Resolution Bandwidth Accuracy 2-112
Equipment Required 2-112
Additional Equipment for 75 Ω Input
Additional Equipment for Option BAB 2-112
Procedure
21. Frequency Response: HP E4401B and E4411B 2-117
Equipment Required 2-117
Additional Equipment for 75 Ω Input
Procedure
22. Frequency Response, HP E4402B and E4403B 2-127
Equipment Required 2-127
Procedure
23. Frequency Response, HP E4404B, E4405B, E4407B and E4408B 2-138
23. Frequency Response, HP E4404B, E4405B, E4407B and E4408B 2-138 Equipment Required 2-138
23. Frequency Response, HP E4404B, E4405B, E4407B and E4408B2-138Equipment Required2-138Procedure2-139
23. Frequency Response, HP E4404B, E4405B, E4407B and E4408B2-138Equipment Required2-138Procedure2-13924. Frequency Response (Preamp On): HP E4401B2-155
23. Frequency Response, HP E4404B, E4405B, E4407B and E4408B2-138Equipment Required2-138Procedure2-139

25. Frequency Response (Preamp On): HP E4402B2-163Equipment Required2-163Procedure2-16326. Frequency Response (Preamp On): HP E4404B, E4405B, and E4407B2-172Equipment Required2-172Additional Equipment for Option BAB2-172Yrocedure2-17327. Other Input-Related Spurious Responses: HP E4401B and E4411B2-181Equipment Required2-181Additional Equipment for 75 Ω Input2-181Procedure2-181Required2-18128. Other Input-Related Spurious Responses: HP E4402B, E4403B, E4404B,E4405B, E4407B, E4408B2-186Equipment Required2-186Procedure2-18729. Spurious Responses: HP E4401B and E4411B2-192Additional Equipment for 75 Ω Input2-193Part 1: Third Order Intermodulation Distortion2-193Part 1: Second Harmonic Distortion2-200Procedure2-201Part 2: Second Harmonic Distortion2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-201Part 1: Third Order Intermodulation Distortion2-208Procedure2-208Procedure2-208Procedure2-208Part 2: Second Harmonic Distortion2-209Part 1: Third Order Intermodulation Distortion2-208Procedure2-208Procedure2-2282. Gain Compression: HP E4401B, E4402B, E4407B, and E4408B2-228Procedure2-224	Procedure	
Equipment Required2-163 Procedure26. Frequency Response (Preamp On): HP E4404B, E4405B, and E4407B2-172 2-172 Additional Equipment for Option BAB27.172 Additional Equipment for Option BAB2-172 2-172 Procedure27.0 ther Input-Related Spurious Responses: HP E4401B and E4411B2-181 2-181 2-181Equipment Required2-181 2-181Additional Equipment for 75 Ω Input2-181 2-181 2-181Procedure2-182 2-18128. Other Input-Related Spurious Responses: HP E4402B, E4403B, E4404B, E4405B, E4407B, E4407B, E4408B2-186 2-186 2-186 Procedure29. Spurious Responses: HP E4401B and E4411B2-192 2-192 Additional Equipment for 75 Ω Input2-193 2-193 Part 1: Third Order Intermodulation Distortion2-193 Part 2: Second Harmonic Distortion2-198 2-200 2-200 2-200 Procedure2-200 2-200 2-200 Part 1: Third Order Intermodulation Distortion2-201 Part 1: Third Order Intermodulation Distortion2-201 2-201 2-201 2-201 2-201 2-201 2-204 2-200 2-200 2-200 Part 1: Third Order Intermodulation Distortion2-202 2-200 2-200 2-200 2-200 2-200 2-200 2-200 2-200 2-200 2-200 2-200 2-201 2-211 2-211 2-211 2-224 2-232 2-234 2-23	25. Frequency Response (Preamp On): HP E4402B	
Procedure2-16326. Frequency Response (Preamp On): HP E4404B, E4405B, and E4407B2-172Equipment Required2-172Additional Equipment for Option BAB2-172Procedure2-17327. Other Input-Related Spurious Responses: HP E4401B and E4411B2-181Additional Equipment for 75 Ω Input2-181Additional Equipment for 75 Ω Input2-181Procedure2-18128. Other Input-Related Spurious Responses: HP E4402B, E4403B, E4404B,2-186E4405B, E4407B, E4408B2-186Equipment Required2-186Procedure2-18729. Spurious Responses: HP E4401B and E4411B2-192Equipment Required2-192Additional Equipment for 75 Ω Input2-193Part 1: Third Order Intermodulation Distortion2-193Part 1: Second Harmonic Distortion2-19830. Spurious Responses: HP E4402B and E4403B2-200Equipment Required2-200Procedure2-201Part 1: Third Order Intermodulation Distortion2-201Part 1: Third Order Intermodulation Distortion2-2029 Procedure2-2009 Procedure2-2009 Part 2: Second Harmonic Distortion2-2089 Procedure2-2099 Part 1: Third Order Intermodulation Distortion2-2099 Part 2: Second Harmonic Distortion2-2099 Par	· · · · ·	
Equipment Required2-172Additional Equipment for Option BAB2-172Procedure2-17327. Other Input-Related Spurious Responses: HP E4401B and E4411B2-181Equipment Required2-181Additional Equipment for 75 Ω Input2-181Procedure2-18128. Other Input-Related Spurious Responses: HP E4402B, E4403B, E4404B,E4405B, E4407B, E4408B2-186Equipment Required2-186Procedure2-18729. Spurious Responses: HP E4401B and E4411B2-192Equipment Required2-18729. Spurious Responses: HP E4401B and E4411B2-193Procedure2-193Procedure2-193Procedure2-193Procedure2-193Procedure2-193Procedure2-193Procedure2-200Equipment Required2-200Part 1: Third Order Intermodulation Distortion2-193Part 2: Second Harmonic Distortion2-201Part 1: Third Order Intermodulation Distortion2-201Part 1: Third Order Intermodulation Distortion2-201Part 1: Third Order Intermodulation Distortion2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-208Part 1: Third Order Intermodulation Distortion2-209Part 1: Third Order Intermodulation Distortion2-209Part 1: Third Order Intermodulation Distortion2-208Procedure2-224Additional Equipment for 75 Ω Input2-224Par		
Equipment Required2-172Additional Equipment for Option BAB2-172Procedure2-17327. Other Input-Related Spurious Responses: HP E4401B and E4411B2-181Equipment Required2-181Additional Equipment for 75 Ω Input2-181Procedure2-18128. Other Input-Related Spurious Responses: HP E4402B, E4403B, E4404B,E4405B, E4407B, E4408B2-186Equipment Required2-186Procedure2-18729. Spurious Responses: HP E4401B and E4411B2-192Equipment Required2-18729. Spurious Responses: HP E4401B and E4411B2-193Procedure2-193Procedure2-193Procedure2-193Procedure2-193Procedure2-193Procedure2-193Procedure2-200Equipment Required2-200Part 1: Third Order Intermodulation Distortion2-193Part 2: Second Harmonic Distortion2-201Part 1: Third Order Intermodulation Distortion2-201Part 1: Third Order Intermodulation Distortion2-201Part 1: Third Order Intermodulation Distortion2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-208Part 1: Third Order Intermodulation Distortion2-209Part 1: Third Order Intermodulation Distortion2-209Part 1: Third Order Intermodulation Distortion2-208Procedure2-224Additional Equipment for 75 Ω Input2-224Par	26. Frequency Response (Preamp On): HP E4404B, E4405B, and E4407B	
Additional Equipment for Option BAB2-172Procedure2-17327. Other Input-Related Spurious Responses: HP E4401B and E4411B2-181Equipment Required2-181Additional Equipment for 75 Ω Input2-181Procedure2-18128. Other Input-Related Spurious Responses: HP E4402B, E4403B, E4404B,E4405B, E4407B, E4408B2-186Equipment Required2-186Procedure2-18729. Spurious Responses: HP E4401B and E4411B2-192Equipment Required2-192Additional Equipment for 75 Ω Input2-193Procedure2-193Procedure2-193Procedure2-193Porcedure2-193Porcedure2-193Porcedure2-193Porcedure2-193Porcedure2-200Equipment Required2-200Equipment Required2-200Porcedure2-201Part 1: Third Order Intermodulation Distortion2-201Part 1: Third Order Intermodulation Distortion2-201Part 1: Third Order Intermodulation Distortion2-208Procedure2-208Procedure2-208Part 2: Second Harmonic Distortion2-208Part 2: Second Harmonic Distortion2-208Part 2: Second Harmonic Distortion2-208Procedure2-224Additional Equipment for 75 Ω Input2-224Part 2: Second Harmonic Distortion2-21332. Gain Compression: HP E4401B, E4402B, E4407B, and E4408B2-224	* * *	
Procedure2-17327. Other Input-Related Spurious Responses: HP E4401B and E4411B2-181Equipment Required2-181Additional Equipment for 75 Ω Input2-181Procedure2-18128. Other Input-Related Spurious Responses: HP E4402B, E4403B, E4404B,E4405B, E4407B, E4408B2-186Frocedure2-186Procedure2-18729. Spurious Responses: HP E4401B and E4411B2-192Equipment Required2-192Additional Equipment for 75 Ω Input2-193Part 1: Third Order Intermodulation Distortion2-193Part 2: Second Harmonic Distortion2-19830. Spurious Responses: HP E4402B and E4403B2-200Equipment Required2-200Part 1: Third Order Intermodulation Distortion2-201Part 1: Third Order Intermodulation Distortion2-201Part 1: Third Order Intermodulation Distortion2-200Equipment Required2-200Porcedure2-201Part 1: Third Order Intermodulation Distortion2-201Part 1: Third Order Intermodulation Distortion2-208Equipment Required2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-209Part 2: Second Harmonic Distortion2-208Equipment Required2-224Additional Equipment for 75 Ω Input2-224Procedure2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-228Equipment Requi		
27. Other Input-Related Spurious Responses: HP E4401B and E4411B2-181Equipment Required2-181Additional Equipment for 75 Ω Input2-181Procedure2-18128. Other Input-Related Spurious Responses: HP E4402B, E4403B, E4404B,E4405B, E4407B, E4408B2-186Equipment Required2-186Procedure2-18729. Spurious Responses: HP E4401B and E4411B2-192Equipment Required2-192Additional Equipment for 75 Ω Input2-193Procedure2-193Procedure2-193Procedure2-193Part 1: Third Order Intermodulation Distortion2-193Part 2: Second Harmonic Distortion2-193Solurious Responses: HP E4402B and E4403B2-200Equipment Required2-200Procedure2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-200Procedure2-200Procedure2-200Part 1: Third Order Intermodulation Distortion2-209Part 1: Third Order Intermodulation Distortion2-208Procedure2-209Part 2: Second Harmonic Distortion2-209Part 2: Second Harmonic Distortion2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-208Procedure2-22432. Gain Compression: HP E4401B,		
Equipment Required2-181Additional Equipment for 75 Ω Input2-181Procedure2-18128. Other Input-Related Spurious Responses: HP E4402B, E4403B, E44040B,E4405B, E4407B, E4408B2-186Equipment Required2-186Procedure2-18729. Spurious Responses: HP E4401B and E4411B2-192Equipment Required2-193Procedure2-193Procedure2-193Procedure2-193Part 1: Third Order Intermodulation Distortion2-193Part 2: Second Harmonic Distortion2-193Part 2: Second Harmonic Distortion2-200Procedure2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-201Part 1: Third Order Intermodulation Distortion2-201Part 1: Third Order Intermodulation Distortion2-200Part 1: Third Order Intermodulation Distortion2-200Part 2: Second Harmonic Distortion2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-204Procedure2-224Additional Equipment for 75 Ω Input2-224S Gain Compression: HP E4401B, E4402B, E4403B, and E4408B		
Additional Equipment for 75 Ω Input2-181Procedure2-18128. Other Input-Related Spurious Responses: HP E4402B, E4403B, E4404B,E4405B, E4407B, E4408B2-186Equipment Required2-186Procedure2-18729. Spurious Responses: HP E4401B and E4411B2-192Equipment Required2-192Additional Equipment for 75 Ω Input2-193Procedure2-193Procedure2-193Part 1: Third Order Intermodulation Distortion2-193Part 2: Second Harmonic Distortion2-193Spurious Responses: HP E4402B and E4403B2-200Equipment Required2-200Procedure2-200Procedure2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-20531. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-209Part 1: Third Order Intermodulation Distortion2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-208Procedure2-224Additional Equipment for 75 Ω Input2-224Procedure2-224Scian Compression: HP E4404B, E4405B, E4407B, and E4408B2-224Additional Equipment for 75 Ω Input2-224Procedure2-224Additional Equipment for Option BAB2-228Additional Equipment for Option BAB2-228Additional Equipment for		
Procedure2-18128. Other Input-Related Spurious Responses: HP E4402B, E4403B, E4404B,2-186E4405B, E4407B, E4408B2-186Equipment Required2-18729. Spurious Responses: HP E4401B and E4411B2-192Equipment Required2-192Additional Equipment for 75 Ω Input2-193Procedure2-193Part 1: Third Order Intermodulation Distortion2-193Part 2: Second Harmonic Distortion2-19330. Spurious Responses: HP E4402B and E4403B2-200Equipment Required2-200Equipment Required2-200Procedure2-200Equipment Required2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-20531. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-208Procedure2-2082. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B2-2242. Second Harmonic Distortion2-21332. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B2-224Procedure2-224Additional Equipment for 75 Ω Input2-224Procedure2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-228Equipment Required2-224Procedure2-22434. Displayed Average Noise Level: HP E4401B and HP E4411B2-232	Additional Equipment for 75 Ω Input	2-181
28. Other Input-Related Spurious Responses: HP E4402B, E4403B, E4404B, E4405B, E4407B, E4408B	Procedure	2-181
E4405B, E4407B, E4408B2-186Equipment Required2-18729. Spurious Responses: HP E4401B and E4411B2-192Equipment Required2-193Additional Equipment for 75 Ω Input2-193Procedure2-193Part 1: Third Order Intermodulation Distortion2-193Part 2: Second Harmonic Distortion2-1939 Spurious Responses: HP E4402B and E4403B2-200Equipment Required2-200Procedure2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-20531. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B2-208Equipment Required2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-209Part 1: Third Order Intermodulation Distortion2-208Equipment Required2-208Procedure2-208Procedure2-204Additional Equipment for 75 Ω Input2-21432. Gain Compression: HP E4404B, E4402B, E4403B, and E4411B2-224Additional Equipment for 75 Ω Input2-224Additional Equipment for 75 Ω Input2-228Equipment Required2-228Additional Equipment for Option BAB2-228Additional Equipment for Option BAB2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232		
Procedure2-18729. Spurious Responses: HP E4401B and E4411B2-192Equipment Required2-192Additional Equipment for 75 Ω Input2-193Procedure2-193Part 1: Third Order Intermodulation Distortion2-193Part 2: Second Harmonic Distortion2-19380. Spurious Responses: HP E4402B and E4403B2-200Equipment Required2-200Pocedure2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-20531. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B2-208Equipment Required2-209Part 1: Third Order Intermodulation Distortion2-209Part 1: Third Order Intermodulation Distortion2-204Procedure2-209Part 1: Third Order Intermodulation Distortion2-208Equipment Required2-224Additional Equipment for 75 Ω Input2-224Additional Equipment for 75 Ω Input2-224Additional Equipment for 75 Ω Input2-224Additional Equipment for Option BAB2-228Equipment Required2-228Procedure2-228Additional Equipment for Option BAB2-228Additional Equipment for Option BAB2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232		
Procedure2-18729. Spurious Responses: HP E4401B and E4411B2-192Equipment Required2-192Additional Equipment for 75 Ω Input2-193Procedure2-193Part 1: Third Order Intermodulation Distortion2-193Part 2: Second Harmonic Distortion2-19380. Spurious Responses: HP E4402B and E4403B2-200Equipment Required2-200Pocedure2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-20531. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B2-208Equipment Required2-209Part 1: Third Order Intermodulation Distortion2-209Part 1: Third Order Intermodulation Distortion2-204Procedure2-209Part 1: Third Order Intermodulation Distortion2-208Equipment Required2-224Additional Equipment for 75 Ω Input2-224Additional Equipment for 75 Ω Input2-224Additional Equipment for 75 Ω Input2-224Additional Equipment for Option BAB2-228Equipment Required2-228Procedure2-228Additional Equipment for Option BAB2-228Additional Equipment for Option BAB2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232	Equipment Required	2-186
Equipment Required2-192Additional Equipment for 75 Ω Input2-193Procedure2-193Part 1: Third Order Intermodulation Distortion2-193Part 2: Second Harmonic Distortion2-1939art 2: Second Harmonic Distortion2-19830. Spurious Responses: HP E4402B and E4403B2-200Equipment Required2-200Procedure2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-201Part 1: Third Order Intermodulation Distortion2-20531. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B2-208Equipment Required2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-21332. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B2-224Equipment Required2-224Additional Equipment for 75 Ω Input2-224Yrocedure2-228Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232		
Equipment Required2-192Additional Equipment for 75 Ω Input2-193Procedure2-193Part 1: Third Order Intermodulation Distortion2-193Part 2: Second Harmonic Distortion2-1939art 2: Second Harmonic Distortion2-19830. Spurious Responses: HP E4402B and E4403B2-200Equipment Required2-200Procedure2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-201Part 1: Third Order Intermodulation Distortion2-20531. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B2-208Equipment Required2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-21332. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B2-224Equipment Required2-224Additional Equipment for 75 Ω Input2-224Yrocedure2-228Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232	29. Spurious Responses: HP E4401B and E4411B	2-192
Additional Equipment for 75 Ω Input2-193Procedure2-193Part 1: Third Order Intermodulation Distortion2-193Part 2: Second Harmonic Distortion2-19830. Spurious Responses: HP E4402B and E4403B2-200Equipment Required2-200Procedure2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-201Part 1: Third Order Intermodulation Distortion2-20531. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B2-208Equipment Required2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-209Part 1: Third Order Intermodulation Distortion2-208Equipment Required2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-21332. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B2-224Additional Equipment for 75 Ω Input2-224Yrocedure2-228Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232		
Procedure2-193Part 1: Third Order Intermodulation Distortion2-193Part 2: Second Harmonic Distortion2-19830. Spurious Responses: HP E4402B and E4403B2-200Equipment Required2-200Procedure2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-20531. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B2-208Equipment Required2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-208Equipment Required2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-21332. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B2-224Equipment Required2-224Additional Equipment for 75 Ω Input2-228Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232		
Part 2: Second Harmonic Distortion2-19830. Spurious Responses: HP E4402B and E4403B2-200Equipment Required2-200Procedure2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-20531. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B2-208Equipment Required2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-209Part 1: Third Order Intermodulation Distortion2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-209Part 2: Second Harmonic Distortion2-204Procedure2-204Part 2: Second Harmonic Distortion2-20432. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B2-224Equipment Required2-224Additional Equipment for 75 Ω Input2-228Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-228Additional Equipment for Option BAB2-228Start 2: Second Pare I for Option BAB2-228Procedure2-228Additional Equipment for Option BAB2-228Start 2: Second Pare I for Suise Level: HP E4401B and HP E4411B2-232		
30. Spurious Responses: HP E4402B and E4403B2-200Equipment Required2-200Procedure2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-20531. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B2-208Equipment Required2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-209Part 2: Second Harmonic Distortion2-20132. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B2-224Equipment Required2-224Additional Equipment for 75 Ω Input2-224Yrocedure2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-228Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232	Part 1: Third Order Intermodulation Distortion	2-193
Equipment Required2-200Procedure2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-20531. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B2-208Equipment Required2-209Part 1: Third Order Intermodulation Distortion2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-21332. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B2-224Equipment Required2-224Additional Equipment for 75 Ω Input2-224Procedure2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-228Equipment Required2-22434. Displayed Average Noise Level: HP E4401B and HP E4411B2-232	Part 2: Second Harmonic Distortion	2-198
Equipment Required2-200Procedure2-201Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-20531. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B2-208Equipment Required2-209Part 1: Third Order Intermodulation Distortion2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-21332. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B2-224Equipment Required2-224Additional Equipment for 75 Ω Input2-224Procedure2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-228Equipment Required2-22434. Displayed Average Noise Level: HP E4401B and HP E4411B2-232	30. Spurious Responses: HP E4402B and E4403B	2-200
Part 1: Third Order Intermodulation Distortion2-201Part 2: Second Harmonic Distortion2-20531. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B2-208Equipment Required2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-209Part 2: Second Harmonic Distortion2-21332. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B2-224Equipment Required2-224Additional Equipment for 75 Ω Input2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-228Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232		
Part 2: Second Harmonic Distortion2-20531. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B2-208Equipment Required2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-21332. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B2-224Equipment Required2-224Additional Equipment for 75 Ω Input2-224Procedure2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-228Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232	Procedure	
31. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B2-208Equipment Required2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-21332. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B2-224Equipment Required2-224Additional Equipment for 75 Ω Input2-224Procedure2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-224Second Harmonic Distortion2-224Additional Equipment for 75 Ω Input2-224Procedure2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-228Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232	Part 1: Third Order Intermodulation Distortion	
Equipment Required2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-21332. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B2-224Equipment Required2-224Additional Equipment for 75 Ω Input2-224Procedure2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-228Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232	Part 2: Second Harmonic Distortion	2-205
Equipment Required2-208Procedure2-209Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-21332. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B2-224Equipment Required2-224Additional Equipment for 75 Ω Input2-224Procedure2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-228Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232	31. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B	2-208
Part 1: Third Order Intermodulation Distortion2-209Part 2: Second Harmonic Distortion2-21332. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B2-224Equipment Required2-224Additional Equipment for 75 Ω Input2-224970cedure2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-228Equipment Required2-228Additional Equipment for Option BAB2-228970cedure2-228 <td></td> <td></td>		
Part 2: Second Harmonic Distortion2-21332. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B2-224Equipment Required2-224Additional Equipment for 75 Ω Input2-224Procedure2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-228Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232	Procedure	2-209
32. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B2-224Equipment Required2-224Additional Equipment for 75 Ω Input2-224Procedure2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-228Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232	Part 1: Third Order Intermodulation Distortion	2-209
Equipment Required2-224Additional Equipment for 75 Ω Input2-224Procedure2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-228Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232	Part 2: Second Harmonic Distortion	2-213
Additional Equipment for 75 Ω Input2-224Procedure2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-228Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232	32. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B	2-224
Procedure2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-228Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232	Equipment Required	2-224
Procedure2-22433. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B2-228Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232	Additional Equipment for 75 Ω Input	2-224
Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232		
Equipment Required2-228Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232	33. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B	2-228
Additional Equipment for Option BAB2-228Procedure2-22834. Displayed Average Noise Level: HP E4401B and HP E4411B2-232		
Procedure	Additional Equipment for Option BAB	2-228
34. Displayed Average Noise Level: HP E4401B and HP E4411B2-232		
-1-1	Equipment Required	2-232

Additional Equipment for 75 Ω Input	2-232
Procedure	
35. Displayed Average Noise Level: HP E4402B and HP E4403B	2-240
Equipment Required	
Procedure	2-241
36. Displayed Average Noise Level: HP E4404B and E4405B	2-246
Equipment Required	2-246
Procedure	2-247
37. Displayed Average Noise Level: HP E4407B and HP E4408B	2-254
Equipment Required	
Additional Equipment for Option BAB	2-254
Procedure	
38. Residual Responses	2-261
Equipment Required	2-261
Additional Equipment for 75 Ω Input	
Additional Equipment for Option BAB	2-261
Procedure	2-262
39. Fast Time Domain Amplitude Accuracy: HP E4401B, E4402B, E4404B,	
E4405B, and E4407B, Option AYX	2-264
Equipment Required	2-264
Procedure	2-264
40. Tracking Generator Absolute Amplitude and Vernier Accuracy: HP E4401B	
and E4411B, Option 1DN or 1DQ	2-266
Equipment Required	2-266
Additional Equipment for Option 1DQ	2-266
Procedure	2-267
41. Tracking Generator Absolute Amplitude and Vernier Accuracy: HP E4402B,	
E4403B, E4404B, E4405B, E4407B and E4408B, Option 1DN	2-270
Equipment Required	
Procedure	
42. Tracking Generator Level Flatness: HP E4401B and E4411B, Option 1DN or 1DQ	2-273
Equipment Required	
Additional Equipment for Option 1DQ	
Procedure	
Tracking Generator Level Flatness, Center Frequency ≥100 kHz	
Tracking Generator Level Flatness, Center Frequency $\leq 100 \text{ kHz}$	2-276
43. Tracking Generator Level Flatness:	
HP E4402B, E4403B, E4404B, E4405B, E4407B, E4408B, Option 1DN	
Equipment Required	
Procedure	
Tracking Generator Level Flatness, Center Frequency $\geq 100 \text{ kHz} \dots \dots \dots$	
Tracking Generator Level Flatness, Center Frequency ≤100 kHz	2-282

44. Tracking Generator Harmonic Spurious Outputs: HP E4401B and E4411B,	
Option 1DN or 1DQ	. 2-286
Equipment Required	. 2-286
Additional Equipment Required for Option 1DQ	. 2-286
Procedure	
45. Tracking Generator Harmonic Spurious Outputs: HP E4402B, E4403B, E4404B,	
E4405B, E4407B, and E4408B, Option 1DN	. 2-290
Equipment Required	
Procedure	
46. Tracking Generator Non-Harmonic Spurious Outputs: HP E4401B and E4411B,	
Option 1DN or 1DQ	. 2-294
Equipment Required	
Additional Equipment for 75 Ω Input	
Procedure	
Measuring Fundamental Amplitudes	. 2-296
Measuring Non-Harmonic Responses	
Determining the Highest Non-harmonic Spurious Response	
47. Tracking Generator Non-harmonic Spurious Outputs: HP E4402B, E4403B,	
E4404B, E4405B, E4407B and E4408B, Option 1DN	. 2-300
Equipment Required	. 2-300
Procedure	. 2-300
48. Tracking Generator LO Feedthrough Amplitude: HP E4402B, E4403B, E4404B,	
E4405B, E4407B, and E4408B, Option 1DN	. 2-306
Equipment Required	. 2-306
Procedure	. 2-306
49. Gate Delay Accuracy and Gate Length Accuracy: HP E4401B, E4402B, E4404B,	
E4405B, and E4407B, Option 1D6	. 2-309
Equipment Required	. 2-309
Procedure	. 2-309
50. Gate Mode Additional Amplitude Error: HP E4401B, E4402B, E4404B, E4405B	
and E4407B, Option 1D6	. 2-314
Equipment Required	. 2-314
Additional Equipment for Option 1DP	. 2-314
Additional Equipment for Option BAB	. 2-314
Procedure	. 2-314
51. First LO OUTPUT Amplitude Accuracy (Option AYZ only)	. 2-316
Equipment Required	. 2-316
Procedure	
52. IF INPUT Accuracy (Option AYZ only)	
Equipment Required	
Procedure	. 2-320

3. Performance Verification Test Records
HP E4401B Performance Verification Test Record
HP E4402B Performance Verification Test Record 3-25
HP E4403B Performance Verification Test Record
HP E4404B Performance Verification Test Record
HP E4405B Performance Verification Test Record
HP E4407B Performance Verification Test Record
Report
HP E4408B Performance Verification Test Record
HP E4411B Performance Verification Test Record
4. HP E4401B Specifications and Characteristics
About This Chapter
Frequency
Amplitude
Options
Time Gated Spectrum Analysis (Option 1D6) 4-24
Tracking Generator (Option 1DN or 1DQ)
FM Demodulation (Option BAA) 4-29
TV Trigger and Picture On Screen (Option B7B) 4-30
General
Inputs and Outputs
Internal
Front Panel
Rear Panel
Regulatory Information
Declaration of Conformity
5. HP E4402B Specifications and Characteristics
About This Chapter
Frequency
Amplitude
Options
Time Gated Spectrum Analysis (Option 1D6) 5-20
Tracking Generator (Option 1DN) 5-20
TV Trigger and Picture On Screen (Option B7B) 5-26
General 5-27
Inputs and Outputs
Front Panel
Rear Panel
Regulatory Information 5-37

	Declaration of Conformity	38
6.	HP E4403B Specifications and Characteristics	
	About This Chapter	-2
	Frequency	
	Amplitude	
	Options	
	Tracking Generator (Option 1DN)	
	General	
	Inputs and Outputs	
	Front Panel	
	Rear Panel	
	Regulatory Information	
	Declaration of Conformity	
7.	HP E4404B Specifications and Characteristics	
	About This Chapter	-2
	Frequency	-4
	Amplitude	12
	Options	
	Time Gated Spectrum Analysis (Option 1D6)	
	Tracking Generator (Option 1DN)	
	FM Demodulation (Option BAA)7-2	
	TV Trigger and Picture On Screen (Option B7B)7-2	
	General	
	Inputs and Outputs	
	Front Panel	
	Rear Panel	
	Regulatory Information	
	Declaration of Conformity	40
o	HD E4405D Specifications and Characteristics	
0.	HP E4405B Specifications and Characteristics	\mathbf{r}
	About This Chapter	
	Frequency	
	Amplitude	
	Options	
	Time Gated Spectrum Analysis (Option 1D6)	
	Tracking Generator (Option 1DN)	
	FM Demodulation (Option BAA)	
	TV Trigger and Picture On Screen (Option B7B)8-2	
	General	
	Inputs and Outputs	54

Front Panel	8-34
Rear Panel	8-35
Regulatory Information	8-41
Declaration of Conformity	8-42
9. HP E4407B Specifications and Characteristics	
About This Chapter	9-2
Frequency	9-4
Amplitude	9-12
Options	9-25
Time Gated Spectrum Analysis (Option 1D6)	9-25
Tracking Generator (Option 1DN)	9-25
External Mixing (Option AYZ)	
FM Demodulation (Option BAA)	9-32
TV Trigger and Picture On Screen (Option B7B)	9-33
General	
Inputs and Outputs	9-38
Front Panel	9-38
Rear Panel	9-39
Regulatory Information	9-45
Declaration of Conformity	9-46
10.HP E4408B Specifications and Characteristics	
10.HP E4408B Specifications and Characteristics About This Chapter	10-2
About This Chapter Frequency	10-4
About This Chapter	10-4
About This Chapter Frequency	10-4 10-9
About This Chapter Frequency Frequency Amplitude	10-4 10-9 0-19
About This Chapter Frequency Amplitude Options	10-4 10-9 0-19 0-19
About This Chapter Frequency Amplitude Options Tracking Generator (Option 1DN)	10-4 10-9 0-19 0-19 0-23
About This Chapter Frequency Amplitude Options Tracking Generator (Option 1DN) General	10-4 10-9 0-19 0-19 0-23 0-27
About This Chapter Frequency Amplitude Options Tracking Generator (Option 1DN) General Inputs and Outputs	10-4 10-9 0-19 0-19 0-23 0-27 0-27
About This ChapterFrequencyAmplitudeOptionsOptionsTracking Generator (Option 1DN)GeneralInputs and OutputsFront PanelRear Panel10Regulatory Information	10-4 10-9 0-19 0-23 0-27 0-27 0-28 0-32
About This Chapter Frequency Amplitude Options Inputs and Outputs Inputs Inputs Inputs<	10-4 10-9 0-19 0-23 0-27 0-27 0-28 0-32
About This ChapterFrequencyAmplitudeOptionsOptionsTracking Generator (Option 1DN)GeneralInputs and OutputsFront PanelRear Panel10Regulatory Information10Declaration of Conformity	10-4 10-9 0-19 0-23 0-27 0-27 0-28 0-32
About This Chapter Frequency Amplitude Options Imputs and Outputs Front Panel Imputation Imputation About This Chapter Implitude Implitude Imputs and Outputs	10-4 10-9 0-19 0-23 0-27 0-27 0-28 0-32 0-33
About This Chapter Frequency Amplitude Options Imputs Generator (Option 1DN) General Inputs and Outputs Front Panel Rear Panel Imputation Imputat	10-4 10-9 0-19 0-23 0-27 0-27 0-28 0-32 0-33
About This Chapter . Frequency . Amplitude . Options . Inputs and Outputs . Inputs an	10-4 10-9 0-19 0-23 0-27 0-27 0-27 0-28 0-32 0-33
About This Chapter . Frequency . Amplitude . Options . 10 Tracking Generator (Option 1DN) . 10 General . 10 Inputs and Outputs . 10 Front Panel . 10 Regulatory Information . 10 Declaration of Conformity . 10 11.HP E4411B Specifications and Characteristics About This Chapter . Frequency . Amplitude .	10-4 10-9 0-19 0-23 0-27 0-27 0-28 0-32 0-33 11-2 11-4 11-8
About This Chapter . Frequency . Amplitude . Options . 10 Tracking Generator (Option 1DN) . 10 General . 10 Inputs and Outputs . 10 Front Panel . 10 Regulatory Information . 10 Declaration of Conformity . 10 11.HP E4411B Specifications and Characteristics About This Chapter . Frequency . Amplitude . Options . 1	10-4 10-9 0-19 0-23 0-27 0-27 0-28 0-32 0-33 11-2 11-4 11-8 1-18
About This Chapter . Frequency . Amplitude . Options . 10 Tracking Generator (Option 1DN) . 10 General . 10 Inputs and Outputs . 10 Front Panel . 10 Regulatory Information . 10 Declaration of Conformity . 10 11.HP E4411B Specifications and Characteristics About This Chapter . Frequency . Amplitude .	10-4 10-9 0-19 0-23 0-27 0-27 0-28 0-32 0-33 11-2 11-4 11-8 1-18 1-18

Inputs and Outputs	27
Internal	27
Front Panel	27
Rear Panel	28
Regulatory Information	32
Declaration of Conformity	33
12.If You Have a Problem	
What You'll Find in This Chapter	-2
Before You Call Hewlett-Packard12-	-3
Check the Basics	-3
Read the Warranty	-4
Service Options	-4
How to Call Hewlett-Packard12-	-5
How to Return Your Analyzer for Service	-7
Service Tag	
Original Packaging	-7
Other Packaging	-9
Error Messages	0

1 Calibrating

Calibrating Calibration

Calibration

This chapter identifies the performance test procedures which test the electrical performance of the analyzer.

Allow the analyzer to warm up in accordance with the temperature stability specifications before performing the tests in this chapter.

None of the test procedures involve removing the cover of the analyzer.

Calibration verifies that the analyzer performance is within all specifications. It is time consuming and requires extensive test equipment. Calibration consists of *all* the performance tests. For a complete listing of the performance tests, see the performance verification tests table for your specific analyzer.

Calibration Cycle

The performance tests in chapter 2 should be used to check the analyzer against its specifications once every year. Specifications are listed in this calibration guide.

Performance Verification Test Tables

The tables on the following pages list the performance tests in Chapter 2, "Performance Verification Tests", required for each model number. Perform all the tests marked with a dot in the "Std" (standard) column. If any options are installed in the analyzer, also perform all tests marked with a dot in the appropriate option column.

		Calibration for Instrument Option:							
Performance Test Name			1DN	1DQ	1DS	AYX	1D5	1D6	
1.	10 MHz Reference Output Accuracy ^b	•							
2.	10 MHz Precision Frequency Reference Output Accuracy						•		
3.	Frequency Readout and Marker Frequency Count Accuracy	•							
5.	Frequency Span Readout Accuracy	•							
7.	Noise Sidebands	•							
8.	System Related Sidebands	•							
9.	Residual FM	•							
10.	Sweep Time Accuracy	•							
11.	Display Scale Fidelity	•							
12.	Input Attenuation Switching Uncertainty	•							
13.	Reference Level Accuracy	•							
15.	Resolution Bandwidth Switching Uncertainty	•							
16.	Absolute Amplitude Accuracy (Reference Settings)	•							
18.	Overall Absolute Amplitude Accuracy	•							
20.	Resolution Bandwidth Accuracy	•							
21.	Frequency Response	•							
24.	Frequency Response (Preamp On)				•				
27.	Other Input Related Spurious Responses	•							
29.	Spurious Responses	•							
32.	Gain Compression	•							
34.	Displayed Average Noise Level	•							
38.	Residual Responses	•							
39.	Fast Time Domain Amplitude Accuracy					•			
40.	Tracking Generator Absolute Amplitude and Vernier Accuracy		•	•					
42.	Tracking Generator Level Flatness		•	•					
44.	Tracking Generator Harmonic Spurious Outputs		•	•					
46.	Tracking Generator Non-Harmonic Spurious Outputs		•	•					
49.	Gate Delay Accuracy and Gate Length Accuracy							•	
50.	Gate Mode Amplitude Error							•	

a. Perform these tests for all HP E4401B analyzers.b. Perform this test only on analyzers not equipped with Option 1D5.

		Cali	bration	for Ins	trumen	t Optic	on:
	Performance Test Name	Std ^a	1DN	1DS	AYX	1D5	1D6
1.	10 MHz Reference Output Accuracy ^b	•					
2.	10 MHz Precision Frequency Reference Output Accuracy					•	
3.	Frequency Readout and Marker Frequency Count Accuracy	•					
6.	Frequency Span Readout Accuracy	•	· .				
7.	Noise Sidebands	•					
8.	System Related Sidebands		1				
9.	Residual FM	•					-
10.	Sweep Time Accuracy	•					
11.	Display Scale Fidelity	•					
12.	Input Attenuation Switching Uncertainty	•					
14.	Reference Level Accuracy	•					
15.	Resolution Bandwidth Switching Uncertainty	•					
17.	Absolute Amplitude Accuracy (Reference Settings)	•					
19.	Overall Absolute Amplitude Accuracy	•					
20.	Resolution Bandwidth Accuracy	•					
22.	Frequency Response	•					
25.	Frequency Response (Preamp On)			•			
28.	Other Input Related Spurious Responses	•					
30.	Spurious Responses	•				1	
32.	Gain Compression	•					
35.	Displayed Average Noise Level	•					
38.	Residual Responses	•					
39.	Fast Time Domain Amplitude Accuracy				•		
41.	Tracking Generator Absolute Amplitude and Vernier Accuracy		•				
43.	Tracking Generator Level Flatness		•				
45.	Tracking Generator Harmonic Spurious Outputs		•				
47.	Tracking Generator Non-Harmonic Spurious Outputs		•				
48.	Tracking Generator L.O. Feedthrough Amplitude		•				
49.	Gate Delay Accuracy and Gate Length Accuracy						•
50.	Gate Mode Amplitude Error						•

Table 1-2 HP E4402B Performance Verification Tests

a. Perform these tests for all HP E4402B analyzers.

b. Perform this test only on analyzers not equipped with Option 1D5.

	Performance Test Name		tion for nt Option:
		Std ^a	1DN
1.	10 MHz Reference Output Accuracy	•	
3.	Frequency Readout and Marker Frequency Count Accuracy	•	
6.	Frequency Span Readout Accuracy	•	
7.	Noise Sidebands	•	
8.	System Related Sidebands	•	
9.	Residual FM	•	
10.	Sweep Time Accuracy	6	
11.	Display Scale Fidelity	•	
12.	Input Attenuation Switching Uncertainty	•	
14.	Reference Level Accuracy	•	
15.	Resolution Bandwidth Switching Uncertainty	•	
17.	Absolute Amplitude Accuracy (Reference Settings)	•	
19.	Overall Absolute Amplitude Accuracy	•	
20.	Resolution Bandwidth Accuracy	e	
22.	Frequency Response	•	
2 8.	Other Input Related Spurious Responses	•	
30.	Spurious Responses	•	
32.	Gain Compression	•	
35.	Displayed Average Noise Level	•	
38.	Residual Responses	•	
41.	Tracking Generator Absolute Amplitude and Vernier Accuracy		•
43.	Tracking Generator Level Flatness		•
45.	Tracking Generator Harmonic Spurious Outputs		•
47.	Tracking Generator Non-Harmonic Spurious Outputs		•
48.	Tracking Generator L.O. Feedthrough Amplitude		•

Table 1-3 HP E4403B Performance Verification Tests

a. Perform these tests on all E4403B analyzers.

	Destances (Dest News)		Calibration for Instrument Option:						
	Performance Test Name			1DS	AYX	1D5	1D6		
1.	10 MHz Reference Output Accuracy ^b	•	-						
2.	10 MHz Precision Frequency Reference Output Accuracy					•			
4.	Frequency Readout and Marker Frequency Count Accuracy	•							
6.	Frequency Span Readout Accuracy	•							
7.	Noise Sidebands	•							
8.	System Related Sidebands	•							
9.	Residual FM	•							
10.	Sweep Time Accuracy	•							
11.	Display Scale Fidelity	•							
12.	Input Attenuation Switching Uncertainty	•							
14.	Reference Level Accuracy	•							
15.	Resolution Bandwidth Switching Uncertainty	•							
17.	Absolute Amplitude Accuracy (Reference Settings)	•							
19.	Overall Absolute Amplitude Accuracy	•							
20.	Resolution Bandwidth Accuracy	•							
23.	Frequency Response	•							
26.	Frequency Response (Preamp On)			•					
28.	Other Input Related Spurious Responses	•							
31.	Spurious Responses	•							
33.	Gain Compression	•							
36.	Displayed Average Noise Level	•							
38.	Residual Responses	•							
39.	Fast Time Domain Amplitude Accuracy				•				
41.	Tracking Generator Absolute Amplitude and Vernier Accuracy		•						
43.	Tracking Generator Level Flatness		•						
45.	Tracking Generator Harmonic Spurious Outputs		•						
47.	Tracking Generator Non-Harmonic Spurious Outputs		•						
48.	Tracking Generator L.O. Feedthrough Amplitude		•						
49.	Gate Delay Accuracy and Gate Length Accuracy						•		
50.	Gate Mode Amplitude Error						•		

Table 1-4 HP E4404B Performance Verification Tests

a. Perform these tests on all HP E4404B analyzers.

b. Perform this test only on analyzers not equipped with Option 1D5.

Calibrating Calibration Cycle

		Calibration for Instrument Option:							
	Performance Test Name	Std ^a	1DN	1DS	AYX	1D5	1D		
1.	10 MHz Reference Output Accuracy ^b	•							
2.	10 MHz Precision Frequency Reference Output Accuracy					•			
4.	Frequency Readout and Marker Frequency Count Accuracy	•							
6.	Frequency Span Readout Accuracy	•							
7.	Noise Sidebands	•							
8.	System Related Sidebands	•							
9.	Residual FM	•							
10.	Sweep Time Accuracy	•							
11.	Display Scale Fidelity	•							
12.	Input Attenuation Switching Uncertainty	•							
14.	Reference Level Accuracy	•							
15.	Resolution Bandwidth Switching Uncertainty	•							
17.	Absolute Amplitude Accuracy (Reference Settings)	•							
19.	Overall Absolute Amplitude Accuracy	•		:					
20.	Resolution Bandwidth Accuracy	•							
23.	Frequency Response	•							
26.	Frequency Response (Preamp On)			•					
28.	Other Input Related Spurious Responses	•							
31.	Spurious Responses	•							
33.	Gain Compression	•							
36.	Displayed Average Noise Level	•							
38.	Residual Responses	•							
39.	Fast Time Domain Amplitude Accuracy				•				
41.	Tracking Generator Absolute Amplitude and Vernier Accuracy		•						
43.	Tracking Generator Level Flatness		•						

a. Perform these tests on all HP E4405B analyzers.

Gate Mode Amplitude Error

Tracking Generator Harmonic Spurious Outputs

Tracking Generator L.O. Feedthrough Amplitude

Gate Delay Accuracy and Gate Length Accuracy

Tracking Generator Non-Harmonic Spurious Outputs

45. 47.

48.

49.

50.

b. Perform this test only if the analyzer is not equipped with Option 1D5.

1D6

		Calibration for Instrument Option:						
	Performance Test Name	Std ^a	1DN	1DS	AYX	1D5	1D6	AYZ
1.	10 MHz Reference Output Accuracy ^b	•						
2.	10 MHz Precision Frequency Reference Output Accuracy					•		
4.	Frequency Readout and Marker Frequency Count Accuracy	•						
6.	Frequency Span Readout Accuracy	•						
7.	Noise Sidebands				-			
8.	System Related Sidebands							
9.	Residual FM	•						
10.	Sweep Time Accuracy	•						
11.	Display Scale Fidelity	•						
12.	Input Attenuation Switching Uncertainty	•						
14.	Reference Level Accuracy	•						
15.	Resolution Bandwidth Switching Uncertainty	•						
17.	Absolute Amplitude Accuracy (Reference Settings)	•						
19.	Overall Absolute Amplitude Accuracy	•						
20.	Resolution Bandwidth Accuracy	•						
23.	Frequency Response	•						
26.	Frequency Response (Preamp On)			•				
28.	Other Input Related Spurious Responses	•						
31.	Spurious Responses	•						
33.	Gain Compression	•						
37.	Displayed Average Noise Level	•						
38.	Residual Responses	•						
39.	Fast Time Domain Amplitude Accuracy				•			
41.	Tracking Generator Absolute Amplitude and Vernier Accuracy		•					
43.	Tracking Generator Level Flatness		•					
45.	Tracking Generator Harmonic Spurious Outputs		•					
47.	Tracking Generator Non-Harmonic Spurious Outputs		•					
48.	Tracking Generator L.O. Feedthrough Amplitude		•					
49.	Gate Delay Accuracy and Gate Length Accuracy						•	
50.	Gate Mode Amplitude Error						•	
51.	First LO OUTPUT Amplitude Accuracy							•
52.	IF INPUT Accuracy							•

Table 1-6 HP E4407B Performance Verification Tests

Calibrating Calibration Cycle

- a. Perform these tests on all HP E4407B analyzers.b. Perform this test only on analyzers not equipped with Option 1D5.

	Performance Test Name		ation for ent Option:
		Std ^a	1DN
1.	10 MHz Reference Output Accuracy	•	
4.	Frequency Readout and Marker Frequency Count Accuracy	•	and the second
6.	Frequency Span Readout Accuracy	•	
7.	Noise Sidebands	•	
8.	System Related Sidebands	•	
9.	Residual FM	. •	
10.	Sweep Time Accuracy	•	
11.	Display Scale Fidelity	•	
12.	Input Attenuation Switching Uncertainty	•	
14.	Reference Level Accuracy	•	
15.	Resolution Bandwidth Switching Uncertainty	•	
17.	Absolute Amplitude Accuracy (Reference Settings)	•	
19.	Overall Absolute Amplitude Accuracy	•	
20.	Resolution Bandwidth Accuracy	•	
23.	Frequency Response	•	
28.	Other Input Related Spurious Responses	•	
31.	Spurious Responses	•	
33.	Gain Compression	•	
37.	Displayed Average Noise Level	•	
38.	Residual Responses	•	
41.	Tracking Generator Absolute Amplitude and Vernier Accuracy		•
43.	Tracking Generator Level Flatness		•
45.	Tracking Generator Harmonic Spurious Outputs		•
47.	Tracking Generator Non-Harmonic Spurious Outputs		•
4 8.	Tracking Generator L.O. Feedthrough Amplitude		•

Table 1-7 HP E4408B Performance Verification Tests

a. Perform these tests on all HP E4408B analyzers.

	Performance Test Name		bration ment O	
		Std ^a	1DN	1DQ
1.	10 MHz Reference Output Accuracy	•		
3.	Frequency Readout and Marker Frequency Count Accuracy	•		
5.	Frequency Span Readout Accuracy	•		
7.	Noise Sidebands	•		
8.	System Related Sidebands	•		
9.	Residual FM	•		
10.	Sweep Time Accuracy	•		
11.	Display Scale Fidelity	•		
12.	Input Attenuation Switching Uncertainty	•		
13.	Reference Level Accuracy	•		
15.	Resolution Bandwidth Switching Uncertainty	•		
16.	Absolute Amplitude Accuracy (Reference Settings)	•		
18.	Overall Absolute Amplitude Accuracy	•		
20.	Resolution Bandwidth Accuracy	•		
21.	Frequency Response	•		
27.	Other Input Related Spurious Responses	•		
29.	Spurious Responses	•		
32.	Gain Compression	•		
34.	Displayed Average Noise Level	•		
38.	Residual Responses	•		
40.	Tracking Generator Absolute Amplitude and Vernier Accuracy		•	•
42.	Tracking Generator Level Flatness		•	•
44.	Tracking Generator Harmonic Spurious Outputs		•	•
46.	Tracking Generator Non-Harmonic Spurious Outputs		•	•

Table 1-8 HP E4411B Performance Verification Tests

a. Perform these tests on all HP E4411B analyzers.

Before You Start

There are four things you should do before starting the performance verification tests:

- Switch the analyzer on and let it warm up for five minutes.
- If the analyzer is an HP E4402B, E4403B, E4404B, E4405B, E4407B, or E4408B, connect a cable from AMPTD REF OUT to Input 50Ω .
- Press System, Alignments, Align Now, All, and wait for the auto alignments to finish.
- Read the rest of this section before you start any of the tests, and make a copy of the Performance Verification Test Record described below in "Recording the test results."

Recording the test results

Performance verification test records, for each spectrum analyzer, are provided in the chapter following the tests.

Each test result is identified as a *TR Entry* in the performance tests and on the performance verification test record. We recommend that you make a copy of the performance verification test record, record the test results on the copy, and keep the copy for your calibration test record. This record could prove valuable in tracking gradual changes in test results over long periods of time.

Self-Alignment

Perform a complete self-alignment at least once per day, or if the analyzer fails a verification test. To perform a self-alignment, press **System**, **Alignment**, **Align Now**, **All**. The instrument must be up to operating temperature in order for this test to be valid. If the analyzer continuously fails one or more specifications, complete any remaining tests and record all test results on a copy of the test record. Then refer to Chapter 12, "If You Have a Problem" for instructions on how to solve the problem. Calibrating Before You Start

Periodically verifying operation

The analyzer requires periodic verification of operation. Under most conditions of use, you should test the analyzer at least once a year with the complete set of performance verification tests.

Test equipment you will need

The following tables list the recommended test equipment for the performance tests. The tables also list recommended equipment for the analyzer adjustment procedures which are located in the *HP ESA* Spectrum Analyzers Assembly-Level Repair Service Guide. Any equipment that meets the critical specifications given in the table can be substituted for the recommended model.

Equipment	Critical Specifications for Equipment Substitution	Recommended Model	Use ^a
Digital Multimeter	Input Resistance ≥10 megohms Accuracy: 10 mV on 100 V range	HP 3458A	Р,А,Т
DVM Test Leads	For use with HP 3458A Digital Multimeter	HP 34118B	Т
Universal Counter	Frequency Range: 10 MHz 100 Hz Time Interval Range: 25 ms to 100 ms Single Operation Range: +2.5 Vdc to -2.5 Vdc External Reference Input	HP 53132A	P,A,T
Frequency Standard	Frequency: 10 MHz Timebase Accuracy (Aging): < 1 ×10 ⁻⁹ /day	HP 5071A	P,A
Oscilloscope	Bandwidth: dc to 100 MHz Vertical Scale Factor of 0.5 V to 5 V/Div Two channels Minimum Timebase Setting: < 100 ns Digitizing display with pulse width and time interval measurement functions Delta –T measurement accuracy in 200 ns / div: < 450 ps	HP 54820A	Т

 Table 1-9
 Recommended Test Equipment

Equipment	Critical Specifications for Equipment Substitution	Recommended Model	Use ^a
Power Meter	Compatible with HP 8480 series power sensors. dB relative mode. Resolution: 0.01 dB Reference Accuracy: 1.2 %	HP E4419A	P,A,T
RF Power Sensor (2 required)	Frequency Range: 100 kHz to 3 GHz Maximum SWR: 1.60 (100 kHz to 300 kHz) 1.20 (300 kHz to 1 MHz) 1.1 (1 MHz to 2.0 GHz) 1.18 (2.0 GHz to 3.0 GHz) Amplitude range: -25 dBm to +10 dBm	HP 8482A	P,A,T
Microwave Power Sensor	Frequency Range: 50 MHz to 26.5 GHz Maximum SWR: 1.15 (50 MHz to 100 MHz) 1.10 (100 MHz to 2 GHz) 1.15 (2 GHz to 12.4 GHz) 1.20 (12.4 GHz to 18 GHz) 1.25 (18 GHz to 26.5 GHz) Amplitude range: -25 dBm to 0 dBm	HP 8485A	P,A,T
Power Sensor, 75 Ω (Option 1DP)	Frequency Range: 1 MHz to 1500 MHz Maximum SWR: 1.18 (600 kHz to 1500 MHz) Impedance: 75 Ω Amplitude Range: -30 dBm to +20 dBm	HP 8483A	P,A,T
Power Sensor, Low Power	Frequency Range: 50 MHz to 3.0 GHz Amplitude Range: -20 dBm to -70 dBm Maximum SWR: 1.4 (10 MHz to 30 MHz) 1.15 (30 MHz to 3.0 GHz)	HP 8481D	P,A,T
Synthesized Signal Generator	Frequency Range: 100 kHz to 1500 MHz Amplitude Range: -35 to +16 dBm SSB Noise: <-120 dBc/Hz at 20 kHz offset	HP 8663A	P,A

Table 1-9 Recommended Test Equipment

Equipment	Critical Specifications for Equipment Substitution	Recommended Model	Use ^a
Spectrum Analyzer, Microwave	Frequency Range: 100 kHz to 7 GHz Relative Amplitude Accuracy: 100 kHz to 1.5 GHz: < 1.8 dB Frequency Accuracy: < 10 kHz at 7 GHz	HP 8563E	P,T
Synthesized Sweeper (2 required)	Frequency Range: HP E4407B or E4408B: 10 MHz to 26.5 GHz All others: 10 MHz to 13.2 GHz Frequency Accuracy (CW): 0.02% Leveling Modes: Internal and External Modulation Modes: AM Power Level Range: -40 to +16 dBm	HP 83630/40/50B HP 83620/30/B 40/50B	P,A,T
Function Generator	Frequency Range: 0.1 Hz to 15 MHz Frequency Accuracy: 0.02% Waveform: Triangle, Square, Sine	HP 33120A or HP 3325B	P,A,T
Attenuator/Switch Driver	Compatible with HP 8494G and 8496G Programmable step attenuators	HP 11713A	Р
Attenuator, 1 dB Step	Attenuation Range: 0 to 11 dB Frequency Range: 4 GHz Connectors: Type-N female Calibrated at 50 MHz with accuracy of 1 to 11 dB attenuation: 0.010 dB	HP 8494A/G	Р
Attenuator, 10 dB Step	Attenuation Range: 0 to 110 dB Frequency Range: 4 GHz Connectors: Type-N female Calibrated at 50 MHz with accuracy of: 0 to 40 dB attenuation: 0.020 dB 50 to 100 dB attenuation: 0.065 dB 110 dB attenuation: 0.075 dB	HP 8496A/G	Ρ
Attenuator, 10 dB Fixed	Nominal attenuation: 10 dB Frequency Range: dc to 3 GHz Connectors: Type-N(m) and Type-N(f)	HP 8491A Option 010	Р

Table 1-9Recommended Test Equipment

Equipment	Critical Specifications for Equipment Substitution	Recommended Model	Use ^a
Attenuator, 6 dB Fixed	Nominal attenuation: 6 dB Frequency Range: 50 MHz ±1 MHz VSWR: < 1.1: 1 at 50 MHz	HP 8491A Option 006	Р
Attenuator, 20 dB Fixed	Nominal attenuation: 20 dB Frequency Range: 100 kHz to 3 GHz VSWR: < 1.2: 1 at ≤ 3 GHz	HP 8491A Option 020	Р
Attenuator Interconnect Kit	Mechanically and electrically connects HP 8494A/G and HP 8496A/G	HP 11716 Series	

Table 1-9Recommended Test Equipment

Equipment	Critical Specifications for Accessory Substitution	Recommended Model	Use ^a
Directional Bridge	Frequency Range: 5 MHz to 3 GHz Directivity: > 40 dB Coupling factor: 16 dB nominal Insertion Loss: 2 dB maximum	HP 86205A	Р
Power Splitter (for HP E4401B/ 02B/03B/11B)	Frequency Range: 9 kHz to 13.2 GHz Insertion Loss: 6 dB nominal Output Tracking: < 0.25 dB Equivalent Output SWR: < 1.22:1	HP 11667A	P,A
Power Splitter (for HP E4404B/ 05B/07B/08B)	Frequency Range: 9 kHz to 26.5 GHz Insertion Loss: 6 dB nominal Output Tracking: < 0.25 dB Equivalent Output SWR: < 1.22:1	HP 11667B	
Directional Coupler (for HP E4404B/ 05B/07B/08B)	Frequency Range: 2 GHz to 15 GHz Directivity: > 16 dB Max.VSWR: 1.35:1 Transmission Arm Loss: < 1.5 dB (nominal) Coupled Arm Loss: ~ 10 dB (nominal)	HP 87300B	
Termination, 50 Ω (2 required for Option 1DN)	Impedance: 50 Ω nominal Connector: Type-N (m)	HP 909A	P,T
Termination, 50 Ω	Impedance: 50 Ω (nominal) Connector: BNC (m)	HP 11593A	P,A
Termination, 75 Ω (Option 1DQ, 1DP)	Impedance: 75 Ω (nominal) (2 required for Option 1DQ) (1 required for Option 1DP)	HP 909E Option 201	P,T

Table 1-10Recommended Accessories

Critical Specifications for Adapter Substitution	Recommended Model	Use ^a
BNC (m) to BNC (m)	1250-0216	P,T
BNC tee (f,m,f)	1250-0781	A,T
Type-N (f) to APC 3.5 (f)	1250-1745	P,A,T
Type-N (f) to BNC (m)	1250-1477	P,T
Type-N (f) to BNC (m), 75 Ω (2 required for Option 1DQ) (1 required for Option 1DP)	1250-1534	P,A,T
Type-N (m) to BNC (f) (4 required)	1250-1476	P,A,T
Type-N (m) to BNC (m) (2 required)	1250-1473	P,T
Type-N (m) to BNC (m), 75 Ω (Option 1DP)	1250-1533	P,A,T
Type-N (m) to Type-N (m)	1250-1472	P,T
Type-N (m) to Type-N (m)	1250-1475	P,A,T
Type-N (f) to Type-N (f), 75 Ω (Option 1DP)	1250-1529	P,A,T
Type-N (f), 75 Ω , to Type-N (m), 50 Ω (Option 1DP)	1250-0597	P,A,T
Type-N (m) to SMA (m)	1250-1636	Р
50 to 75 Ω Minimum Loss Frequency Range: dc to 1.5 GHz Insertion Loss: 5.7 dB, nominal (Option 1DP)	HP 11852B	P,A,T
Type N(f) to Type N(f)	1250-0777	
Type N(f) to BNC(f), 75 ohm (Option 1DP only)	1250-1535	
Type N (m) to APC 3.5 (f) (3 required)	1250-1744	
APC 3.5 (f) to APC 3.5 (f)	1250-1749	
Dual Banana to BNC (f)	1251-2277	P,A,T
Type N (m) to BNC (f) (2 required)	1250-0780	

Table 1-11	Recommended Adapte
1able 1-11	Recommended Adapte

Table 1-12Recommended Cables

Critical Specifications for Cable Substitution	Recommended Model	Use ^a
Frequency Range: dc to 1 GHz Length: 122 cm (48 in) Connectors: BNC (m) both ends (4 required)	HP 10503A	P,A,T
Type-N, 62 cm (24 in)	HP 11500C	P,T
Type-N, 152 cm (60 in) (2 required)	HP 11500D	P,A,T
Frequency Range: dc to 310 MHz Length: 23 cm (9 in) Connectors: BNC (m) both ends	HP 10502A	P,T
BNC, 75 Ω, 30 cm (12 in) (option 1DP)	5062-6452	P,A,T
Cable, Test Length: 91 cm (36 in) Connectors: SMB (f) to BNC (m) (2 required)	85680-60093	Т
APC 3.5 Cable Frequency: 9 kHz to 26.5 GHz Connectors: APC 3.5 (m) Length: >92 cm (36 in) (2 required)	8120-4921	Р,А,Т

2

Performance Verification Tests

These tests verify the electrical performance of the analyzer. Allow the analyzer to warm up in accordance with the temperature stability specifications before performing the tests.

Tests included in this section:

1. 10 MHz Reference Accuracy

2. 10 MHz Precision Frequency Reference Accuracy: HP E4401B, E4402B, E4404B, E4405B, and E4407B, Option 1D5

3. Frequency Readout and Marker Frequency Count Accuracy: HP E4401B, E4402B, E4403B, and E4411B

4. Frequency Readout and Marker Frequency Count Accuracy: HP E4404B, E4405B, E4407B, and E4408B

5. Frequency Span Readout Accuracy: HP E4401B and E4411B

6. Frequency Span Readout Accuracy: HP E4402B, E4403B, E4404B, E4405B, E4407B, and E4408B

7. Noise Sidebands

8. System Related Sidebands

9. Residual FM

10. Sweep Time Accuracy

11. Display Scale Fidelity

12. Input Attenuation Switching Uncertainty

13. Reference Level Accuracy: HP E4401B and E4411B

14. Reference Level Accuracy: HP E4402B, E4403B, E4404B, E4407B and E4408B.

15. Resolution Bandwidth Switching Uncertainty

16. Absolute Amplitude Accuracy (Reference Settings): HP E4401B and E4411B

17. Absolute Amplitude Accuracy (Reference Settings): HP E4402B, E4403B, E4404B, E4405B, E4407B, and E4408B

18. Overall Amplitude Accuracy: HP E4401B and E4411B

19. Overall Amplitude Accuracy: HP E4402B, E4403B, E4404B, E4405B, E4407B and E4408B

20. Resolution Bandwidth Accuracy

21. Frequency Response: HP E4401B and E4411B

22. Frequency Response, HP E4402B and E4403B

23. Frequency Response, HP E4404B, E4405B, E4407B and E4408B

24. Frequency Response (Preamp On): HP E4401B

25. Frequency Response (Preamp On): HP E4402B

26. Frequency Response (Preamp On): HP E4404B, E4405B, and E4407B

27. Other Input-Related Spurious Responses: HP E4401B and E4411B $\,$

28. Other Input-Related Spurious Responses: HP E4402B, E4403B, E4404B, E4405B, E4407B, E4408B

29. Spurious Responses: HP E4401B and E4411B

30. Spurious Responses: HP E4402B and E4403B

31. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B

32. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B

33. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B

34. Displayed Average Noise Level: HP E4401B and HP E4411B

35. Displayed Average Noise Level: HP E4402B and HP E4403B

36. Displayed Average Noise Level: HP E4404B and E4405B

37. Displayed Average Noise Level: HP E4407B and HP E4408B

38. Residual Responses

39. Fast Time Domain Amplitude Accuracy: HP E4401B, E4402B, E4404B, E4405B, and E4407B, Option AYX

40. Tracking Generator Absolute Amplitude and Vernier Accuracy: HP E4401B and E4411B, Option 1DN or 1DQ

41. Tracking Generator Absolute Amplitude and Vernier Accuracy: HP E4402B, E4403B, E4404B, E4405B, E4407B and E4408B, Option 1DN

42. Tracking Generator Level Flatness: HP E4401B and E4411B, Option 1DN or 1DQ

43. Tracking Generator Level Flatness: HP E4402B, E4403B, E4404B, E4405B, E4407B, E4408B, Option 1DN

44. Tracking Generator Harmonic Spurious Outputs: HP E4401B and E4411B, Option 1DN or 1DQ

45. Tracking Generator Harmonic Spurious Outputs: HP E4402B, E4403B, E4404B, E4405B, E4407B, and E4408B, Option 1DN

46. Tracking Generator Non-Harmonic Spurious Outputs: HP E4401B and E4411B, Option 1DN or 1DQ

47. Tracking Generator Non-harmonic Spurious Outputs: HP E4402B, E4403B, E4404B, E4405B, E4407B and E4408B, Option 1DN 48. Tracking Generator LO Feedthrough Amplitude: HP E4402B, E4403B, E4404B, E4405B, E4407B, and E4408B, Option 1DN

49. Gate Delay Accuracy and Gate Length Accuracy: HP E4401B, E4402B, E4404B, E4405B, and E4407B, Option 1D6

50. Gate Mode Additional Amplitude Error: HP E4401B, E4402B, E4404B, E4405B and E4407B, Option 1D6

51. First LO OUTPUT Amplitude Accuracy (Option AYZ only)

52. IF INPUT Accuracy (Option AYZ only)

Calibration

To perform calibration:

Calibration Requirements

- 1. Run all performance verification tests listed in column 1 of Table 2-1.
- 2. If any of the performance verification tests fail, perform the appropriate calibration adjustments listed in column 2 of Table 2-1 which corresponds to the failure.
- 3. Repeat all of the performance verification tests listed in column 1 of Table 2-1 if any calibration adjustments were made in step 2. This will confirm that there is no interaction between adjustments which could negatively impact analyzer performance.

Table 2-1 lists the performance verification tests and adjustments needed for calibration. The performance tests are located in the following pages of this chapter. Adjustment information is located in the service guide.

Test #	Column 1 Performance Verification Tests	Column 2 Calibration Adjustments
1.	10 MHz Reference Output Accuracy	10 MHz Frequency Reference Adjustment
2.	10 MHz Precision Frequency Reference Output Accuracy	10 MHz Frequency Reference Adjustment
3.	Frequency Readout and Marker Frequency Accuracy	None
4.	Frequency Readout and Marker Frequency Accuracy	None
5.	Frequency Span Readout Accuracy	None
6.	Frequency Span Readout Accuracy	None
7.	Noise Sidebands	IF Amplitude
8.	System Related Sidebands	IF Amplitude

Table 2-1

Table 2-1	Calibration	Requirements
-----------	-------------	--------------

Test #	Column 1 Performance Verification Tests	Column 2 Calibration Adjustments
9.	Residual FM	None
10.	Sweep Time Accuracy	None
11.	Display Scale Fidelity	IF Amplitude
12.	Input Attenuation Switching Uncertainty	50 MHz Amplitude Reference
13.	Reference Level Accuracy	IF Amplitude
14.	Reference Level Accuracy	IF Amplitude
15.	Resolution BW Switching Uncertainty	IF Amplitude
16.	Absolute Amplitude Accuracy (Reference Settings)	None
17.	Absolute Amplitude Accuracy (Reference Settings)	None
18.	Overall Absolute Amplitude Accuracy	Frequency Response Adjustment
19.	Overall Absolute Amplitude Accuracy	None
20.	Resolution Bandwidth Accuracy	IF Amplitude
21.	Frequency Response	Frequency Response
22.	Frequency Response	Frequency Response
23.	Frequency Response	Frequency Response
24.	Frequency Response (Preamp On)	Frequency Response
25.	Frequency Response (Preamp On)	Frequency Response
26.	Frequency Response (Preamp On)	Frequency Response
27.	Other Input-Related Spurious Responses	None
28.	Other Input-Related Spurious Responses	None
29.	Spurious Responses	None
30.	Spurious Responses	None
31.	Spurious Responses	None
32.	Gain Compression	None
33.	Gain Compression	None

Table 2-1Calibration Requirements

Test #	Column 1 Performance Verification Tests	Column 2 Calibration Adjustments
34.	Displayed Average Noise Level	Frequency Response
35.	Displayed Average Noise Level	Frequency Response
36.	Displayed Average Noise Level	Frequency Response
37.	Displayed Average Noise Level	Frequency Response
38.	Residual Responses	None
39.	Fast Time Domain Amplitude Accuracy	None
40.	Tracking Generator Absolute Amplitude and Vernier Accuracy	Tracking Generator ALC and Tracking Generator Frequency Slope
41.	Tracking Generator Absolute Amplitude and Vernier Accuracy	Tracking Generator ALC and Tracking Generator Frequency Slope
42.	Tracking Generator Level Flatness	Tracking Generator ALC and Tracking Generator Frequency Slope
43.	Tracking Generator Level Flatness	Tracking Generator ALC and Tracking Generator Frequency Slope
44.	Tracking Generator Harmonic Spurious Outputs	None
45.	Tracking Generator Harmonic Spurious Outputs	None
46.	Tracking Generator Non-Harmonic Spurious Outputs	None
47.	Tracking Generator Non-Harmonic Spurious Outputs	None
48.	Tracking Generator L.O. Feedthrough Amplitude	LO Power
49.	Gate Delay Accuracy and Gate Length Accuracy	None
50.	Gate Mode Amplitude Error	None
51.	First LO OUTPUT Amplitude Accuracy	LO Power
52.	IF INPUT Accuracy	IF INPUT Correction

Table	2-2
-------	-----

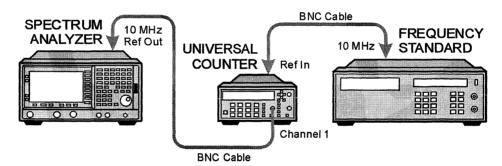
HP 11713A Settings for HP 8494G and HP 8496G

1 dB Step	Attenuator X			10 dB		Attenuator Y			
Atten (dB)	1	2	3	4	Step Atten (dB)	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	10	1	0	0	0
2	0	1	0	0	20	0	1	0	0
3	1	1	0	0	30	1	1	0	0
4	0	0	1	0	40	0	0	1	0
5	1	0	1	0	50	1	0	1	0
6	0	1	1	0	60	0	1	1	0
7	1	1	1	0	70	1	1	1	0
8	0	0	1	1	80	0	0	1	1
9	1	0	1	1	90	1	0	1	1
10	0	1	1	1	100	0	1	1	1
11	1	1	1	1	110	1	1	1	1

When using the programmable versions of the 1 dB and 10 dB step attenuator (HP 8494G and HP 8496G), the HP 11713A Attenuator/ Switch Driver must be used to control the attenuators. The HP 8494G 1 dB step attenuator should be connected as Attenuator X and the HP 8496G 10 dB step attenuator should be connected as Attenuator Y.

Use Table 2-2 to determine which the settings of Attenuator X and Attenuator Y to set the step attenuators to the desired value. In the columns labelled Attenuator X and Attenuator Y, a "1" indicates that section is on (the LED in the button will be lit), while a "0" indicates that section is off. For example, if the 1 dB step attenuator should be set to 2 dB and the 10 dB step attenuator should be set to 60 dB, sections 2, 6, and 7 should be on (lit) and all other sections should be off.

1. 10 MHz Reference Accuracy


The settability is measured by changing the setting of the digital-to-analog converter (DAC) which controls the frequency of the timebase. The frequency difference per DAC step is calculated and compared to the specification.

The related adjustment for this performance verification test is the "10 MHz Reference Frequency Adjustment."

Equipment Required

Universal counter (Instructions are for HP 53132A. For HP 5316B, refer to its user documentation.) Frequency standard Cable, BNC, 122-cm (48-in) (2 required)

Figure 2-110 MHz Reference Test Setup

Procedure

- 1. Connect the equipment as shown in Figure 2-1. The frequency standard provides the reference for the universal counter.
- 2. Check that the analyzer is not in external reference mode. If Ext Ref appears on the screen, the analyzer is in external reference mode. If the analyzer is in external reference mode, disconnect the external reference.
- 3. Ensure that the analyzer has been on and in internal frequency mode for at least five minutes before proceeding.
- 4. Set the universal counter controls as follows:
 - a. Press Gate & ExtArm
 - b. Press any one of the arrow keys until TIME is displayed.

- c. Press **Gate & ExtArm** again. Using the arrow keys, set the TIME to 10 s.
- d. Press Enter
- e. On Channel 1, press 50 $\Omega/1$ M Ω until LED is lit.
- f. On Channel 1, press x10 Attenuator until LED is extinguished.
- g. On Channel 1, press AC/DC until LED next to DC is extinguished.
- h. On Channel 1, press 100 kHz Filter until LED is extinguished.
- i. On Channel 1, press Trigger/Sensitivity until Auto Trig is displayed.
- j. Use the arrow keys to toggle to off.
- k. Press Freq & Ratio.
- 5. Wait for the universal counter reading to stabilize. Record the universal counter reading in Table 2-3 as Counter Reading 1 with 0.1 Hz resolution.
- 6. Set the analyzer by pressing the following keys:

System, Alignments, Timebase, Fine

- 7. Record the number in the active function block of the analyzer in Table 2-3 as Timebase Fine.
- 8. Press the \uparrow (up arrow) key on the analyzer.
- 9. Wait for the frequency counter reading to stabilize. Record the frequency counter reading in Table 2-3 as Counter Reading 2 with 0.1 Hz resolution.
- 10.Press the \downarrow (down arrow) key on the analyzer 2 times.
- 11.Wait for the frequency counter reading to stabilize. Record the frequency counter reading in Table 2-3 as Counter Reading 3 with 0.1 Hz resolution.
- 12.Press **Preset** on the analyzer to return the DAC settings to their initial values.
- 13.Subtract counter reading 1 from counter reading 2 and record the difference in Table 2-3 as the positive frequency change.

Positive Frequency Change = Counter Reading 2 – Counter Reading 1

14.Subtract counter reading 3 from counter reading 1 and record the difference in Table 2-3 as the positive frequency change.

Negative Frequency Change = Counter Reading 1 – Counter Reading 3

1. 10 MHz Reference Accuracy

- 15.Of the positive frequency change and negative frequency change values recorded in Table 2-3, record the largest value in Table 2-3 as the maximum frequency change.
- 16.Divide the maximum frequency change by two and record the result as the settability.

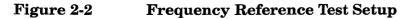
 Table 2-3
 10 MHz Reference Accuracy Worksheet

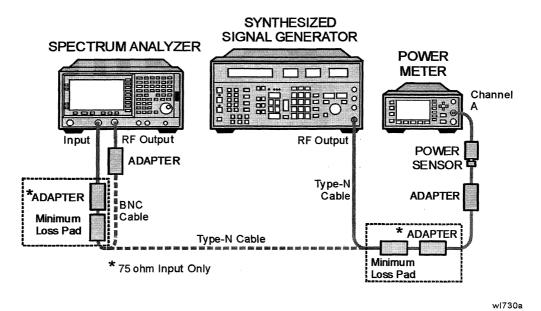
Description	Measurement
Counter Reading 1	Hz
Timebase Fine DAC	
Counter Reading 2	Hz
Counter Reading 3	Hz
Positive Frequency Change	Hz
Negative Frequency Change	Hz
Maximum Frequency Change	Hz
Settability	Hz

2. 10 MHz Precision Frequency Reference Accuracy: HP E4401B, E4402B, E4404B, E4405B, and E4407B, Option 1D5

This test applies only to analyzers equipped with the precision frequency reference, Option 1D5. If your analyzer does not have Option 1D5, perform "10 MHz Reference Output Accuracy" instead.

This test measures the warmup characteristics of the 10 MHz reference oscillator. The ability of the 10 MHz oscillator to meet its warmup characteristics gives a high level of confidence that it will also meet its yearly aging specification.


The universal counter is connected to the 10 MHz REF OUT. After the analyzer has been allowed to cool for at least 60 minutes, the analyzer is powered on. A frequency measurement is made five minutes after power is applied and the frequency is recorded. Another frequency measurement is made 10 minutes later (15 minutes after power is applied) and the frequency is recorded. A final frequency measurement is made 60 minutes after power is applied. The difference between each of the first two frequency measurements and the last frequency measurement is calculated and recorded.


The related adjustment for this performance verification test is the "10 MHz Precision Reference Frequency Adjustment."

Equipment Required

Universal counter (Instructions are for HP 53132A. For HP 5316B, refer to its user documentation.) Frequency standard Cable, BNC, 122-cm (48-in) (2 required)

2. 10 MHz Precision Frequency Reference Accuracy: HP E4401B, E4402B, E4404B, E4405B, and E4407B, Option 1D5

Procedure

The spectrum analyzer must have been allowed to sit with the power off for at least 60 minutes before performing this procedure. This adequately simulates a cold start.

- 1. Allow the analyzer to sit with the power off for at least 60 minutes before proceeding.
- 2. Switch the power to the analyzer on. Record the Power On Time below.

Power On Time_____

- 3. Connect the equipment as shown in Figure 2-2. The frequency standard provides the reference for the universal counter. Disconnect any cable to the 10 MHz REF INPUT of the analyzer.
- 4. Check that the analyzer is not in external reference mode. Ext Ref will appear on the display if the analyzer is in external reference mode. If the analyzer is in external reference mode, disconnect the external reference.
- 5. Set the universal counter controls as follows:
 - a. Press Gate & ExtArm
 - b. Press any one of the arrow keys until TIME is displayed.
 - c. Press **Gate & ExtArm** again. Using the arrow keys, set the TIME to 10s.
 - d. Press Enter

2. 10 MHz Precision Frequency Reference Accuracy: HP E4401B, E4402B, E4404B, E4405B, and E4407B, Option 1D5

- e. On Channel 1, press 50 $\Omega/1$ M Ω to light LED next to 50 Ω .
- f. On Channel 1, press AC/DC to extinguish LED next to DC.
- g. On Channel 1, press x10 Attenuator to extinguish LED next to x10 Attenuator.
- h. On Channel 1, press **100 kHz Filter** to extinguish LED next to 100 kHz Filter.
- i. On Channel 1, press Trigger/Sensitivity until Auto Trig is displayed.
- j. Use the arrows keys to toggle to off.

k. Press Freq & Ratio

6. Proceed with the next step 5 minutes after the Power On Time noted in step 2.

7. Wait for the universal counter reading to make at least two readings. Record the universal counter reading in Table 2-3 as Counter Reading 1 with 0.001 Hz resolution.

- 8. Proceed with next step 15 minutes after the Power On Time noted in step 2.
- 9. Wait for the universal counter reading to make at least two readings. Record the universal counter reading in Table 2-3 as Counter Reading 2 with 0.001 Hz resolution.
- 10.Proceed with next step 60 minutes after the Power On Time noted in step 2.
- 11.Wait for the universal counter reading to make at least two readings. Record the universal counter reading in Table 2-3 as Counter Reading 3 with 0.001 Hz resolution.
- 12.Calculate the 5 Minute Warm-up Error (in ppm) by subtracting Counter Reading 3 from Counter Reading 1 and dividing the result by 10.

5 Minute Warm-up Error = (Counter Reading 1 - Counter Reading 3)/10

NOTEDividing the frequency by 10 is equivalent to dividing the difference
first by 10 MHz (to normalize the difference to the reference frequency)
and then multiplying by $1 \ge 10^6$ to convert the result to
parts-per-million (ppm).

13.Record the 5 Minute Warm-up Error (in ppm) in the performance verification test record as TR Entry 1.

2. 10 MHz Precision Frequency Reference Accuracy: HP E4401B, E4402B, E4404B, E4405B, and E4407B, Option 1D5

14.Calculate the 15 Minute Warm-up Error (in ppm) by subtracting Counter Reading 3 from Counter Reading 2 and dividing the result by 10.

15 Minute Warm-up Error = (Counter Reading 2 - Counter Reading 3)/

15.Record the 15 Minute Warm-up Error in the performance verification test record as TR Entry 2.

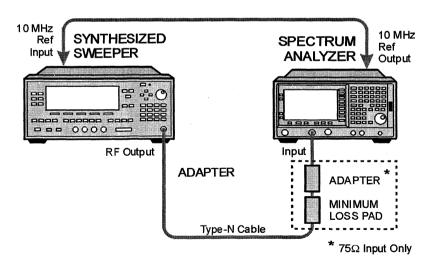
Table 2-410 MHz Reference Accuracy Worksheet

Description	Measurement	
Counter Reading 1	Hz	
Counter Reading 2	Hz	
Counter Reading 3	Hz	

3. Frequency Readout and Marker Frequency Count Accuracy: HP E4401B, E4402B, E4403B, and E4411B

The frequency readout accuracy of the spectrum analyzer is tested with an input signal of known frequency. By using the same frequency standard for the spectrum analyzer and the synthesized sweeper, the frequency reference error is eliminated.

There is no related adjustment for this performance test.


Equipment Required

Synthesized sweeper Adapter, Type N (f) to APC 3.5 (m) Cable, Type N, 183 cm (72 in) Cable, BNC, 122 cm (48 in)

Additional Equipment for 75 Ω Input

Pad, minimum loss Adapter, Type N (f) to BNC (m), 75 Ω

Figure 2-3 Frequency Readout and Marker Frequency Accuracy Test Setup

3. Frequency Readout and Marker Frequency Count Accuracy: HP E4401B, E4402B, E4403B, and E4411B

Procedure

This performance test consists of two parts:

"Part 1: Frequency Readout Accuracy" "Part 2: Marker Count Accuracy"

Perform "Part 1: Frequency Readout Accuracy" before "Part 2: Marker Count Accuracy".

Part 1: Frequency Readout Accuracy

1. Connect the equipment as shown in Figure 2-3. Remember to connect the 10 MHz REF OUT of the analyzer to the 10 MHz REF INPUT of the synthesized sweeper.

CAUTION Use only 75 Ω cables, connectors, or adapters on instruments with 75 Ω inputs, or the input connector will be damaged.

- 2. Perform the following steps to set up the equipment:
 - a. Press **INSTRUMENT PRESET** on the synthesized sweeper, then set the controls as follows:

CW, 1.490 GHz (*HP E4401B and E4411B*) CW, 1.5 GHz (*HP E4402B and E4403B*) POWER LEVEL, -10 dBm

b. Press **Preset** on the spectrum analyzer, then wait for the preset routine to finish. Set the analyzer by pressing the following keys:

FREQUENCY, 1.490 GHz ($HP \ E4401B \ and \ E4411B$) CW, 1.5 GHz ($HP \ E4402B \ and \ E4403B$) SPAN. 20 MHz

- 3. Press **Peak Search (or Search)** on the analyzer to measure the frequency readout accuracy.
- 4. Record the marker frequency reading in the performance verification test record.
- 5. Repeat step 3 and step 4 above for the remaining spans listed in Table 2-5.

"Part 1: Frequency Readout Accuracy" is now complete. Continue with "Part 2: Marker Count Accuracy."

Table 2-5Frequency Readout Accuracy

Spectrum Analyzer Span, MHz	TR Entry, Actual Marker Frequency
20	1
10	2
1	3

Part 2: Marker Count Accuracy

Perform "Part 1: Frequency Readout Accuracy" before performing this procedure.

1. Press **Preset** on the analyzer, then wait for the preset routine to finish. Set the analyzer to measure the marker count accuracy by pressing the following keys:

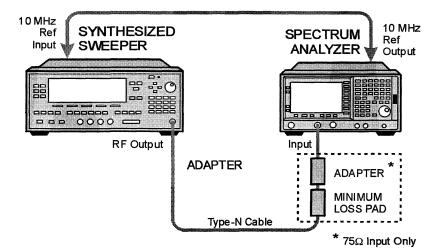
```
FREQUENCY, 1.490 GHz (HP E4401B and E4411B)
FREQUENCY, 1.5 GHz (HP E4402B and E4403B)
SPAN, 10 MHz
BW/Avg, Resolution BW, 100 kHz (Man)
Freq Count, Marker Count (On)
Resolution (Man) 1 Hz
```

- 2. Press **Peak Search (or Search)**, then wait for a count be taken (it may take several seconds).
- 3. Record the Cntr1 frequency reading as TR Entry 4 of the performance verification test record.
- 4. On the analyzer, press SPAN, 1 MHz.
- 5. Press **Peak Search (or Search)**, then wait for a count be taken (it may take several seconds).
- 6. Record the Cntr1 frequency reading as TR Entry 5 of the performance verification test record.

Performance Verification Tests 4. Frequency Readout and Marker Frequency Count Accuracy: HP E4404B, E4405B, E4407B, and E4408B

4. Frequency Readout and Marker Frequency Count Accuracy: HP E4404B, E4405B, E4407B, and E4408B

The frequency readout accuracy of the spectrum analyzer is tested with an input signal of known frequency. By using the same frequency standard for the spectrum analyzer and the synthesized sweeper, the frequency reference error is eliminated.


There is no related adjustment for this performance test.

Equipment Required

Synthesized sweeper Adapter, Type N (m) to APC 3.5 (f) Adapter, APC 3.5 (f) to APC 3.5 (f) Cable, APC 3.5, 91 cm (36 in) Cable, BNC, 122 cm (48 in)

Additional Equipment for Option BAB

Adapter, APC 3.5 (f) to APC 3.5 (f)

Figure 2-4 Frequency Readout and Marker Count Accuracy Test Setup

wl71a

Procedure

This performance verification test consists of two parts:

"Part 1: Frequency Readout Accuracy"

Perform "Part 1: Frequency Readout Accuracy" before "Part 2: Marker Count Accuracy".

Part 1: Frequency Readout Accuracy

1. Connect the equipment as shown in Figure 2-4. Remember to connect the 10 MHz REF OUT of the analyzer to the 10 MHz REF INPUT of the synthesized sweeper.

Option BAB only: Use the APC 3.5 adapter to connect the cable to the spectrum analyzer input.

- 2. Perform the following steps to set up the equipment:
 - a. Press **INSTRUMENT PRESET** on the synthesized sweeper, then set the controls as follows:

CW, 1.5 GHz POWER LEVEL, -10 dBm

b. Press **Preset** on the spectrum analyzer, then wait for the preset routine to finish. Set the analyzer by pressing the following keys:

FREQUENCY, 1.5 GHz SPAN, 20 MHz

- 3. Press **Peak Search (or Search)** on the analyzer to measure the frequency readout accuracy.
- 4. Record the Mkr1 frequency reading in the performance verification test record as indicated in Table 2-6.
- 5. Change to the next spectrum analyzer span setting listed in Table 2-6.
- 6. Repeat step 3 to step 5 for each spectrum analyzer frequency and span setting and synthesized sweeper CW frequency setting listed in Table 2-6 for the analyzer being tested.

"Part 1: Frequency Readout Accuracy" is now complete. Continue with "Part 2: Marker Count Accuracy."

Synthesized Sweeper CW Frequency, MHz	Spectrum Analyzer Span, MHz	Spectrum Analyzer Center Frequency, GHz	TR Entry Frequency, GHz
1500	20	1.5	1
1500	10	1.5	2
1500	1	1.5	3
4000	20	4.0	4

Table 2-6Frequency Readout Accuracy

4. Frequency Readout and Marker Frequency Count Accuracy: HP E4404B, E4405B, E4407B, and E4408B

Table 2-6 Frequency Readout Accuracy

Synthesized Sweeper CW Frequency, MHz	Spectrum Analyzer Span, MHz	Spectrum Analyzer Center Frequency, GHz	TR Entry Frequency, GHz
4000	10	4.0	5
4000	1	4.0	6
· · · · · · · · · · · · · · · · · · ·	Stop here for I	HP E4404B.	
9000	20	9.0	7
9000	10	9.0	8
9000	1	9.0	9
	Stop here for I	HP E4405B.	
16000	20	16.0	10
16000	10	16.0	11
16000	1	16.0	12
21000	20	21.0	13
21000	10	21.0	14
21000	1	21.0	15

Part 2: Marker Count Accuracy

Perform "Part 1: Frequency Readout Accuracy" before performing this procedure.

- 1. Press **Preset** on the spectrum analyzer, then wait for the preset routine to finish.
- 2. Set the analyzer to measure the marker count accuracy by pressing the following keys:

FREQUENCY, 1.5 GHz SPAN, 20 MHz BW/Avg, Resolution BW, 100 kHz (Man) Freq Count, Freq Count (On) Resolution Auto Man, 1 Hz (Man)

3. Press **Peak Search (or Search)**, then wait for a count be taken (it may take several seconds).

4. Frequency Readout and Marker Frequency Count Accuracy: HP E4404B, E4405B, E4407B, and E4408B

- 4. Record the Cntr1 frequency reading in the performance verification test record as indicated in Table 2-7.
- 5. Repeat step 3 and step 4 for each analyzer center frequency and span setting and synthesized sweeper CW frequency setting listed in Table 2-7 for the analyzer being tested.

Performance verification test "Frequency Readout Accuracy and Marker Count Accuracy" is now complete.

Synthesized Sweeper CW Frequency	Spectrum Analyzer Center Frequency	Spectrum Analyzer Span	Cntr 1 Frequency
MHz	GHz	MHz	TR Entry
1500	1.5	20	16
1500	1.5	1	17
4000	4.0	20	18
4000	4.0	1	19
\$	Stop here for HP I	E4404B.	1.11.1
9000	9.0	20	20
9000	9.0	1	21
S	Stop here for HP I	E4405B.	
16000	16.0	20	22
16000	16.0	1	23
21000	21.0	20	24
21000	21.0	1	25

Table 2-7Marker Count Accuracy

5. Frequency Span Readout Accuracy: HP E4401B and E4411B

For testing each frequency span, two synthesized sources are used to provide two precisely-spaced signals. The analyzer marker functions are used to measure this frequency difference.

There are no related adjustment procedures for this performance test.

Equipment Required

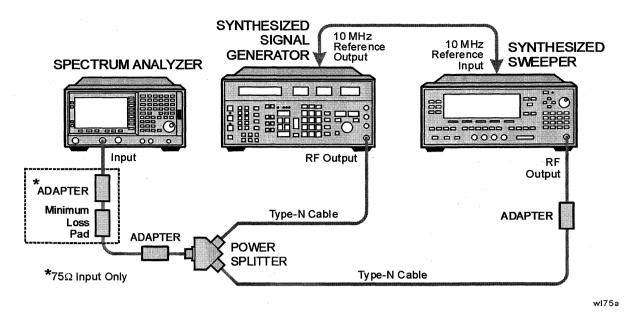
Synthesized sweeper Synthesized signal generator Power splitter Adapter, Type-N (m) to Type-N (m) Adapter, Type-N (f) to APC 3.5 (f) Cable, Type-N, 152-cm (60-in) (2 required) Cable, BNC, 122-cm (48-in)

Additional Equipment for 75 Ω Input

Pad, minimum loss Adapter, Type-N (f), to BNC (m), 75 Ω

Procedure

Full Span Frequency Span Readout Accuracy


- 1. Connect the equipment as shown in Figure 2-5. Note that the power splitter is used as a combiner. The synthesized signal generator provides the frequency reference for the synthesized sweeper.
- 2. Press **Preset** on the analyzer, then wait for the preset routine to finish.
- 3. Press **PRESET** on the synthesized sweeper and set the controls as follows:

CW, 1350 MHz POWER LEVEL, -5 dBm

4. On the synthesized signal generator, set the controls as follows:

FREQUENCY, 150 MHz AMPLITUDE, 0 dBm

- 5. Adjust the analyzer center frequency, if necessary, to place the lower frequency on the second vertical graticule line (one division from the left-most graticule line).
- 6. On the analyzer, press **Single**. Wait for the completion of a new sweep, then press the following keys:

Peak Search (or Search) Marker, Delta Next Peak

The two markers should be on the signals near the second and tenth vertical graticule lines (the first graticule line is the left-most).

- 7. If necessary, continue pressing **Next Peak** until the active marker is on the right-most signal (1350 MHz).
- 8. Record the Δ Mkr1 frequency reading as TR Entry 1 of the performance verification test record.

100 kHz and 100 MHz Frequency Span Readout Accuracy

9. Set the analyzer by pressing the following keys:

FREQUENCY, Start Freq, 10 MHz Stop Freq, 110 MHz Sweep, Sweep (Cont)

5. Frequency Span Readout Accuracy: HP E4401B and E4411B

10.On the synthesized sweeper set the controls as follows:

CW, 100 MHz POWER LEVEL, -5 dBm

11.Set the synthesized signal generator controls as follows:

FREQUENCY, 20 MHz AMPLITUDE, 0 dBm

- 12.Adjust the analyzer center frequency to center the two signals on the display.
- 13.On the analyzer, press **Single**. Wait for the completion of a new sweep, then press the following keys:

Peak Search (or Search) Marker, Delta Next Peak

The two markers should be on the signals near the second and tenth vertical graticule lines (the first graticule line is the left-most).

- 14.If necessary, continue pressing Next Peak until the active marker is on the right-most signal (100 MHz). Record the Δ Mkr1 frequency reading in the performance test record as TR Entry 2.
- 15.Press Marker, More, Marker All Off on the analyzer.
- 16.Change to the next equipment settings listed in Table 2-8.
- 17.On the analyzer, press **Single**. Wait for the completion of a new sweep, then press the following keys:

Peak Search (or Search) Marker, Delta Next Peak

- 18.If necessary, continue pressing Next Peak until the marker delta is on the right-most signal. Record the Δ Mkr1 frequency reading in the performance test record.
- 19.Repeat step 15 through step 18 for the remaining analyzer span settings listed in Table 2-8.

Analyzer Start Frequency, MHz	Analyzer Stop Frequency, MHz	Synthesized Signal Generator Frequency, MHz	Synthesized Sweeper Frequency, MHz	TR Entry	Analyzer Span, MHz
0	1500	150	1350	1	1500
10	110	20	100	2	100
10	10.1	10.01	10.09	3	0.1
800	900	810	890	4	100
800	800.1	800.01	800.09	5	0.1
1400	1500	1410	1490	6	100
1499	1499.1	1499.01	1499.09	7	0.1

Table 2-8 Frequency Span Readout Accuracy

6. Frequency Span Readout Accuracy: HP E4402B, E4403B, E4404B, E4405B, E4407B, and E4408B

For testing each frequency span, two synthesized sources are used to provide two precisely-spaced signals. The analyzer marker functions are used to measure this frequency difference.

There are no related adjustment procedures for this performance test.

Equipment Required

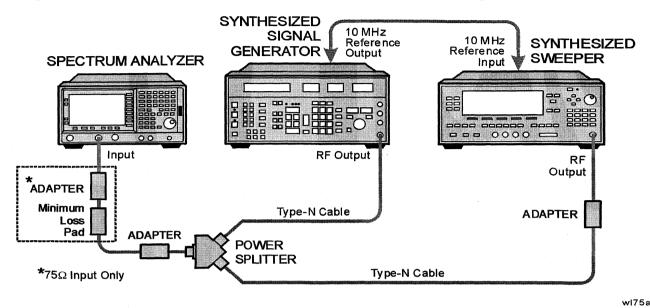
Synthesized sweeper Synthesized signal generator Power splitter Adapter, Type-N (m) to Type-N (m) Adapter, Type-N (f) to APC 3.5 (f) Cable, Type-N, 152-cm (60-in) (2 required) Cable, BNC, 122-cm (48-in)

Additional Equipment for Option BAB

Adapter, Type-N (m), to APC 3.5 (f)

Procedure

Full Span Frequency Span Readout Accuracy


- 1. Connect the equipment as shown in Figure 2-5. Note that the power splitter is used as a combiner. The synthesized signal generator provides the frequency reference for the synthesized sweeper.
- 2. Press **Preset** on the analyzer, then wait for the preset routine to finish. Press **FREQUENCY**, **Stop Freq**, **3 GHz**
- 3. Press **PRESET** on the synthesized sweeper and set the controls as follows:

CW, 2700 MHz POWER LEVEL, -5 dBm

4. On the synthesized signal generator, set the controls as follows:

FREQUENCY, 300 MHz AMPLITUDE, 0 dBm

Figure 2-6Frequency Span Readout Accuracy Test Setup

- 5. Adjust the analyzer center frequency, if necessary, to place the lower frequency on the second vertical graticule line (one division from the left-most graticule line).
- 6. On the analyzer, press **Single**. Wait for the completion of a new sweep, then press the following keys:

Peak Search (or Search) Marker, Delta Next Peak

The two markers should be on the signals near the second and tenth vertical graticule lines (the first graticule line is the left-most).

- 7. If necessary, continue pressing **Next Peak** until the active marker is on the right-most signal (2700 MHz).
- 8. Record the Δ Mkr1 frequency reading as TR Entry 1 of the performance verification test record.

100 kHz and 100 MHz Frequency Span Readout Accuracy

9. Set the analyzer by pressing the following keys:

```
FREQUENCY, Start Freq, 10 MHz
Stop Freq, 110 MHz
Sweep, Sweep (Cont)
```

10.On the synthesized sweeper set the controls as follows:

CW, 100 MHz POWER LEVEL, -5 dBm

6. Frequency Span Readout Accuracy: HP E4402B, E4403B, E4404B, E4405B, E4407B, and E4408B

11.Set the synthesized signal generator controls as follows:

FREQUENCY, 20 MHz AMPLITUDE, 0 dBm

- 12.Adjust the analyzer center frequency to center the two signals on the display.
- 13.On the analyzer, press **Single**. Wait for the completion of a new sweep, then press the following keys:

Peak Search (or Search) Marker, Delta Next Peak

The two markers should be on the signals near the second and tenth vertical graticule lines (the first graticule line is the left-most).

- 14.If necessary, continue pressing Next Peak until the active marker is on the right-most signal (100 MHz). Record the Δ Mkr1 frequency reading in the performance test record as TR Entry 2.
- 15.Press Marker, More, Marker Off on the analyzer.
- 16.Change to the next equipment settings listed in Table 2-9.
- 17.On the analyzer, press **Single**. Wait for the completion of a new sweep, then press the following keys:

Peak Search (or Search) Marker, Delta Next Peak

- 18.If necessary, continue pressing Next Peak until the marker delta is on the right-most signal. Record the Δ Mkr1 frequency reading in the performance test record.
- 19.Repeat step 15 through step 18 for the remaining analyzer span settings listed in Table 2-9.

Performance Verification Tests 6. Frequency Span Readout Accuracy: HP E4402B, E4403B, E4404B, E4405B, E4407B, and E4408B

Table .	2-9
---------	-----

Frequency Span Readout Accuracy

Analyzer Start Frequency, MHz	Analyzer Stop Frequency, MHz	Synthesized Signal Generator Frequency, MHz	Synthesized Sweeper Frequency, MHz	TR Entry	Analyzer Span, MHz
0	3000	300	2700	1	3000
10	110	20	100	2	100
10	10.1	10.01	10.09	3	0.1
800	900	810	890	4	100
800	800.1	800.01	800.09	5	0.1
1400	1500	1410	1490	6	100
1499	1499.1	1499.01	1499.09	7	0.1

Performance Verification Tests 7. Noise Sidebands

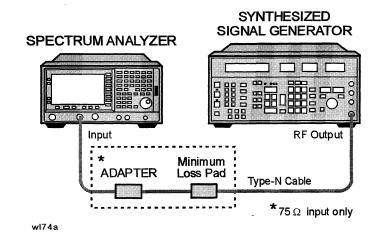
7. Noise Sidebands

A 1 GHz CW signal is applied to the input of the analyzer. The marker functions are used to measure the amplitude of the carrier and the noise level 10 kHz, 20 kHz, 30 kHz, and 100 kHz above and below the carrier.

There are no related adjustment procedures for this performance test.

Equipment Required

Synthesized signal generator Cable, Type-N, 152-cm (60-in)


Additional Equipment for 75 Ω Input

Pad, minimum loss Adapter, Type-N (f), to BNC (m), 75 Ω

Additional Equipment for Option BAB

Adapter, Type-N (f), to APC 3.5 (f)

Figure 2-7 Noise Sidebands Test Setup

CAUTIONUse only 75 Ω cables, connectors, or adapters on instruments with 75 Ω
connectors, or the connectors will be damaged.

Procedure

This performance test consists of four parts:

Part 1: Noise Sideband Suppression at 10 kHz

Part 2: Noise Sideband Suppression at 20 kHz

Part 3: Noise Sideband Suppression at 30 kHz Part 4: Noise Sideband Suppression at 100 kHz

Perform part 1 before performing part 2 or part 3 of this procedure.

A worksheet is provided at the end of this procedure for calculating the noise sideband suppression.

Part 1: Noise Sideband Suppression at 10 kHz

- 1. Perform the following steps to set up the equipment:
 - a. Set the synthesized signal generator controls as follows:

```
FREQUENCY, 1000 MHz
AMPLITUDE, 0 dBm (50 Ω Input only)
AMPLITUDE, to +6 dBm (75 Ω Input only)
AM OFF
FM OFF
```

- b. Connect the equipment as shown in Figure 2-7.
- c. Press **Preset** on the analyzer, then wait for the preset routine to finish. Set the analyzer by pressing the following keys:

FREQUENCY, 1 GHz SPAN, 10 MHz AMPLITUDE, Attenuation 10 dB (Man) AMPLITUDE, More, Y Axis Units (or Amptd Units), dBm

2. Press the following analyzer keys to measure the carrier amplitude.

Peak Search (or Search) FREQUENCY, Signal Track (On) SPAN, 50 kHz BW/Avg, 1 kHz Video BW, 30 Hz (Man) FREQUENCY, Signal Track (Off) Sweep, Sweep Time, 5 sec Single

Wait for the completion of a sweep, then press **Peak Search** (or **Search**).

7. Noise Sidebands

3. Press the following analyzer keys to measure the noise sideband level at +10 kHz:

```
Marker, Delta
More, Function, Marker Noise (or Noise)
AMPLITUDE, -10 dBm
FREQUENCY, CF Step, 10 kHz
Center Freq, ↑
SPAN, Zero Span
Single
```

Record the marker delta amplitude reading in Table 2-10 as the Noise Sideband Level at +10 kHz.

4. Press the following analyzer keys to measure the noise sideband level at -10 kHz:

FREQUENCY, \downarrow , \downarrow Single

Record the marker amplitude reading in the Noise Sideband Worksheet as the Noise Sideband Level at -10 kHz.

- 5. Record the more positive value, either Noise Sideband Level at +10 kHz or Noise Sideband Level at -10 kHz from the Noise Sideband Worksheet as TR Entry 1 in the performance verification test record.
- 6. Press **FREQUENCY**, \uparrow

Part 2: Noise Sideband Suppression at 20 kHz

1. Press the following analyzer keys to measure the noise sideband level at +20 kHz:

```
FREQUENCY, CF Step, 20 kHz
Center Freq, ↑
Single
```

Record the marker amplitude reading in the Noise Sideband Worksheet as the Noise Sideband Level at +20 kHz.

2. Press the following analyzer keys to measure the noise sideband level at -20 kHz:

```
FREQUENCY, \downarrow, \downarrow Single
```

Record the marker amplitude reading in the Noise Sideband Worksheet as the Noise Sideband Level at -20 kHz.

3. Record the more positive value, either Noise Sideband Level at +20 kHz or Noise Sideband Level at -20 kHz from the Noise Sideband Worksheet as TR Entry 2 in the performance verification test record.

4. Press **FREQUENCY**, \uparrow

Part 3: Noise Sideband Suppression at 30 kHz

1. Press the following analyzer keys to measure the noise sideband level at +30 kHz:

FREQUENCY, CF Step, 30 kHz Center Freq, \uparrow Single

Record the marker amplitude reading in the Noise Sideband Worksheet as the Noise Sideband Level at +30 kHz.

2. Press the following analyzer keys to measure the noise sideband level at -30 kHz:

FREQUENCY, \downarrow , \downarrow Single

Record the marker amplitude reading in the Noise Sideband Worksheet as the Noise Sideband Level at -30 kHz.

- 3. Record the more positive value, either Noise Sideband Level at +30 kHz or Noise Sideband Level at -30 kHz from the Noise Sideband Worksheet as TR Entry 3 in the performance verification test record.
- 4. Press **FREQUENCY**, \uparrow

Part 4: Noise Sideband Suppression at 100 kHz

1. Press the following analyzer keys to measure the noise sideband level at +100 kHz:

FREQUENCY, CF Step, 98 kHz Center Freq, ↑ Single

Record the marker amplitude reading in the Noise Sideband Worksheet as the Noise Sideband Level at +100 kHz.

2. Press the following analyzer keys to measure the noise sideband level at -100 kHz:

FREQUENCY, \downarrow , \downarrow Single

NOTE A spur may exist at 100 kHz offset from the carrier. Measuring at ± 98 kHz offset from the carrier will yield a noise sideband level worse than the reading at ± 100 kHz offset.

Record the marker amplitude reading in the Noise Sideband Worksheet as the Noise Sideband Level at -100 kHz.

Performance Verification Tests **7. Noise Sidebands**

3. Record the more positive value, either Noise Sideband Level at +100 kHz or Noise Sideband Level at -100 kHz from the Noise Sideband Worksheet as TR Entry 4 in the performance test verification record.

Table 2-10Noise Sideband Worksheet

Description	Measurement		
Noise Sideband Level at +10 kHz	dBc/Hz		
Noise Sideband Level at –10 kHz	dBc/Hz		
Noise Sideband Level at +20 kHz	dBc/Hz		
Noise Sideband Level at –20 kHz	dBc/Hz		
Noise Sideband Level at +30 kHz	dBc/Hz		
Noise Sideband Level at –30 kHz	dBc/Hz		
Noise Sideband Level at +100 kHz	dBc/Hz		
Noise Sideband Level at –100 kHz	dBc/Hz		

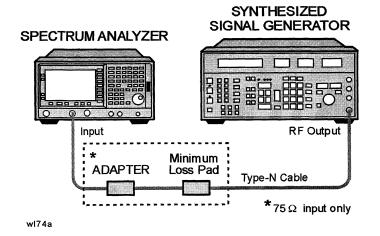
8. System Related Sidebands

A 500 MHz CW signal is applied to the input of the analyzer. The marker functions are used to measure the amplitude of the carrier and the amplitude of any system related sidebands more than 30 kHz away from the carrier. System related sidebands are any internally generated sidebands related to the line, power supply or local oscillator.

There are no related adjustment procedures for this performance test.

Equipment Required

Synthesized signal generator Cable, Type-N, 152-cm (60-in)


Additional Equipment for 75 Ω Input

Pad, minimum loss Adapter, Type-N (f), to BNC (m), 75 Ω

Additional Equipment for Option BAB

Adapter, Type-N (f), to APC 3.5 (f)

Figure 2-8System Related Sidebands Test Setup

CAUTION

Use only 75 Ω cables, connectors, or adapters on instruments with 75 Ω connectors, or the connectors will be damaged.

8. System Related Sidebands

Procedure

- 1. Perform the following steps to set up the equipment:
 - a. Set the synthesized signal generator controls as follows:

```
FREQUENCY, 500 MHz
AMPLITUDE, 0 dBm (50 \Omega Input only)
AMPLITUDE, +6 dBm (75 \Omega Input only)
AM Off
FM Off
```

- b. Connect the equipment as shown in Figure 2-8.
- c. Press **Preset** on the analyzer, then wait for the preset routine to finish. Set the analyzer by pressing the following keys:

```
FREQUENCY, 500 MHz
SPAN, 10 MHz
```

- 2. Set the analyzer to measure the system related sideband above the signal by performing the following steps:
 - a. Press the following keys:

```
Peak Search (or Search)
FREQUENCY, Signal Track (On)
SPAN, 200 kHz
BW/Avg, 1 kHz
Video BW, 30 Hz (Man)
```

Allow the analyzer to take two complete sweeps. Then press the following keys:

```
FREQUENCY, Signal Track (Off) CF Step, 130 kHz (Man)
```

- b. Press Single and wait for the completion of the sweep. Press Peak Search (or Search), then Marker, Delta.
- c. Press the following analyzer keys:

FREQUENCY

↑(step-up key)

- 3. Measure the system related sideband above the signal by pressing Single on the analyzer. Wait for the completion of a new sweep, then press Peak Search (or Search).
- 4. Record the marker delta amplitude as TR Entry 1 of the performance verification test record.

5. Set the analyzer to measure the system related sideband below the signal by pressing the following analyzer keys:

FREQUENCY

 \downarrow (step-down key)

- \downarrow (step-down key)
- 6. Measure the system related sideband below the signal by pressing Single. Wait for the completion of a new sweep, then press Peak Search (or Search).

Record the marker delta amplitude as TR Entry 2 of the performance verification test record.

9. Residual FM

This test measures the inherent short-term instability of the analyzer LO system. With the analyzer in zero span, a stable signal is applied to the input and slope-detected on the linear portion of the IF bandwidth filter skirt. Any instability in the LO transfers to the IF signal in the mixing process. The test determines the slope of the IF filter in Hz/dB and then measures the signal amplitude variation caused by the residual FM. Multiplying these two values yields the residual FM in Hz.

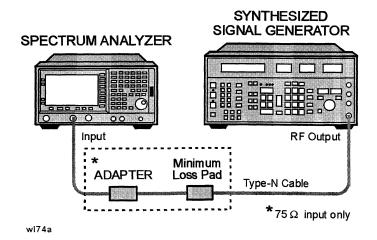
Since the 10 Hz resolution bandwidth filter is digitally implemented, its slope is well known. The measured amplitude variation is simply multiplied by the known slope to yield the residual FM in a 10 Hz Res BW.

There are no related adjustment procedures for this performance test.

Equipment Required

Synthesized signal generator Cable, Type-N, 152-cm (60-in)

Additional Equipment for 75 Ω Input


Pad, minimum loss Adapter, Type-N (f), to BNC (m), 75 Ω

Additional Equipment for Option BAB

Adapter, Type-N (f), to APC 3.5 (f)

Figure 2-9

Residual FM Test Setup

CAUTION Use only 75 Ω cables, connectors, or adapters on instruments with 75 Ω connectors, or the connectors will be damaged.

Procedure

This performance test consists of two parts:

"Part 1: Residual FM"

"Part 2: Residual FM for Option 1DR and 1D5"

Perform "Part 2: Residual FM for Option 1DR" in addition to Part 1 only if your analyzer is equipped with Option 1DR. Perform only Part 1 for analyzers that do not have Option 1DR.

Part 1: Residual FM

Determining the IF Filter Slope

- 1. Connect the equipment as shown in Figure 2-9.
- 2. Set the synthesized signal generator controls as follows:

```
FREQUENCY, 1000 MHz
AMPLITUDE, -10 dBm (50 \Omega Input only)
AMPLITUDE, -4 dBm (75 \Omega Input only)
AM OFF
FM OFF
```

3. Press **Preset** on the analyzer, then wait for the preset routine to finish. Set the analyzer by pressing the following keys:

```
FREQUENCY, Center Freq, 1 GHz
SPAN, 1 MHz
AMPLITUDE, Ref Level, -9 dBm (50 \ \Omega \ Input \ only)
AMPLITUDE, 39.8 dBmV (75 \ \Omega \ Input \ only)
Scale/Div, 2 dB
BW/Avg, Resolution BW, 1 kHz
```

4. On the analyzer, press the following keys:

Peak Search (or Search) SPAN, Span Zoom, 5 kHz

Wait for the Span 5kHz message to appear, then press:

Peak Search (or Search), More, Marker \rightarrow Ref Lvl, Marker, Off

5. On the analyzer, press the following keys:

Single (Wait for the sweep to finish.) Peak Search (or Search), Meas Tools Delta Performance Verification Tests 9. Residual FM

- 6. On the analyzer, rotate RPG knob counterclockwise until the $\Delta Mkr1$ amplitude reads –8 dB ±0.3 dB.
- 7. Press **Delta**, then rotate the knob counterclockwise until the Δ Mkr1 reads -4 dB ±0.3 dB.

If you have difficulty achieving the ± 0.3 dB setting, then make the following analyzer settings:

Sweep, Sweep (Cont) SPAN, 2 kHz BW/Avg, Video BW, 30 Hz (Man) Repeat step 5 through step 7.

8. Divide the $\Delta Mkr1$ frequency in Hertz by the $\Delta Mkr1$ amplitude in dB to obtain the slope of the resolution bandwidth filter. For example, if the $\Delta Mkr1$ frequency is 275 Hz and the $\Delta Mkr1$ amplitude is 3.92 dB, the slope would be equal to 94.2 Hz/dB. Record the result below:

Slope _____ Hz/ dB

Measuring the Residual FM

9. On the analyzer, press:

Marker, Off Peak Search (or Search) Meas Tools Delta

- 10. Rotate the RPG knob counterclockwise until the $\Delta Mkr1$ amplitude reads –10 dB ±0.3 dB.
- 11.On the analyzer, press the following keys:

Marker, Normal Marker \rightarrow , Mkr \rightarrow CF Single BW/Avg, Video BW (Man), 1 kHz SPAN, Zero Span Sweep, Sweep Time, 100 ms Single

The displayed trace should be about five divisions below the reference level. If it is not, press Sweep, Sweep (Cont), FREQUENCY, and use the RPG knob to place the displayed trace about five divisions below the reference level. Press Single.

12.0n the analyzer, press Peak Search (or Search), Pk-Pk Search. Read the Δ Mkr1 amplitude, take its absolute value, and record the result as the Deviation.

Deviation _____ dB

13.Calculate the Residual FM by multiplying the Slope recorded in step 8 by the Deviation recorded in step 12.

Record this value as TR Entry 1 (Residual FM (1 kHz Res BW) in the performance verification test record.

If you are testing an analyzer equipped with Option 1DR and 1D5, continue with "Part 2: Residual FM for Option 1DR and 1D5." Otherwise, the residual FM performance test is complete.

Part 2: Residual FM for Option 1DR and 1D5

Perform this additional procedure only if Option 1DR and Option 1D5 are present. Perform "Part 1: Residual FM" before performing this procedure.

1. Press **Preset** on the analyzer, then wait for the preset routine to finish. Set the analyzer by pressing the following keys:

FREQUENCY, Center Freq, 1 GHz SPAN, 1 MHz AMPLITUDE, Ref Level, -9 dBm ($50 \ \Omega$ Input only) AMPLITUDE, Ref Level, 39.8 dBmV ($75 \ \Omega$ Input only) Scale/Div, 2 dB

2. On the analyzer press the following keys:

Peak Search (or Search) SPAN, Span Zoom, 5 kHz

Wait for the "Span 5 kHz" message to appear. Press the following analyzer keys:

BW/Avg, Resolution BW, 10 Hz $\left(Man\right)$ SPAN, 100 Hz

3. On the analyzer, press the following keys:

Peak Search (or Search), More, Mkr \rightarrow Ref Lvl Marker, Off

4. On the analyzer, press the following keys:

Peak Search (or Search) Meas Tools Delta

5. On the analyzer, rotate the RPG knob counterclockwise until the Δ Mkr1 amplitude reads -10 dB ±0.3 dB.

Performance Verification Tests

9. Residual FM

6. On the analyzer, press the following keys:

```
Marker, Normal
Marker \rightarrow, Mkr \rightarrow CF
Single
BW/Avg, Video BW, 10 Hz (Man)
SPAN, Zero Span
Sweep, Sweep Time, 20 ms
Single
```

The displayed trace should be about five divisions below the reference level. If it is not, press Sweep, Sweep (Cont), FREQUENCY, and use the RPG knob to place the displayed trace about five divisions below the reference level. Press Single.

7. On the analyzer, press Peak Search (or Search), Pk-Pk Search. Read the Δ Mkr1 amplitude, take its absolute value, and record the result as the Deviation.

Deviation _____ dB

8. Calculate the Residual FM by multiplying the deviation recorded in step 7 by 0.426 Hz/dB. This is the slope of the 10 Hz Res BW filter at 10 dB below the peak of the filter.

Record this value as TR Entry 2 (Residual FM (10 Hz RBW)) in the performance verification test record.

10. Sweep Time Accuracy

This test uses a function generator to amplitude modulate a 500 MHz CW signal from another signal generator. The analyzer demodulates this signal in zero span to display the response in the time domain. The marker Δ function on the analyzer is used to read out the sweep time accuracy.

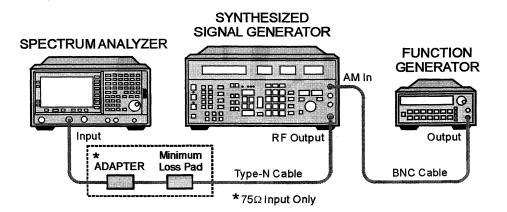
If the analyzer is equipped with Option AYX, also perform "Fast Time Domain Amplitude Accuracy" in addition to this procedure.

There are no related adjustment procedures for this performance test.

Equipment Required

Function generator Synthesized signal generator Cable, Type-N, 152-cm (60-in) Cable, BNC, 120-cm (48-in)

Additional Equipment for 75 Ω Input


Pad, minimum loss Adapter, Type-N (f), to BNC (m), 75 Ω

Additional Equipment for Option BAB

Adapter, Type-N (f), to APC 3.5 (f)

Figure 2-10

Sweep Time Accuracy Test Setup

wl76a

CAUTIONUse only 75 Ω cables, connectors, or adapters on instruments with 75 Ω
connectors, or the connectors will be damaged.

Procedure

1. Set the synthesized signal generator to output a 500 MHz, -10 dBm, CW signal. Set the AM and FM controls to off.

75 Ω Input only: Set output level to $-4 \, dBm$.

- 2. Set the function generator to output a 2 kHz, 1.14 Vp-p triangle waveform signal.
- 3. Connect the equipment as shown in Figure 2-10.
- 4. Press **Preset** on the analyzer, then wait for the preset routine to finish. Set the analyzer by pressing the following keys:

Center Frequency, 500 MHz SPAN, 10 MHz SPAN, Span Zoom, 50 kHz

- 5. Wait for the Span 50 kHz message to appear. Set Signal Track Off.
- 6. Set the span to 0 Hz and set the analyzer as follows:

BW/Avg, Resolution BW, 3 MHz Sweep, Sweep Time, 5 ms AMPLITUDE, Scale Type (Lin) Peak Search (or Search), More, Search Parameters, Peak Excursion, 3 dB

- 7. Adjust the synthesized signal generator amplitude as necessary for a mid-screen display (marker amplitude should read approximately 110 mV).
- 8. Set the synthesized signal generator modulation source to EXT DC. Set AM ON at 90% modulation.
- 9. On the analyzer, press Trig then Video. Set the video trigger level to 110 mV (mid-screen).
- 10.On the analyzer, press Single. After the completion of the sweep, press Peak Search (or Search), 0s, Meas Tools, Next Pk Right. This is the marked signal.
- 11.Press Marker, Delta, then Peak Search (or Search) and press Next Pk Right 8 times so the delta marker is on the eighth signal peak from the marked signal.

12.Read the Δ Mkr1 time. Calculate the sweeptime accuracy as follows:

Sweep Time Accuracy = $100 \times \frac{\Delta M kr1 - (0.8 \times Sweep Time)}{Sweep Time}$

The sweep time accuracy is defined as a percentage of the indicated sweep time, not of the indicated signal separation. Therefore, it is appropriate to divide the difference between the Δ Mkr1 reading and the nominal signal separation by the sweep time, rather than dividing by the nominal signal separation.

13.Record the calculated sweeptime accuracy in Table 2-11.

- 14.If the analyzer is not equipped with Option AYX, fast time domain sweeps, repeat step 10 to step 13 only for sweeptime settings between 5 ms and 10 s as indicated in Table 2-11. For each sweeptime setting, set the function generator to the frequency indicated in Table 2-11.
- 15.If the analyzer is equipped with Option AYX, fast time domain sweeps, repeat step 10 to step 13 for all sweeptime settings as indicated in Table 2-11. For each sweeptime setting, set the function generator to the frequency indicated in Table 2-11.

Table 2-11Sweep Time Accuracy

NOTE

Spectrum Analyzer Sweep Time Setting	Synthesizer Function Generator Frequency	∆ Mkr 1 Reading	Sweep Time Accuracy, %	TR Entry
$5 \mathrm{ms}$	2.0 kHz			1
20 ms	500.0 Hz			2
100 ms	100.0 Hz			3
1 s	10.0 Hz		· · ·	4
10 s	1.0 Hz			5
The following	ng entries only apply to analyz	zers equipped v	vith Option AY	X.
1 ms	10.0 kHz			6
500 μs	20.0 kHz			7
100 µs	100.0 kHz			8

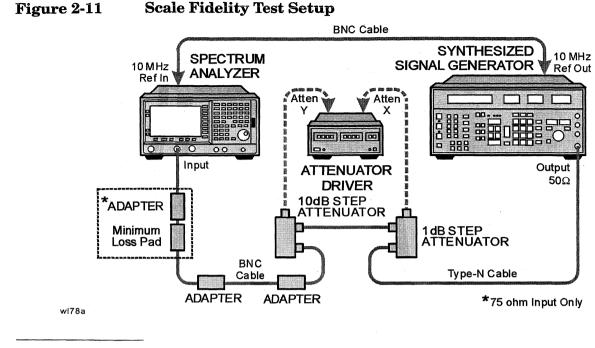
11. Display Scale Fidelity

A 50 MHz CW signal is applied to the input of the analyzer through two calibrated step attenuators. The attenuators are the amplitude reference standard. The source is adjusted for a response at the reference level. The attenuators are then set to achieve a nominal amplitude below the reference level. The analyzer amplitude marker is compared to the actual total attenuation to determine the scale fidelity error.

The test is performed in both log and linear amplitude scales.

The related adjustment for this performance test is "IF Amplitude."

Equipment Required


Synthesized signal generator 1 dB step attenuator 10 dB step attenuator Attenuator switch driver (if programmable step attenuators are used) Cable, Type-N 152-cm (60-in) Cable, BNC 122-cm (48-in) (2 required) Attenuator interconnect kit Adapter, Type-N (m) to BNC (f) (2 required)

Additional Equipment for 75 Ω Input

50 Ω to 75 Ω minimum loss pad Adapter, Type-N (f), to BNC (m), 75 Ω

Additional Equipment for Option BAB

Adapter, Type-N (f), to APC 3.5 (f)

CAUTION

Use only 75 Ω cables, connectors, and adapters on instruments with 75 Ω connectors, or the connectors will be damaged.

Procedure

Calculate the Actual Attenuation Errors

1. From the calibration data supplied with the 10 dB step attenuator, enter into column 4 of Table 2-12 and Table 2-13 the actual attenuation for the corresponding nominal attenuation settings.

If the calibration data does not indicate an actual attenuation value for the 0 dB setting, enter 0 dB.

NOTE The HP 8496G programmable attenuator has 4 attenuator sections consisting of 10 dB, 20 dB, 40 dB, and 40 dB attenuators. If using the HP 8496G programmable attenuator, enter the calibration data for the section three, 40 dB step, rather than the section four, 40 dB step.

> 2. From the calibration data supplied with the 1 dB step attenuator, enter into column 5 of Table 2-12 and Table 2-13 the actual attenuation for the corresponding nominal attenuation settings.

If the calibration data does not indicate an actual attenuation value for the 0 dB setting, enter 0 dB.

NOTE	The HP 8494G programmable attenuator has 4 attenuator sections consisting of 1 dB, 2 dB, 4 dB, and 4 dB attenuators. If using the HP 8494G programmable attenuator, enter the calibration data for the section three, 4 dB step, rather than the section four, 4 dB step.
	3. For each row in Table 2-12 and Table 2-13, add the 10 dB and the 1 dB Step Attenuator Actual Attenuation values (columns 4 and 5) and place the results into the Total Actual Attenuation (column 6).
	Total Actual Attenuation = 1 dB Step Attenuator Actual Attenuation + 10 dB Step Attenuator Actual Attenuation
	Example for36 dB from REF LVL setting:
	1 dB Step Attenuator Actual Attenuation (6 dB) = 5.998 dB
	10dB Step Attenuator Actual Attenuation (30 dB) = 30.012 dB
	Total Actual Attenuation = $5.998 dB + 30.012 dB = 36.010 dB$
	4. Enter the total actual attenuation (0 dB from the reference level) below:
	Total actual attenuation (0 dB from Ref Level) = $_\ dB$
	Section 1: Log Display Scale Fidelity, Analog Bandwidths
	Setup for Log Scale Measurement
	5. Connect the equipment as indicated in Figure 2-11.
	6. Press Preset on the analyzer and press the following keys:
	System, Alignments, Auto Align, Off FREQUENCY, 50 MHz SPAN, 45 kHz BW/Avg, 3 kHz BW/Avg, Video BW, 1 kHz
	7. Preset the synthesized signal generator, then press Blue Key, Special,0.0. Press the following keys:
	FREQUENCY, 50 MHz AMPLITUDE, -3 dBm (50 Ω Input only) AMPLITUDE, +4 dBm (75 Ω Input only)

8. Set the 1 dB step attenuator to 0 dB.

9. Set the 10 dB step attenuator to 0 dB.

10.Press Peak Search (or Search) on the analyzer.

11.Adjust the synthesized signal generator amplitude until the analyzer marker amplitude reads 0 dBm ± 0.1 dB.

75 Ω Input: Adjust the synthesized signal generator amplitude until the analyzer marker reads 48.75 dBmV ±0.1 dB.

Do not adjust the synthesized signal generator amplitude after the reference is established.

12.On the analyzer, press Marker, Delta.

NOTE

Measure the Cumulative Log Fidelity

- 13.Perform step 14 to step 16 for each measurement value in Table 2-12.
- 14.Set the 1 dB and 10 dB step attenuators as indicated in column 2 and column 3 of Table 2-12 for the various dB from REF LVL settings.

For settings of -64 dB and lower, press the following analyzer keys:

BW/Avg, Average (On) 5, Enter

- 15.Press Peak Search (or Search) on the analyzer and record the ΔMkr reading in column 7 of Table 2-12.
- 16.Calculate the Cumulative Log Fidelity Error (CLFE) as follows, and record the result in the performance verification test record as indicated in column 8 of Table 2-12:

 $CLFE = Total Actual Attenuation + Mkr\Delta Reading - Total Actual Atten (0 dB from Ref Level)$

Table 2-12Cumulative and Incremental Log Scale Fidelity Worksheet,
Analog Resolution Bandwidths Measured at 3 kHz

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8	Column 9
dB from REF LVL, dB	10 dB Step Atten Nominal Attenu- ation, dB	1 dB Step Atten Nominal Attenu- ation, dB	10 dB Step Atten Actual Attenu- ation, dB	1 dB Step Atten Actual Attenu- ation, dB	Total Actual Attenu- ation, dB	Mkr ∆ Reading, dB	TR Entry – CLFE, dB	TR Entry – ILFE, dB
0 (Ref)	0	0				0 (Ref)	0 (Ref)	NA
-4	0	4					1)	22)
8	0	8					2)	23)
-12	10	2					3)	24)
-16	10	6					4)	25)
-20	20	0					5)	26)
-24	20	4					6)	27)
-28	20	8					7)	28)
-32	30	2					8)	29)
-36	30	6					9)	30)
-40	40	0					10)	31)
-44	40	4					11)	32)
-48	40	8					12)	33)
-52	50	2					13)	34)
-56	50	6					14)	35)
60	60	0					15)	36)
-64	60	4					16)	37)
-68	60	8					17)	38)
-72	70	2					18)	39)
-76	70	6					19)	40)
-80	80	0					20)	41)
-84	80	4					21)	NA

Calculate Incremental Log Fidelity

17.Calculate the Incremental Log Fidelity Error (ILFE) for dB from REF LVL settings of -4 dB to -80 dB using the current and previous Cumulative Log Fidelity Errors (CLFEs):

ILFE= CLFE(current) – CLFE(previous)

Example Calculation for ILFE at -20 dB from REFLVL setting:

Previous CLFE(-16 dB from REF LVL)= -0.07 dB

Current CLFE(-20 dB from REF LVL) = +0.02 dB

ILFE(-20 dB) = 0.02 dB - (-0.07 dB) = 0.09 dB

18.Record the result in the performance verification test record as indicated in column 9 of Table 2-12.

Section 2: Log Display Scale Fidelity, Digital Bandwidths

This section is for analyzers with Option 1DR (narrow resolution bandwidths) only.

Setup for Log Scale Measurement

19.Set the following parameters on the analyzer:

SPAN, 150 Hz BW/Avg, 10 Hz BW/Avg, Video BW, 3 Hz

20.Press Peak Search (or Search) on the analyzer.

21.Adjust the amplitude of the synthesized signal generator until the analyzer marker amplitude reads 0 dBm ± 0.1 dB.

75 Ω Input only: Adjust the amplitude of the synthesized signal generator until the analyzer marker amplitude reads 48.75 dBmV ±0.1 dB.

22.Set the 1 dB and the 10 dB step attenuators to 0 dB.

NOTE Do not adjust the synthesized signal generator amplitude after the reference is established.

23.On the analyzer, press Marker, Delta.

Performance Verification Tests 11. Display Scale Fidelity

Measure the Cumulative Log Fidelity

- 24.Perform step 25 to step 27 for each measurement value in Table 2-13.
- 25.Set the 1 dB and 10 dB step attenuators as indicated in Table 2-13 for the various dB from REF LVL settings.

For settings of -84 dB and lower, press the following analyzer keys:

BW/Avg, Average (On) 5, Enter

- 26.Press Peak Search (or Search) on the analyzer and record the ΔMkr reading in column 7 of Table 2-13.
- 27.Calculate the Cumulative Log Fidelity Error (CLFE) as follows and record the result in the performance verification test record as indicated in column 8 of Table 2-13:

 $CLFE = Total Actual Attenuation + Mkr \nabla Reading - Total Actual Atten(0 dB from Ref Level)$

Table 2-13	Cumulative and Incremental Log Scale Fidelity Worksheet,
	Option 1DR Narrow Resolution Bandwidths Measured at 10 Hz

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8	Column 9
dB from REF LVL, dB	10 dB Step Atten Nominal Attenu- ation, dB	1 dB Step Atten Nominal Attenu- ation, dB	10 dB Step Atten Actual Attenu- ation, dB	1 dB Step Atten Actual Attenu- ation, dB	Total Actual Attenu- ation, dB	Mkr ∆ Reading, dB	TR Entry – CLFE, dB	TR Entry – ILFE, dB
0 (Ref)	0	0				0 (Ref)	0 (Ref)	NA
-4	0	4					43)	68)
8	0	8					44)	69)
-12	10	2					45)	70)
-16	10	6					46)	71)
-20	20	0					47)	72)
-24	20	4					48)	73)
-28	20	8					49)	74)
-32	30	2					50)	75)
-36	30	6					51)	76)
-40	40	0					52)	77)
-44	40	4					53)	78)

F		_ 	r	· · · · · · · · · · · · · · · · · · ·	r	· · · · · · · · · · · · · · · · · · ·		
Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8	Column 9
dB from REF LVL, dB	10 dB Step Atten Nominal Attenu- ation, dB	1 dB Step Atten Nominal Attenu- ation, dB	10 dB Step Atten Actual Attenu- ation, dB	1 dB Step Atten Actual Attenu- ation, dB	Total Actual Attenu- ation, dB	Mkr ∆ Reading, dB	TR Entry – CLFE, dB	TR Entry – ILFE, dB
-48	40	8					54)	79)
-52	50	2					55)	80)
56	50	6					56)	81)
-60	60	0					57)	82)
-64	60	4					58)	83)
68	60	8					59)	84)
-72	70	2					60)	85)
-76	70	6					61)	86)
-80	80	0					62)	87)
84	80	4					63)	NA
	80	8					64)	NA
-92	90	2					65)	NA
-96	90	4					66)	NA
-98	90	6					67)	NA

Table 2-13Cumulative and Incremental Log Scale Fidelity Worksheet,
Option 1DR Narrow Resolution Bandwidths Measured at 10 Hz

Calculate incremental log fidelity:

28.Calculate the Incremental Log Fidelity Error (ILFE) for dB from REF LVL settings of -4 dB to -80 dB using the current and previous Cumulative Log Fidelity Errors (CLFEs):

ILFE= CLFE(current) – CLFE(previous)

Record the result in the performance verification test record as indicated in column 9 of Table 2-13.

Section 3: Linear Display Scale Fidelity, Analog Bandwidths

Setup for linear scale measurement:

29.Press Preset on the analyzer and press the following keys:

System, Alignments, Auto Align, Off FREQUENCY, 50 MHz SPAN, 10 kHz BW/Avg, 3 kHz AMPLITUDE, Scale Type (Lin) Input/Output (or Input), Input Z Corr (50) (75 Ω Input only)

30.Preset the synthesized signal generator, by pressing **Blue Key**, **Special**, **0**,**0**. Press the following keys:

FREQUENCY, 50 MHz AMPLITUDE, -3 dBm (50 Ω Input only) AMPLITUDE, +4 dBm (75 Ω Input only)

31.Set the 1 dB step attenuator to 0 dB.

32.Set the 10 dB step attenuator to 0 dB.

33.Press Peak Search (or Search) on the analyzer.

- 34. Adjust the synthesized signal generator amplitude until the analyzer marker amplitude reads 223.6 mV \pm 4 mV.
- **NOTE** Do not adjust the amplitude of the synthesized signal generator after the reference is established.

Calculate ideal marker amplitude:

35.Considering Total Actual Attenuation at the 0 dB from REF LVL setting to be ATref, and the Total Actual Attenuation at any other dB from REF LVL setting to be ATmeas, calculate the Ideal Mkr Reading, in millivolts, as follows, and enter the result in column 7 of Table 2-14.

Ideal Mkr Reading(mV) = $1000\sqrt{0.05 \times 10^{(-\text{ATmeas} + \text{ATref})/10}}$

For example, if ATref = 0.012 dB and ATmeas = 7.982, the Ideal Mkr Reading for the -8 dB from Ref Level setting would be:

Ideal Mkr Reading(mV) = $1000\sqrt{0.05 \times 10^{(-7.982 + 0.012)/10}}$ = 89.3 mV

Measure linear fidelity:

36.Perform step 37 to step 39 for each measurement value in Table 2-14.

- 37.Set the 1 dB and 10 dB step attenuators as indicated in column 2 and column 3 of Table 2-14 for the dB from REF LVL settings.
- 38.Press Peak Search (or Search) on the analyzer and record the Mkr Δ amplitude reading as the actual Mkr reading in column 8 of Table 2-14.
- 39.Calculate the Linear Fidelity Error (LFE) as a percentage of reference level (RL), and record the result in the performance verification test record as indicated in column 9 of Table 2-14.

LFE(% of RL) = $100 \times \frac{\text{Actual Mkr Reading} - \text{Ideal Mkr Reading}}{223.6 \text{ mV}}$

Example calculation for LFE(% of RL):

Actual Mkr Reading = 85.0 mV

Ideal Mkr Reading = 89.3 mV

LFE(% of RL) =
$$100 \times \frac{85.0 - 89.3}{223.6}$$

LFE(% of RL) = 1.92% of RL

Table 2-14	Linear Scale Fidelity Worksheet, Analog Resolution
	Bandwidths Measured at 3 kHz

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8	Column 9
dB from REF LVL, dB	10 dB Step Atten Nominal Attenu- ation	1 dB Step Atten Nominal Attenu- ation	10 dB Step Atten Actual Attenu- ation	1 dB Step Atten Actual Attenu- ation	Total Actual Attenu- ation	Ideal Mkr Reading	Actual Mkr Reading	TR Entry – LFE (% of RL)
	dB	dB	dB	dB	(dB)	(mV)	(mV)	
0 (Ref)	0	0				0 (Ref)	0 (Ref)	0 (Ref)
-4	0	4						89)
8	0	8						90)
-12	10	2						91)
-16	10	6						92)
-20	20	0						93)

Performance Verification Tests 11. Display Scale Fidelity

Section 4: Linear Display Scale Fidelity, Digital Bandwidths

This section is for analyzers with Option 1DR (narrow resolution bandwidths) only.

Setup for linear scale measurement:

40.Set the following parameters on the analyzer:

SPAN, 100, Hz BW/Avg, 10 Hz Video BW, 1 Hz

41.Press Peak Search (or Search) on the analyzer.

42.Set the 1 dB and 10 dB step attenuators to 0 dB.

43. Adjust the synthesized signal generator amplitude until the analyzer marker amplitude reads 223.6 mV \pm 4mV.

NOTE Do not adjust the synthesized signal generator amplitude after the reference is established.

Calculate ideal marker amplitude:

44.Considering Total Actual Attenuation at the 0 dB from REF LVL setting to be ATref and the Total Actual Attenuation at any other dB from REF LVL setting to be ATmeas, calculate the Ideal Mkr Reading, in millivolts, as follows and enter the result in column 7 of Table 2-15.

Ideal Mkr Reading(mV) = $1000\sqrt{0.05 \times 10^{(-\text{ATmeas} + \text{ATref})/10}}$

Measure linear fidelity:

- 45.Perform step 46 to step 48 for each measurement value in Table 2-15.
- 46.Set the 1 dB and 10 dB step attenuators as indicated in Table 2-15 for the dB from REF LVL settings.
- 47. Press **Peak Search (or Search)** on the analyzer and record the Mkr Δ amplitude reading as the actual Mkr reading in column 8 of Table 2-15.

48.Calculate the Linear Fidelity Error (LFE) as a percentage of reference level (RL), and record the result in the performance verification test record as indicated in column 9 of Table 2-15.

LFE(% of RL) = $100 \times \frac{\text{Actual Mkr Reading} - \text{Ideal Mkr Reading}}{223.6 \text{ mV}}$

Table 2-15	Linear Scale Fidelity Worksheet, Option 1DR Narrow
	Resolution Bandwidths Measured at 10 Hz

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8	Column 9
dB from REF LVL	Attenu-	1 dB Step Atten Nominal Attenu-	Attenu-	1 dB Step Atten Actual Attenu-	Total Actual Attenu- ation	Ideal Mkr Reading	Actual Mkr Reading	TR Entry – LFE (% of RL)
(dB)	ation (dB)	ation (dB)	ation (dB)	ation (dB)	(dB)	(mV)	(mV)	
0 (Ref)	0	0			<u> </u>	0 (Ref)	0 (Ref)	0 (Ref)
-4	0	4						94)
8	0	8						95)
-12	10	2						96)
-16	10	6						97)
-20	20	0						98)

49. If the analyzer has a 75Ω Input press:

Input/Output (or Input) Input Z Corr (75)

Zero Span Log Fidelity, Digital Bandwidths

This section is for analyzers with Option 1DR (narrow resolution bandwidths) only.

Setup for zero span measurements

50. Set the 1 dB step attenuator to 11 dB and the 10 dB step attenuator to 110 dB.

51. On the analyzer, press the following keys:

Preset

System, Alignments, Align Now, All (*wait for the alignment sequence to complete*)

52. Set the 1 dB and 10 dB step attenuators to 0 dB.

	Performance Verification Tests 11. Display Scale Fidelity							
	53.Set the following parameters on the analyzer:							
	FREQUENCY, 50 MHz SPAN, 100 Hz BW/Avg, 10 Hz							
	54.Press Peak Search (or Search), Marker>, and Marker> CF on the analyzer.							
	55.Press SPAN, Zero Span on the analyzer							
	56.Adjust the synthesized signal generator amplitude until the analyzer marker amplitude reads 0 dBm 0.1 dB							
	$75~\Omega$ Input: Adjust the synthesized signal generator amplitude until the analyzer marker amplitude reads $48.75~dBmV~~0.1~dB$							
NOTE	_ Do not adjust the synthesized signal generator amplitude after the _reference is established.							
	57. On the analyzer press Marker, Delta.							
	Measure the Cumulative Log Fidelity							
	58.On the analyzer, press Single, BW/Avg, Average, 5, Enter.							
	59.Perform step 61 to step 64 for each measurement value in Table 2-16.							
	60.Set the 1 dB and 10 dB step attenuators as indicated in column 2 and column 3 of Table 2-16 for the various dB from REF LVL settings.							
	61.Press Single and wait for "VAvg 5" to be displayed to the right of the graticule area.							
	62.Record the Δ Mkr1 amplitude reading in column 7 of Table 2-16.							
	63.Calculate the Cumulative Log Fidelity Error (CLFE) as follows, and record the result in the performance verification test record as indicated in column 8 of Table 2-16.							
	CLFE = Total Actual Attenuation + Δ Mkr Reading – Total Actual Atten (0 dB from Ref Level)							

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8
dB from REF LVL (dB)	10 dB Step Atten Nominal Attenu- ation (dB)	1 dB Step Atten Nominal Attenu- ation (dB)	10 dB Step Atten Actual Attenu- ation (dB)	1 dB Step Atten Actual Attenu- ation (dB)	Total Actual Attenu- ation (dB)	∆Mkr Reading (dB)	TR Entry- CLFE (dB)
0 (Ref)	0	0				0 (Ref)	0 (Ref)
-4	0	4					97)
-8	0	8			· · ·		98)
-12	10	2					99)
-16	10	6					100)
-20	20	0					101)
-24	20	4					102)
-28	20	8					103)
-32	30	2					104)
-36	30	6					105)
-40	40	0					106)
-44	40	4					107)
-48	40	8					108)
-52	50	2	_				109)
-56	50	6					110)
-60	60	0					111)
-64	60	4					112)
-68	60	8					113)
-70	70	0					114)

Table 2-16Zero Span Cumulative Log Fidelity Worksheet, Opt 1DR
Narrow Resolution Bandwidths, (measured at 10 Hz)

Post Test Instrument Restoration

64.On the analyzer, press the following keys:

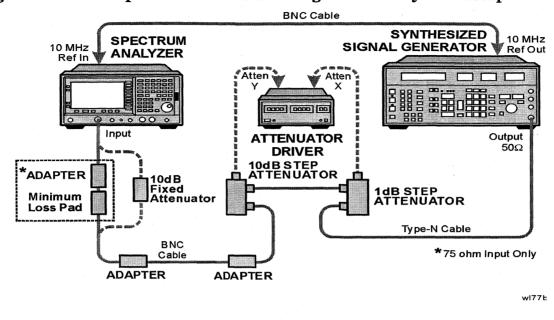
Preset System, Alignments, Auto Align, All

12. Input Attenuation Switching Uncertainty

A 50 MHz CW signal is applied to the input of the analyzer through two calibrated step attenuators. The attenuators are the amplitude reference standard. The source is adjusted for a response at the reference level. The internal attenuators are then varied between settings and the external attenuators are changed accordingly to maintain the same input level at the mixer. The spectrum analyzer marker functions are used to measure the amplitude differences. The actual attenuation values of the step attenuators are used to correct the marker amplitude readings yielding the input attenuation switching error.

The related adjustment for this performance test is "Frequency Response."

Equipment Required


Synthesized signal generator 1 dB step attenuator 10 dB step attenuator Attenuator switch driver (if programmable step attenuators are used) 10 dB fixed attenuator Cable, Type-N 152-cm (60-in) Cable, BNC 122-cm (48-in) (2 required) Attenuator interconnect kit Adapter, Type-N (m) to BNC (f) (2 required)

Additional Equipment for 75 Ω Input

50 Ω to 75 Ω minimum loss pad Adapter, Type-N (f), to BNC (m), 75 Ω

Additional Equipment for Option BAB

Adapter, Type-N (f), to APC 3.5 (f)

Figure 2-12 Input Attenuator Switching Uncertainty Test Setup

CAUTION

Use only 75 Ω cables, connectors, or adapters on instruments with 75 Ω connectors, or the connectors will be damaged.

Procedure

Calculate Actual Attenuation Values

- 1. From the calibration data supplied with the 1 dB step attenuator, enter into column 2 of Table 2-17 the actual attenuation for the corresponding nominal attenuation settings. If the calibration data does not indicate an actual attenuation value for the 0 dB setting, enter 0 dB.
- NOTEThe HP 8494G programmable attenuator has 4 attenuator sections
consisting of 1 dB, 2 dB, 4 dB, and 4 dB attenuators. If using the
HP 8494G programmable attenuator, enter the calibration data for the
section three 4 dB step rather than the section four 4 dB step.
 - 2. From the calibration data supplied with the 10 dB step attenuator, enter into column 4 of Table 2-17 the actual attenuation for the corresponding nominal attenuation settings. If the calibration data does not indicate an actual attenuation value for the 0 dB setting, enter 0 dB.

NOTEThe HP 8496G programmable attenuator has 4 attenuator sections
consisting of 10 dB, 20 dB, 40 dB, and 40 dB attenuators. If using the
HP 8496G programmable attenuator, enter the calibration data for the
section three 40 dB step rather than the section four 40 dB step.

3. For each Total Nominal Attenuation setting indicated in Table 2-17, calculate the Total Actual Attenuation from the actual attenuation columns for the 1 dB and the 10 dB step attenuators and enter the result in Table 2-17.

Total Actual Attenuation = 1 dB Step Attenuator Actual Attenuation + 10 dB Step Attenuator Actual Attenuation

Example for 35 dB total nominal attenuation setting:

1 dB Step Attenuator Actual Attenuation (5 dB) = 5.021 dB

10 dB Step Attenuator Actual Attenuation (30 dB) = 29.981 dB

Total Actual Attenuation = 5.998 dB + 30.012 dB = 35.002 dB

Table 2-17Actual Attenuation Worksheet

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
1 dB step Attenuator Nominal Attenuation, dB	1 dB step Attenuator Actual Attenuation, dB	10 dB step Attenuator Nominal Attenuation, dB	10 dB step Attenuator Actual Attenuation, dB	Total Nominal Atten- uation, dB	Total Actual Atten- uation, dB
0		0		0	
5		0		5	
0		10		10	
5		10		15	
0		20		20	
5		20		25	
0		30		30	
5		30		35	
0		40		40	
5		40		45	
0		50		50	
5		50		55	
0		60		60	

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
1 dB step Attenuator Nominal Attenuation, dB	1 dB step Attenuator Actual Attenuation, dB	10 dB step Attenuator Nominal Attenuation, dB	10 dB step Attenuator Actual Attenuation, dB	Total Nominal Atten- uation, dB	Total Actual Atten- uation, dB
5	· · ·	60		65	

Table 2-17Actual Attenuation Worksheet

4. For each attenuation error value in column 4 of Table 2-18, calculate the attenuation errors by subtracting the difference between the Table 2-17 Total Actual Attenuation and Total Nominal Attenuation from the difference between the Total Actual Attenuation and Total Nominal Attenuation at 55 dB. Note that the total nominal attenuations listed in Table 2-18 are in a different order than those listed in Table 2-17.

AttenErr = (ActAtten(55 dB) - 55 dB) - (ActAtten(X dB) - NomAtten(X dB))

Where:

AttenErr = Attenuator Error between the X dB and 55 dB settings \Box

ActAtten(55 dB) = Actual Attenuation of the 55 dB setting

ActAtten(X dB) = Actual Attenuation of the X dB setting

NomAtten(X dB) = Nominal Attenuation of the X dB setting

Example of attenuation error calculation for 35 dB nominal attenuation:

ActAtten (55 dB) = 55.15 dB ActAtten (35 dB) = 35.002 dB NomAtten (35 dB) = 35 dB

AttenErr = (55.15 - 55) - (35.002 - 35)AttenErr = 0.15 - 0.002AttenErr = 0.148 dB

Setup for Switching Uncertainty Measurement

5. Connect the equipment as indicated in Figure 2-12. The 10 dB fixed attenuator (or minimum loss pad for 75 Ω input analyzers) should be connected directly to the input connector of the analyzer.

Performance Verification Tests

- 12. Input Attenuation Switching Uncertainty
- 6. Press **Preset** on the analyzer. Press **System**, Alignments, Auto Align, Off. Set the controls as follows:

FREQUENCY, 50 MHz SPAN, 100 kHz AMPLITUDE, -55 dBm (50Ω Input only) AMPLITUDE, -6.2 dBmV (75Ω Input only) AMPLITUDE, Attenuation, 10 dB AMPLITUDE, Scale/Div, 2 dB BW/Avg, 30 kHz BW/Avg, Video BW, 100 Hz

7. Preset the synthesized signal generator (**Blue Key, Special, 0,0**) and set the controls as follows:

FREQUENCY, 50 MHz AMPLITUDE, +10 dBm (50 Ω Input only) AMPLITUDE, +6 dBm (75 Ω Input only)

- 8. Set the 1 dB step attenuator to 5 dB attenuation. Set the 10 dB step attenuator to 50 dB. Refer to the HP 11713A attenuator switch driver manual for information on manually controlling a programmable step attenuator.
- 9. Press Peak Search (or Search) on the analyzer.
- 10.Adjust the amplitude of the synthesized signal generator until the marker amplitude of the analyzer reads $-57 \text{ dBm} \pm 0.1 \text{ dB}$.

75 Ω Input only: Adjust the amplitude of the synthesized signal generator until the marker of the analyzer reads -8.2 dBmV ± 0.1 dB.

NOTE

Do not adjust the amplitude of the synthesized signal generator after the reference is established.

11.On the analyzer, press Peak Search (or Search), Marker, Delta.

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
Spectrum Analyzer Internal Attenu- ation Setting	Spectrum Analyzer Reference Level Setting 50Ω Input / 75 Ω Input	Total Nominal Attenu- ation Setting	Attenu- ation Error, dB	Ideal Marker Delta Reading	Marker Delta Reading, dB	TR Entry – Switching Error, dB
10 dB	55 dBm / 6.2 dBmV	55 dB	0	0 dB	0	Ref
0 dB	65 dBm / 16.2 dBmV	65 dB		-10 dB		1)
5 dB	-60 dBm / -11.2 dBmV	60 dB		-5 dB		2)
15 dB	-50 dBm / -1.2 dBmV	50 dB		5 dB		3)
20 dB	-45 dBm / +3.8 dBmV	45 dB		10 dB		4)
25 dB	-40 dBm / +8.8 dBmV	40 dB		15 dB		5)
30 dB	-35 dBm / +13.8 dBmV	35 dB		20 dB		6)
35 dB	-30 dBm / +18.8 dBmV	30 dB		25 dB		7)
40 dB	–25 dBm / +23.8 dBmV	25 dB		30 dB		8)
45 dB	-20 dBm / +28.8 dBmV	20 dB		35 dB		9)
50 dB	–15 dBm / +33.8 dBmV	15 dB		40 dB		10)
55 dB	-10 dBm / +38.8 dBmV	10 dB		45 dB		11)
60 dB	-5 dBm / +43.8 dBmV	5 dB		50 dB		12)
65 dB ^a	0 dBm / +48.8 dBmV	0 dB	N	55 dB		13)

 Table 2-18
 Input Attenuation Switching Uncertainty Worksheet

a. Does not apply to HP E4401B or HP E4411B.

Performance Verification Tests

12. Input Attenuation Switching Uncertainty

Measure Switching Uncertainty

Perform step 12 to step 15 for each measurement value in Table 2-18.

- 12.Set the 1 dB and 10 dB step attenuators to the Total Nominal Attenuation setting value as indicated in column 3 of Table 2-18 for the various spectrum analyzer attenuation settings for each measurement. Table 2-17 may be used as a reference for setting the step attenuators to achieve the desired total nominal attenuation.
- 13.Similarly, set the corresponding spectrum analyzer attenuation and reference level settings as indicated in column 1 and column 2 of Table 2-18.
- 14.Press Single, then Peak Search (or Search) and record the marker amplitude reading as the Marker Delta Reading in column 6 of Table 2-18.
- 15.Calculate the Switching Error (Table 2-18, column 7) by subtracting the Ideal Marker Delta Reading and the Attenuation Error from the Marker Delta Reading. Record the result in the performance verification test record.

Switching Error = Marker Delta Reading – Ideal Marker Delta Reading – Attenuattion Error

Example for 25 dB spectrum analyzer internal attenuation setting:

Marker Delta Reading = 14.790 dB

Ideal Marker Delta Reading = 15 dB

Attenuation Error = -0.148 dB

Switching Error = 14.790 - 15 - (-0.148) = -0.062 dB

Post-test Instrument Restoration

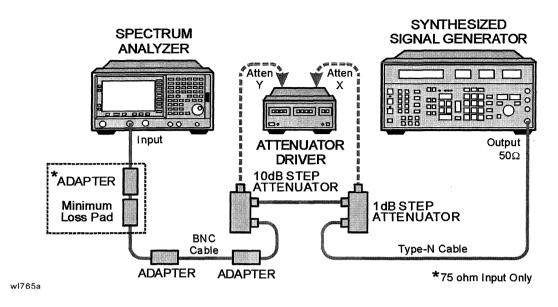
16.On the analyzer, press Preset, System, Alignments, Auto Align, All.

13. Reference Level Accuracy: HP E4401B and E4411B

A 50 MHz CW signal is applied to the input 50 Ω of the analyzer through two step attenuators. The amplitude of the source is decreased in 10 dB steps and the analyzer marker functions are used to measure the amplitude difference between steps. The external attenuator is used as the reference standard. The test is performed in both log and linear amplitude scales.

It is only necessary to test reference levels as low as -90 dBm (with 10 dB internal attenuation) since lower reference levels are a function of the analyzer microprocessor manipulating the trace data. There is no error associated with the trace data manipulation.

The related adjustment for this performance test is "IF Amplitude."


Equipment Required

Synthesized signal generator 1 dB step attenuator 10 dB step attenuator Attenuator switch driver (if programmable step attenuators are used) Cable, Type-N 152-cm (60-in) Cable, BNC 122-cm (48-in) (2 required) Attenuator interconnect kit Adapter, Type-N (m) to BNC (f) (2 required)

Additional Equipment for 75 Ω Input

Pad, minimum loss Adapter, Type-N (f), to BNC (m), 75 Ω Performance Verification Tests 13. Reference Level Accuracy: HP E4401B and E4411B

Figure 2-13Reference Level Accuracy Test Setup

Procedure

Calculate the Actual Attenuation Errors

1. From the calibration data supplied with the 10 dB step attenuator, enter into column 2 of Table 2-19 and Table 2-20 the actual attenuation for the corresponding nominal attenuation settings. If no calibration data is supplied for 0 dB, enter zero.

NOTE The HP 8496G programmable attenuator has 4 attenuator sections consisting of 10 dB, 20 dB, 40 dB and 40 dB attenuators. If using the HP 8496G programmable attenuator, enter the calibration data for the section three 40 dB step rather than the section four 40 dB step.

2. Calculate the reference attenuation error by subtracting 20 dB from the actual attenuation for the 20 dB setting, and enter below.

Reference Attenuator Error = Actual Attenuation(20 dB) - 20 dB

Reference Attenuator Error _____ dB

3. To calculate the Attenuation Error at other nominal attenuator settings, subtract the Attenuation Error at the other settings from the Reference Attenuator Error and enter the result in column 3 of Table 2-19 and Table 2-20.

Attenuator Error (X dB) = (Actual Attenuation(X dB) – Nominal Attenuation (X dB)) – Reference Attenuation Error Example for 50 dB attenuator setting:

Actual Attenuation (50 dB) = 50.08 dB

Actual Attenuation (20 dB) = 19.85 dB

Reference Attenuation Error = 19.85 dB - 20 dB = -0.15 dB

Attenuation Error (50 dB) = (50.08 dB - 50 dB) - (-0.15) dB

= +0.23 dB

Log Scale, Analog Bandwidths

1. Set the synthesized signal generator controls as follows:

FREQUENCY, 50 MHz AMPLITUDE, +2 dBm

- 2. Connect the equipment as shown in Figure 2-13. Set the 10 dB step attenuator to 20 dB attenuation and the 1 dB step attenuator to 5 dB attenuation.
- 3. Press **Preset** on the analyzer, then wait for the preset routine to finish. Press **System, Alignments, Auto Align, Off.** Set the analyzer by pressing the following keys:

FREQUENCY, 50 MHz AMPLITUDE, -25 dBm ($50 \ \Omega \ Input \ only$) AMPLITUDE, +26.75 dBmV ($75 \ \Omega \ Input \ only$) Attenuation, 10 dB (Man) Scale/Div, 1 dB SPAN, 50 kHz BW/Avg, 3 kHz Video BW, 30 Hz

- 4. Set the 1 dB step attenuator to place the signal peak 1 to 3 dB (1 to 3 divisions) below the reference level.
- 5. On the analyzer, press the following keys:

Single Peak Search (or Search) Marker, Delta

- 6. Set the 10 dB step attenuator and analyzer reference level according to column 1 and column 4 of Table 2-19. At each setting, do the following:
 - a. Press Single on the analyzer.
 - b. Press Peak Search (or Search).

Performance Verification Tests

13. Reference Level Accuracy: HP E4401B and E4411B

- c. Record the marker delta amplitude reading in column 5 of Table 2-19.
- d. Add the actual attenuation error to the analyzer marker delta amplitude and enter the result as the TR entry in the performance test record.

The following is an example for -35 dBm reference level:

Analyzer marker Δ amplitude = +0.17 dB

Attenuation Error (30 dB) = (-0.07) dB

Test Record Entry = 0.17 dB + (-0.07) dB = 0.10 dB

	8					
Column 1	Column 2	Column 3	Column 4		Column 5	Column 6
10 dB Attenuator Nominal Attenuation, dB	10 dB Attenuator Actual Attenuation, dB	Attenuation Error, dB	Analyzer Reference Level ^a , dBm dBmV		Analyzer Marker Delta Amplitude, dB	TR Entry
20		0 (Ref)	-25	+23.75	0 (Ref)	(Ref)
10			-15	+33.75		1)
0			-5	+43.75		2)
30			-35	+13.75		3)
40			-45	+3.75		4)
50			-55	-6.25		5)
60			-65	-16.25		6)
70			-75	-26.25		7)

Table 2-19Log Scale, Analog Bandwidths

a. Use the dBm column values for analyzers with a 50 Ω input and the dBmV column for analyzers with a 75 Ω input.

If the analyzer is not equipped with Option 1DR (narrow resolution NOTE bandwidths), skip to the next section (Linear Scale, Analog Bandwidths). 1. On the analyzer, press the following keys: SPAN, 150 Hz BW/Avg, 10 Hz Video BW, 1 Hz 2. Set the 1 dB step attenuator to place the signal peak 1 to 3 dB (1 to 3 divisions) below the reference level. 3. On the analyzer, press the following keys: Single Peak Search (or Search) Marker, Delta 4. Set the 10 dB step attenuator and analyzer reference level according to column 1 and column 4 of Table 2-20. At each setting, do the following: a. Press Single on the analyzer. b. Press Peak Search (or Search). c. Record the Marker Delta Amplitude reading in column 5 of Table 2-20. d. Add the Actual Attenuation Error to the Analyzer Marker Delta Amplitude and enter the result as the TR Entry in the performance test record.

Log Scale, Digital Bandwidths, Option 1DR

Column 1	Column 2	Column 3	Column 4		Column 5	Column 6
10 dB Attenuator Nominal Attenuation, dB	10 dB Attenuator Actual Attenuation, dB	Attenuation Error, (dB)	Analyzer Reference Level ^a , dBm dBmV		Analyzer Marker Delta Amplitude, dB	TR Entry
20		0 (Ref)	-25	+23.75	0 (Ref)	(Ref)
10			-15	+33.75		15)
0			-5	+43.75		16)
30			-35	+13.75		17)
40			-45	+3.75		18)
50			-55	-6.25		19)
60			-65	-16.25		20)
70			-75	-26.25		21)

Table 2-20Log Mode, Digital Bandwidths Worksheet, Option 1DR

a. Use the dBm column values for analyzers with a 50 Ω input and the dBmV column for analyzers with a 75 Ω input.

Linear Scale, Analog Bandwidths

- 1. Set the 10 dB step attenuator to 20 dB attenuation.
- 2. Set the 1 dB step attenuator to 5 dB attenuation.
- 3. Set the analyzer by pressing the following keys:

AMPLITUDE, -25 dBm (50 Ω input only) AMPLITUDE, +26.76 dBmV (75 Ω input only) AMPLITUDE, Scale Type (Lin) AMPLITUDE, More, Y Axis Units (or Amptd Units), dBm (50 Ω input only) AMPLITUDE, More, Y Axis Units (or Amptd Units), dBmV (75 Ω input only) SPAN, 50 kHz BW/Avg, 3 kHz Video BW, 30 Hz Sweep, Sweep Cont Marker, Off

4. Set the 1 dB step attenuator to place the signal peak one to three divisions below the reference level.

5. On the analyzer, press the following keys:

Single Peak Search (or Search) Marker, Delta

- 6. Set the 10 dB step attenuator and analyzer reference level according to column 1 and column 4 of Table 2-21. At each setting, do the following:
 - a. Press Single on the analyzer.
 - b. Press Peak Search (or Search).
 - c. Record the marker delta amplitude reading in column 5 of Table 2-21.
 - d. Add the Attenuation Error to the Analyzer Marker Delta Amplitude and enter the result in the performance test record.

Table 2-21Linear Mode, Analog Bandwidths Worksheet

Column 1	Column 2	Column 3	Colu	ımn 4	Column 5	Column 6
10 dB Attenuator Nominal Attenuation, dB	10 dB Attenuator Actual Attenuation,	Attenuation Error,	Refe Lev	lyzer erence vel ^a ,	Analyzer Marker Delta Amplitude, dB	TR Entry
ав	dB	dB	dBm	dBmV	ав	
20		0 (Ref)	-25	+23.75	0 (Ref)	(Ref)
10			-15	+33.75		8)
0			-5	+43.75		9)
30			-35	+13.75		10)
40			-45	+3.75		11)
50			-55	-6.25		12)
60			65	-16.25		13)
70			-75	-26.25		14)

a. Use the dBm column values for analyzers with a 50 Ω input and the dBmV column for analyzers with a 75 Ω input.

Linear Scale	, Digital	Bandwidths,	Option	1DR
---------------------	-----------	-------------	--------	-----

If the analyzer is not equipped with Option 1DR (narrow resolution bandwidths), skip to the next section (Post-Test Instrument Restoration).
k

1. On the analyzer, press the following keys:

SPAN, 150 Hz BW/Avg, 10 Hz Video BW, 1 Hz

- 2. Set the 1 dB step attenuator to place the signal peak 1 to 3 divisions below the reference level.
- 3. On the analyzer, press the following keys:

Single Peak Search (or Search) Marker, Delta

- 4. Set the 10 dB step attenuator and analyzer reference level according to Table 2-22. At each setting, do the following:
 - a. Press Single on the analyzer.
 - b. Press Peak Search (or Search).
 - c. Record the marker delta amplitude reading in column 5 of Table 2-22.
 - d. Add the actual attenuation error to the Analyzer Marker Delta Amplitude and enter the result as the TR Entry in the performance test record.

Column 1	Column 2	Column 3	Colu	umn 4	Column 5	Column 6
10 dB Attenuator Nominal Attenuation, dB	10 dB Attenuator Actual Attenuation, dB	Attenuation Error, dB	Refe	llyzer erence vel ^a , dBmV	Analyzer Marker Delta Amplitude, dB	TR Entry
20		0 (Ref)	-25	+23.75	0 (Ref)	(Ref)
10			-15	+33.75		22)
0			-5	+43.75		23)
30			-35	+13.75		24)
40			-45	+3.75		25)
50			-55	-6.25		26)
60	· · · · · · · · · · · · · · · · · · ·		-65	-16.25		27)
70			-75	-26.25		28)

Table 2-22Linear Mode, Digital Bandwidths, Option 1DR

a. Use the dBm column values for analyzers with a 50 Ω input and the dBmV column for analyzers with a 75 Ω input.

Post-test Instrument Restoration

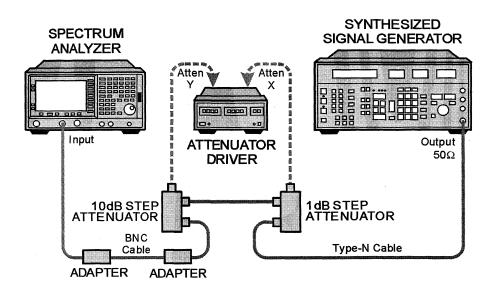
To restore the default settings on the spectrum analyzer, press **Preset**, **System**, **Alignments**, **Auto Align**, **All**.

14. Reference Level Accuracy: HP E4402B, E4403B, E4404B, E4407B and E4408B.

A 50 MHz CW signal is applied to the Input 50 Ω of the analyzer through two step attenuators. The amplitude of the source is decreased in 10 dB steps and the analyzer marker functions are used to measure the amplitude difference between steps. The external attenuator is used as the reference standard. The test is performed in both log and linear amplitude scales.

It is only necessary to test reference levels as low as -90 dBm (with 10 dB internal attenuation) since lower reference levels are a function of the analyzer microprocessor manipulating the trace data. There is no error associated with the trace data manipulation.

The related adjustment for this performance test is "IF Amplitude."


Equipment Required

Synthesized signal generator 1 dB step attenuator 10 dB step attenuator Attenuator switch driver (if programmable step attenuators are used) Cable, Type-N 152-cm (60-in) Cable, BNC 122-cm (48-in) (2 required) Attenuator interconnect kit Adapter, Type-N (m) to BNC (f) (2 required)

Additional Equipment for Option BAB

Adapter, Type-N (f) to APC 3.5 (f)

wl764a

NOTE

Procedure

Calculate the Actual Attenuation Errors

1. From the calibration data supplied with the 10 dB step attenuator, enter into column 2 of Table 2-23 and Table 2-24 the actual attenuation for the corresponding nominal attenuation settings. If no calibration data is supplied for 0 dB, enter zero.

The HP 8496G programmable attenuator has 4 attenuator sections consisting of 10 dB, 20 dB, 40 dB and 40 dB attenuators. If using the HP 8496G programmable attenuator, enter the calibration data for the section three 40 dB step rather than the section four 40 dB step.

2. Calculate the reference attenuation error by subtracting 20 dB from the actual attenuation for the 20 dB setting, and enter below.

Reference Attenuator Error = Actual Attenuation(20 dB) - 20 dB

Reference Attenuator Error _____ dB

3. To calculate the attenuation error at other nominal attenuator settings, subtract the attenuation error at the other settings from the reference attenuator error and enter the result in column 3 of Table 2-23 and Table 2-24.

Atten Error (X dB) = (Actual Attenuation(X dB) – Nominal Attenuation (X dB)) – Reference Attenuation Error Performance Verification Tests

14. Reference Level Accuracy: HP E4402B, E4403B, E4404B, E4407B and E4408B.

Example for 50 dB attenuator setting:

Actual Attenuation (50 dB) = 50.08 dB

Actual Attenuation (20 dB) = 19.85 dB

Reference Attenuation Error = 19.85 dB - 20 dB = -0.15 dB

Attenuation Error (50 dB) = (50.08 dB - 50 dB) - (-0.15) dB

= +0.23 dB

Log Scale, Analog Bandwidths

1. Set the synthesized signal generator controls as follows:

FREQUENCY, 50 MHz AMPLITUDE, +2 dBm

- 2. Connect the equipment as shown in Figure 2-14. Set the 10 dB step attenuator to 20 dB attenuation and the 1 dB step attenuator to 5 dB attenuation.
- 3. Press **Preset** on the analyzer, then wait for the preset routine to finish. Press **System, Alignments, Auto Align, Off**. Set the analyzer by pressing the following keys:

FREQUENCY, 50 MHz AMPLITUDE, -20 dBm Attenuation, 10 dB Scale/Div, 1 dB SPAN, 50 kHz BW/Avg, 3 kHz Video BW, 30 Hz

- 4. Set the 1 dB step attenuator to place the signal peak 1 to 3 divisions below the reference level.
- 5. On the analyzer, press the following keys:

Single Peak Search (or Search) Marker, Delta

- 6. Set the 10 dB step attenuator and analyzer reference level according to Table 2-23. At each setting, do the following:
 - a. Press Single on the analyzer.
 - b. Press Peak Search (or Search).
 - c. Record the marker delta amplitude reading in column 5 of Table 2-23.

d. Add the actual attenuation error to the analyzer marker delta amplitude and enter the result as the TR Entry in the performance test record.

Example, for -35 dBm reference level:

Analyzer marker Δ amplitude = +0.17 dB

Attenuation Error (30 dB) = (-0.07) dB

Test Record Entry = 0.17 dB + (-0.07) dB = 0.10 dB

Table 2-23Log

Log Mode, Analog Bandwidths Worksheet

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
10 dB Attenuator Nominal Attenuation, dB	10 dB Attenuator Actual Attenuation, dB	Attenuation Error, dB	Analyzer Reference Level, dBm	Analyzer Marker Delta Amplitude, dB	TR Entry
20		0 (Ref)	-20	0 (Ref)	(Ref)
10			-10		1)
0			0		2)
30			-30		3)
40			-40		4)
50			-50		5)
60			60		6)
70			-70		7)
80		алан айтаа алан алан алан айтаа а	-80		8)

Log Scale, Digital Bandwidths, Option 1DR

NOTE

If the analyzer is not equipped with Option 1DR (narrow resolution bandwidths), skip to the next section (Linear Scale, Analog Bandwidths).

7. On the analyzer, press the following keys:

SPAN, 150 Hz BW/Avg, 10 Hz Video BW, 1 Hz

8. Set the 1 dB step attenuator to set the signal peak 1 to 3 divisions below the reference level.

Performance Verification Tests

- 14. Reference Level Accuracy: HP E4402B, E4403B, E4404B, E4407B and E4408B.
- 9. On the analyzer, press the following keys:

Single Peak Search (or Search) Marker, Delta

- 10.Set the 10 dB step attenuator and analyzer reference level according to Table 2-24. At each setting, do the following:
 - a. Press Single on the analyzer.
 - b. Press Peak Search (or Search).
 - c. Record the marker delta amplitude reading in column 5 of Table 2-24.
 - d. Add the actual attenuation error to the analyzer marker Δ amplitude and enter the result as the TR Entry in the performance test record.

Table 2-24	Log Mode, Digital Bandwidths	Worksheet, Option 1DR
-------------------	------------------------------	-----------------------

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
10 dB Attenuator Nominal Attenuation, dB	10 dB Attenuator Actual Attenuation, dB	Attenuation Error, dB	Analyzer Reference Level, dBm	Analyzer Marker Delta Amplitude, dB	TR Entry
20		0 (Ref)	-20	0 (Ref)	(Ref)
10			-10		17)
0			0		18)
30			-30		19)
40			-40		20)
50			-50		21)
60			60		22)
70			-70		23)
80			-80		24)

Linear Scale, Analog Bandwidths

- 1. Set the 10 dB step attenuator to 20 dB attenuation.
- 2. Set the 1 dB step attenuator to 5 dB attenuation.
- 3. Set the analyzer by pressing the following keys:

AMPLITUDE, -20 dBm AMPLITUDE, Scale Type AMPLITUDE, More 1 of 2, Y Axis Units (or Amptd Units), dBm SPAN, 50 kHz BW/Avg, 3 kHz Video BW, 30 Hz Sweep, Sweep Cont Marker, Off

- 4. Set the 1 dB step attenuator to place the signal peak 1 to 3 divisions below the reference level.
- 5. On the analyzer, press the following keys:

Single Peak Search (or Search) Marker, Delta

6. Set the 10 dB step attenuator and analyzer reference level according to Table 2-25, column 1 and column 4. At each setting, do the following:

a. Press Single on the analyzer.

- b. Press Peak Search (or Search).
- c. Record the marker delta amplitude reading in column 5 of Table 2-25.
- d. Add the attenuation error to the Analyzer Marker Delta Amplitude and enter the result as the TR Entry in the performance test record.

14. Reference Level Accuracy: HP E4402B, E4403B, E4404B, E4407B and E4408B.

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
10 dB Attenuator Nominal Attenuation, dB	10 dB Attenuator Actual Attenuation, dB	Attenuation Error, dB	Analyzer Reference Level, dBm	Analyzer Marker Delta Amplitude, dB	TR Entry
20		0 (Ref)	-20	0 (Ref)	(Ref)
10			-10		9)
0			0		10)
30			-30		11)
40			-40		12)
50			-50		13)
60			-60		14)
70			-70		15)
80			-80		16)

Table 2-25 Linear Mode, Analog Bandwidths Worksheet

Linear Scale, Digital Bandwidths, Option 1DR

NOTE

If the analyzer is not equipped with Option 1DR (narrow resolution bandwidths), skip to the next section (Post-Test Instrument Restoration).

1. On the analyzer, press the following keys:

SPAN, 150 Hz BW/Avg, 10 Hz Video BW, 1 Hz

- 2. Set the 1 dB step attenuator to place the signal peak 1 to 3 divisions below the reference level.
- 3. On the analyzer, press the following keys:

Single
Peak Search (or Search)
Marker, Delta

- 4. Set the 10 dB step attenuator and analyzer reference level according to Table 2-26. At each setting, do the following:
 - a. Press **Single** on the analyzer.
 - b. Press Peak Search (or Search).

- c. Record the marker delta amplitude reading in column 5 of Table 2-26.
- d. Add the actual attenuation error to the analyzer marker delta amplitude and enter the result as the TR Entry in the performance test record.

Table 2-26Linear Mode, Digital Bandwidths Worksheet, Op	Option IDR
---	------------

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
10 dB Attenuator Nominal Attenuation, dB	10 dB Attenuator Actual Attenuation, dB	Attenuation Error, dB	Analyzer Reference Level, dBm	Analyzer Marker Delta Amplitude, dB	TR Entry
20		0 (Ref)	-20	0 (Ref)	(Ref)
10			-10		25)
0			0		26)
30			-30		27)
40			-40		28)
50			-50		29)
60			-60		30)
70			-70		31)
80			-80		32)

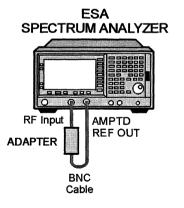
Post-test Instrument Restoration

To restore the default settings on the spectrum analyzer, press **Preset**, **System**, **Alignments**, **Auto Align**, **All**.

15. Resolution Bandwidth Switching Uncertainty

To measure the resolution bandwidth switching uncertainty an amplitude reference is taken with the resolution bandwidth set to 3 kHz using the marker delta function. The resolution bandwidth is changed to settings between 5 MHz and 10 Hz and the amplitude variation is measured at each setting and compared to the specification. The span is changed as necessary to maintain approximately the same aspect ratio.

The related adjustment for this performance test is "IF Amplitude."


Equipment Required for HP E4402B, E4403B, E4404B, E4405B, E4407B and E4408

Adapter, Type-N (m) to BNC (f) BNC Cable

Additional Equipment for Option BAB

Adapter, Type-N (f) to APC 3.5 (f)

Figure 2-15 Resolution Bandwidth Switching Test Setup

w1760a

Procedure

- 1. On the HP E4402B, E4403B, E4404B, E4405B, E4407B, or E4408B connect a BNC cable from the AMPTD REF OUT to the INPUT 50 Ω using adapters as necessary. Refer to Figure 2-15.
- 2. Press **Preset** on the analyzer. Set the analyzer controls by pressing the following keys:

Input/Output (or Input), Amptd Ref (On) (*E*4411*B*, *E*4401*B*) Input/Output (or Input), Amptd Ref Out (On) (*E*4402*B*, *E*4403*B*, *E*4404*B*, *E*4405*B*, *E*4407, *E*4408*B*) FREQUENCY, 50 MHz SPAN, 5 kHz AMPLITUDE, More, Y Axis Units (or Amptd Units), dBm AMPLITUDE, -25 dBm (*E*4411*B*, *E*4401*B*) AMPLITUDE, -19 dBm (*E*4402*B*/03*B*/04*B*/05*B*/07*B*/08*B*) AMPLITUDE, Scale/Div, 1 dB BW/Avg, 1 kHz BW/Avg, Video BW, 1 kHz

3. Press **AMPLITUDE** and use the RPG to adjust the reference level until the signal appears five divisions below the reference level, then press the following keys:

Peak Search (or Search) Marker \rightarrow , Mkr \rightarrow CF Marker, Delta

- 4. Set the analyzer span and resolution bandwidth according to Table 2-27.
- 5. Press Peak Search (or Search), Marker \rightarrow , Mkr \rightarrow CF, Peak Search (or Search) then record the marker delta amplitude reading in the performance verification test record as indicated in Table 2-27.
- 6. Repeat step 4 and step 5 for each of the remaining resolution bandwidth and span settings listed in Table 2-27.

 Table 2-27
 Resolution Bandwidth Switching Uncertainty

Anal	Marker Delta Amplitude Reading	
RES BW Setting	SPAN Setting	TR Entry
1 kHz	5 kHz	0 (Ref)
3 kHz	10 kHz	1)
9 kHz ^a	50 kHz	2)
10 kHz	50 kHz	3)
30 kHz	100 kHz	4)
100 kHz	500 kHz	5)
120 kHz ^a	500 kHz	6)
300 kHz	1 MHz	7)
1 MHz	5 MHz	8)

Performance Verification Tests 15. Resolution Bandwidth Switching Uncertainty

Table 2-27 Resolution Bandwidth Switching Uncertainty

Anal	Marker Delta Amplitude Reading	
RES BW Setting	SPAN Setting	TR Entry
3 MHz	10 MHz	9)
5 MHz	25 MHz	10)

a. These Res BW Settings must be entered from the keypad; they can not be accessed from the step keys or RPG.

- 7. If you are testing an analyzer equipped with Option 1DR, continue with step 8. If the analyzer is not equipped with Option 1DR, stop here.
- 8. Set the resolution bandwidth and span according to Table 2-28.
- Press Peak Search (or Search), Marker→, Mkr→CF, Peak Search (or Search) then record the Marker Delta Amplitude Reading in the performance verification test record as indicated in Table 2-28.
- 10.Repeat step 8 and step 9 for each of the remaining resolution bandwidth and span settings listed in Table 2-28.

Resolution Bandwidth Switching Uncertainty for Option 1DR

Anal	Marker Delta Amplitude Reading	
RES BW Setting	TR Entry	
300 Hz	1 kHz	11)
200 Hz ^a	1 kHz	12)
100 Hz	500 Hz	13)
30 Hz	100 Hz	14)
10 Hz	50 Hz	15)

a. These Res BW Settings must be entered from the keypad; they can not be accessed from the step keys or RPG.

Table 2-28

16. Absolute Amplitude Accuracy (Reference Settings): HP E4401B and E4411B

Absolute Amplitude Accuracy

The level of a 50 MHz signal is measured with a power meter. A complete auto alignment is performed. The 50 MHz signal is then measured with the spectrum analyzer. The difference between the power meter and spectrum analyzer readings is calculated.

Equipment Required

Synthesized signal generator Measuring receiver Power sensor, low power Cable, Type-N, 152-cm (60-in) Adapter, Type-N (f) to Type-N (f)

Additional Equipment for 75 Ω Input

Power sensor, 75 Ω Adapter, mechanical, Type-N (f), 75 Ω to Type-N (m) 50 Ω Pad, minimum loss Adapter, Type-N (f), to BNC (m), 75 Ω

Procedure

This performance test consists of two parts:

Part 1. Absolute Amplitude Accuracy, Preamp Off

Part 2. Absolute Amplitude Accuracy, Preamp On (Option 1DS)

Part 1 should be performed on all ESA analyzers. Part 2 should be performed only on ESA-E Series analyzers equipped with Option 1DS, Preamplifier.

Part 1. Absolute Amplitude Accuracy, Preamp Off

1. On the synthesized signal generator set the controls as follows:

```
FREQUENCY, 50 MHz
AMPLITUDE, -27 dBm (50 \Omega Input only)
AMPLITUDE, -18 dBm (75 \Omega Input only)
RF ON
AM OFF
FM OFF
```

Performance Verification Tests

16. Absolute Amplitude Accuracy (Reference Settings): HP E4401B and E4411B

2. Calibrate the power meter and low-power power sensor.

75 Ω Input: Calibrate the power meter and 75 Ω power sensor.

3. Connect the signal generator output to the low-power power sensor through the Type-N cable, using an adapter.

75 Ω Input: Connect the signal generator output to the 75 Ω power sensor through the Type-N cable using minimum loss pad and other adapters as necessary.

4. Adjust the signal generator power level for a power meter reading of -25 dBm.

75 Ω Input: Adjust the power level of the signal generator for a power meter reading of -24 dBm. Allow the power sensor adequate time to settle; the 75 Ω power sensor is being used on its lowest range.

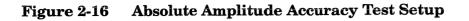
Record the power meter reading here.

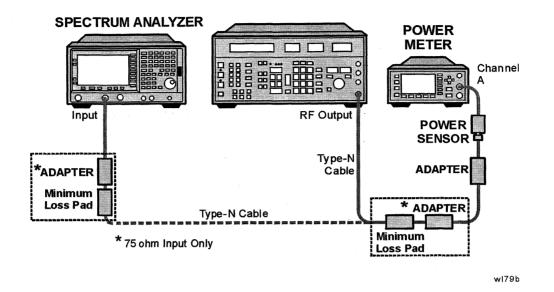
Power Meter Reading _____ dBm

5. Press the following analyzer keys:

Preset System, Alignments, Align Now, All (wait for alignment to finish) System, Alignments, Auto Align, (Off) FREQUENCY, Center Freq, 50 MHz SPAN, 2 kHz BW/Avg, Resolution BW (Man), 1 kHz Video BW (Man) 1 kHz

6. Press AMPLITUDE -25 dBm, Attenuation (Man) 10 dB, Scale Type (Log).


75 Ω Input: Set the reference level to +28.75 dBmV.


7. On the analyzer, press the following:

AMPLITUDE, More, Y Axis Units (or Amptd Units), Volts Det/Demod, Detector, Sample, Return

8. Disconnect the power sensor from the Type-N cable. Connect the Type-N cable to the analyzer 50 Ω input.

75 Ω Input: Connect the Type-N cable to the analyzer 75 Ω input using a minimum loss adapter.

9. Press Peak Search (or Search).

10.Convert the marker amplitude reading from volts to dBm using the following equation:

50Ω Input Marker Amptd (dBm) = $10 \times \log(Mkr(V^2/0.05))$

75Ω Input Marker Amptd (dBm) = $10 \times \log(Mkr(V^2/0.075))$

Marker Amptd (dBm) _____ dBm

11.Subtract the power meter reading noted in step 4 from the Marker Amptd recorded in step 10. Record the difference as TR Entry 1 in the performance verification test record.

Absolute Amplitude Accuracy (Log) = Marker Amptd (dBm) – Power Meter Reading (dBm)

12.On the analyzer, press the following:

AMPLITUDE, Scale Type (Lin)Peak Search (or Search)

13.Convert the marker amplitude reading from volts to dBm using the following equation:

50Ω Input Marker Amptd (dBm) = $10 \times \log(Mkr(V^2/0.05))$

75Ω Input Marker Amptd (dBm) = $10 \times \log(Mkr(V^2/0.075))$

Marker Amptd (dBm) _____ dBm

14.Subtract the power meter reading noted in step 4 from the Marker Amptd recorded in step 13. Record the difference, Absolute Amplitude Accuracy (Lin), as TR Entry 2 in the performance verification test record.

Absolute Amplitude Accuracy (Lin) = Marker Amptd (dBm) – Power Meter Reading (dBm)

- 15.On the analyzer, press **Preset** and wait for the preset routine to finish. Then press: **System**, **Alignments**, **Auto Align**, **Ali**.
- 16.If the analyzer is equipped with Option 1DS, preamplifier, proceed to Part 2: Absolute Amplitude Accuracy, Preamp On.

Part 2. Absolute Amplitude Accuracy, Preamp On (Option 1DS)

1. On the synthesized signal generator set the controls as follows:

FREQUENCY, 50 MHz AMPLITUDE, -30 dBm (50 Ω Input only) AMPLITUDE, -24 dBm (75 Ω Input only) RF ON AM OFF FM OFF

2. Calibrate the power meter and low-power power sensor.

75 Ω Input: Calibrate the measuring receiver and 75 Ω power sensor.

3. Connect the signal generator output to the power sensor through the Type-N cable, using an adapter.

75 Ω Input: Connect the signal generator output to the 75 Ω power sensor through the Type-N cable using minimum loss pad and other adapters as necessary.

4. Adjust the signal generator power level for a power meter reading of -30 dBm.

75 Ω Input: Adjust the power level of the signal generator for a power meter reading of -30 dBm. Allow the power sensor adequate time to settle; the 75 Ω power sensor is being used on its lowest range.

Record the power meter reading here:

Power Meter Reading _____ dBm

5. Press the following analyzer keys:

Preset, System, Alignments, Align Now, All (wait for alignment to finish), Done, Auto Align, Off. FREQUENCY, Center Freq, 50 MHz SPAN, 2 kHz BW/Avg, Resolution BW Auto Man, 1 kHz Video BW Auto Man 1 kHz 6. Press AMPLITUDE -30 dBm, Atten (Man) 0 dB, Scale Type (Log).

75 Ω Input: Set the reference level to +18.75 dBmV.

- 7. Press AMPLITUDE, More, Int Preamp (On).
- 8. Press AMPLITUDE, More, Y Axis Units (or Amptd Units), Volts, Det/Demod, Detector, Sample, Return.
- 9. Disconnect the power sensor from the Type-N cable. Connect the Type-N cable to the analyzer 50 Ω input.

75 Ω Input: Connect the Type-N cable to the analyzer 75 Ω input using a minimum loss adapter.

10.Press Peak Search (or Search).

11.Convert the marker amplitude reading from volts to dBm using the following equation:

50Ω Input Marker Amptd (dBm) = $10 \times \log(Mkr(V^2/0.05))$

75Ω Input Marker Amptd (dBm) = $10 \times \log(Mkr(V^2/0.075))$

Marker Amptd (dBm) _____ dBm

Performance Verification Tests 16. Absolute Amplitude Accuracy (Reference Settings): HP E4401B and E4411B

12.Subtract the power meter reading noted in step 4 from the Marker Amptd recorded in step 11. Record the difference, Absolute Amplitude Accuracy (Log), as TR Entry 3 in the performance verification test record.

Absolute Amplitude Accuracy (Log) = Marker Amptd (dBm) – Power Meter Reading (dBm)

13.On the analyzer, press the following:

 $\begin{array}{l} \mbox{AMPLITUDE, Scale Type} \ (Lin) \\ \mbox{Peak Search (or Search)} \end{array}$

14.Convert the marker amplitude reading from volts to dBm using the following equation:

50Ω Input Marker Amptd (dBm) = $10 \times \log(Mkr(V^2/0.05))$

75Ω Input Marker Amptd (dBm) = $10 \times \log(Mkr(V^2/0.075))$

Marker Amptd (dBm) _____ dBm

15.Subtract the power meter reading noted in step 4 from the Marker Amptd recorded in step 14. Record the difference, Absolute Amplitude Accuracy (Lin), as TR Entry 4 in the performance verification test record.

Absolute Amplitude Accuracy (Lin) = Marker Amptd (dBm) – Power Meter Reading (dBm)

16.On the analyzer, press **Preset** and wait for the preset routine to finish. Then press: **System**, **Alignments**, **Auto Align**, **Ali**.

17. Absolute Amplitude Accuracy (Reference Settings): HP E4402B, E4403B, E4404B, E4405B, E4407B, and E4408B

Absolute Amplitude Accuracy

The level of a 50 MHz signal is measured with a power meter. A complete auto alignment is performed. The 50 MHz signal is then measured with the spectrum analyzer. The difference between the power meter and spectrum analyzer readings is calculated.

Equipment Required

Synthesized signal generator Measuring receiver RF power sensor Low-power power sensor (Option 1DS only) Cable, Type-N, 152-cm (60-in) Adapter, Type-N (f) to Type-N (f)

Additional Equipment for Option BAB

Adapter, Type-N (f) to APC 3.5 (f)

Procedure

This performance test consists of two parts:

Part 1. Absolute Amplitude Accuracy, Preamp Off

Part 2. Absolute Amplitude Accuracy, Preamp On (Option 1DS)

Part 1 should be performed on all ESA analyzers. Part 2 should be performed only on ESA-E Series analyzers equipped with Option 1DS, Preamplifier.

Part 1. Absolute Amplitude Accuracy, Preamp Off

1. On the synthesized signal generator set the controls as follows:

```
FREQUENCY, 50 MHz
AMPLITUDE, -20 dBm
RF ON
AM OFF
FM OFF
```

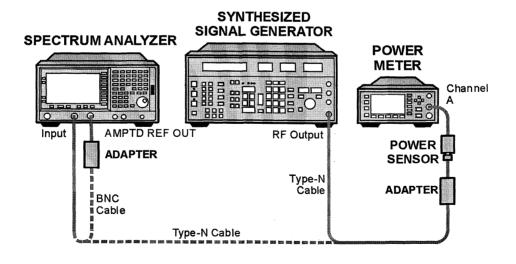
2. Calibrate the power meter and RF power sensor.

Performance Verification Tests

17. Absolute Amplitude Accuracy (Reference Settings): HP E4402B, E4403B, E4404B, E4405B, E4407B, and E4408B

- 3. Connect the signal generator output to the power sensor through the Type-N cable, using an adapter.
- 4. Adjust the signal generator power level for a power meter reading of -20 dBm.

Record the power meter reading here:


Power Meter Reading _____ dBm

- 5. On the analyzer, connect the AMPTD REF OUT to the Input using a BNC Cable and adapter as shown in Figure 2-17.
- 6. Press the following analyzer keys:

Preset, System, Alignments, Align Now, All (wait for alignment to finish), Return, Auto Align, Off. FREQUENCY, Center Freq, 50 MHz SPAN, 2 kHz BW/Avg, Resolution BW Auto Man, 1 kHz Video BW Auto Man 1 kHz

- 7. Press AMPLITUDE -20 dBm, Atten Auto Man 10 dB, Scale Type (Log).
- 8. Press AMPLITUDE, More, Y Axis Units (or Amptd Units), Volts, Det/Demod, Detector, Sample, Return.
- 9. Disconnect the power sensor from the Type-N cable. Connect the Type-N cable to the analyzer 50 Ω input.

Figure 2-17 Absolute Amplitude Accuracy Test Setup

w1710b

10.Press Peak Search (or Search).

Performance Verification Tests 17. Absolute Amplitude Accuracy (Reference Settings): HP E4402B, E4403B, E4404B, E4405B, E4407B, and E4408B

11.Convert the marker amplitude reading from volts to dBm using the following equation:

50Ω Input Marker Amptd (dBm) = $10 \times \log(Mkr(V^2/0.05))$

Marker Amptd (dBm) _____ dBm

12.Subtract the power meter reading noted in step 4 from the Marker Amptd recorded in step 11. Record the difference, Absolute Amplitude Accuracy (Log), as TR Entry 1 in the performance verification test record.

Absolute Amplitude Accuracy (Log) = Marker Amptd (dBm) – Power Meter Reading (dBm)

13.On the analyzer, press the following:

AMPLITUDE, Scale Type (Lin) Peak Search (or Search)

14.Convert the marker amplitude reading from volts to dBm using the following equation:

50Ω Input Marker Amptd (dBm) = $10 \times \log(Mkr(V^2/0.05))$

Marker Amptd (dBm) _____ dBm

15.Subtract the power meter reading noted in step 4 from the Marker Amptd recorded in step 14. Record the difference, Absolute Amplitude Accuracy (Lin), as TR Entry 2 in the performance verification test record.

Absolute Amplitude Accuracy (Lin) = Marker Amptd (dBm) – Power Meter Reading (dBm)

- 16.On the analyzer, press **Preset** and wait for the preset routine to finish. Then press: **System**, **Alignments**, **Auto Align**, **Ali**.
- 17.If the analyzer is equipped with Option 1DS, preamplifier, proceed to Part 2: Absolute Amplitude Accuracy, Preamp On.

Part 2. Absolute Amplitude Accuracy, Preamp On (Option 1DS)

1. On the synthesized signal generator set the controls as follows:

```
FREQUENCY, 50 MHz
AMPLITUDE, -30 dBm
RF ON
AM OFF
FM OFF
```

- 2. Calibrate the power meter and low-power power sensor.
- 3. Connect the signal generator output to the power sensor through the Type-N cable, using an adapter.

Performance Verification Tests

17. Absolute Amplitude Accuracy (Reference Settings): HP E4402B, E4403B, E4404B, E4405B, E4407B, and E4408B

4. Adjust the signal generator power level for a power meter reading of -30 dBm.

Record the power meter reading here:

Power Meter Reading _____ dBm

- 5. On the analyzer, connect the AMPTD REF OUT to the INPUT using a BNC Cable and adapter as shown in Figure 2-17.
- 6. Press the following analyzer keys:

Preset System, Alignments, Align Now, All (wait for alignment to finish) System, Alignments, Auto Align, (Off) FREQUENCY, Center Freq, 50 MHz SPAN, 2 kHz BW/Avg, Resolution BW (Man), 1 kHz Video BW (Man) 1 kHz

- 7. Press AMPLITUDE -30 dBm, Attenuation (Man) 0 dB, Scale Type (Log).
- 8. Press AMPLITUDE, More, Internal Preamp (On).
- 9. On the analyzer, press the following:

AMPLITUDE, More, Y Axis Units (or Amptd Units), Volts Det/Demod, Detector, Sample, Return

10.Disconnect the power sensor from the Type-N cable. Connect the Type-N cable to the analyzer 50 Ω input.

11.Press Peak Search (or Search).

12.Convert the marker amplitude reading from volts to dBm using the following equation:

50Ω Input Marker Amptd (dBm) = $10 \times \log(Mkr(V^2/0.05))$

Marker Amptd (dBm)_____ dBm

13.Subtract the power meter reading noted in step 4 from the Marker Amptd recorded in step 12. Record the difference, Absolute Amplitude Accuracy (Log), as TR Entry 3 in the performance verification test record.

Absolute Amplitude Accuracy (Log) = Marker Amptd (dBm) – Power Meter Reading (dBm)

14.On the analyzer, press the following:

 $\begin{array}{l} \mbox{AMPLITUDE, Scale Type } (Lin) \\ \mbox{Peak Search (or Search)} \end{array}$

Performance Verification Tests 17. Absolute Amplitude Accuracy (Reference Settings): HP E4402B, E4403B, E4404B, E4405B, E4407B, and E4408B

15.Convert the marker amplitude reading from volts to dBm using the following equation:

50Ω Input Marker Amptd (dBm) = $10 \times \log(Mkr(V^2/0.05))$

Marker Amptd (dBm) _____ dBm

16.Subtract the power meter reading noted in step 4 from the Marker Amptd recorded in step 15. Record the difference, Absolute Amplitude Accuracy (LIN), as TR Entry 1 in the performance verification test record.

Absolute Amplitude Accuracy (Lin) = Marker Amptd (dBm) – Power Meter Reading (dBm)

17.On the analyzer, press **Preset** and wait for the preset routine to finish. Then press: **System**, **Alignments**, **Auto Align**, **Ali**.

18. Overall Amplitude Accuracy: HP E4401B and E4411B

This test measures the absolute amplitude of the analyzer at 50 MHz. A synthesized signal generator and attenuators are used as the signal source to the analyzer. A power meter is used to measure this signal source with the attenuators set to 0 dB. The value measured is recorded as the source amplitude. The attenuators are used to adjust the signal levels applied to the analyzer between the initial signal amplitude (set with the power meter) and -50 dBm. The amplitude measured by the analyzer is compared to the actual signal level and the amplitude error is calculated.

There are no related adjustments for this performance test.

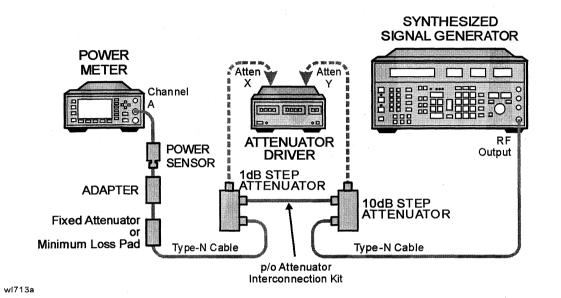
Equipment Required

Synthesized signal generator 10 dB step attenuator 1 dB step attenuator Attenuator interconnection kit Attenuator driver (if programmable step attenuators are used) 6 dB fixed attenuator Power meter Power sensor Cable, Type-N, 62-cm (24 in.) (m) (2 required) Cable, BNC Adapter, Type-N (f) to Type-N (f)

Additional Equipment for 75 Ω Input

Power sensor, 75 Ω Pad, minimum loss Adapter, mechanical, Type-N (f), 75 Ω to Type-N (m) 50 Ω Adapter, Type-N (f), to BNC (m), 75 Ω Adapter, Type-N (f) to Type-N (f), 75 Ω

Procedure


Measuring 0 dBm Reference Level

- 1. On the analyzer, press **Preset** and wait for the preset routine to finish.
- 2. Perform a complete self-alignment and set Auto Align Off. Press System, Alignments, Align Now, All, and wait for the alignment routine to finish. Then, press Return, Auto Align, Off.

3. Zero and calibrate the power meter and power sensor connected to Channel A of the power meter.

75 Ω Inputs: Zero and calibrate the power meter and 75 Ω power sensor connected to Channel A of the power meter.

Figure 2-18 Measure Source Test Setup

4. Connect the equipment as shown in Figure 2-18. The power sensor should connect directly to the 6 dB fixed attenuator using an adapter.

75 Ω Inputs: Use the minimum loss pad in place of the 6 dB fixed attenuator and a 75 Ω Type-N (f) to Type-N (f) adapter.

5. Preset the synthesized signal generator. Manually press **Blue Key**, **Special**, **0**, **0**. Set the signal generator as follows:

FREQUENCY, 50 MHz AMPLITUDE, +6 dBm

- 6. Set the 10 dB and 1 dB step attenuators to 0 dB.
- 7. From the metrology data for the step attenuators at 50 MHz, obtain the actual attenuation for the 0 dB setting of each attenuator (in some cases, this might be zero by definition). Add the two actual attenuations to obtain the 0 dB reference attenuation.

 $RefAtten_{0 dB} = 10 dB Actual_{0 dB} + 1 dB Actual_{0 dB}$

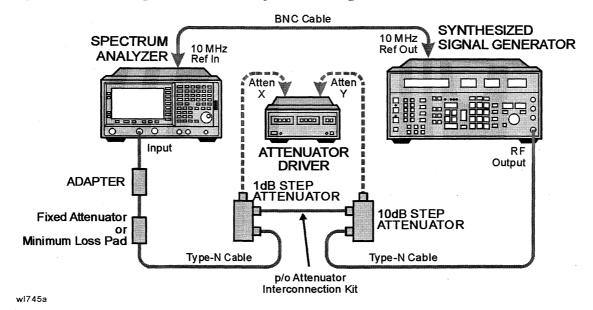
For example, if the actual attenuation for the 10 dB step attenuator is 0.03 dB, 10 dB Actual_{0 dB} is 0.03 dB. If the actual attenuation for the 1 dB step attenuator is 0.02 dB, 1 dB Actual_{0 dB} is 0.02 dB. In this case RefAtten_{0dB} is 0.05 dB.

Performance Verification Tests **18. Overall Amplitude Accuracy: HP E4401B and E4411B**

8. Retrieve metrology data for the step attenuators at 50 MHz. Enter the actual attenuation values for each attenuator setting as indicated in Table 2-29. If using a programmable attenuator, the section three 40 dB step should be used for the 40 dB setting on the 10 dB step attenuator. Similarly, the section three 4 dB step should be used for the 4 dB setting on the 1 dB step attenuator

1 dB Atten	-	10 dB Atten	-	Total Attenuation				Nominal Amptd.	Meas. Amptd.	Amptd. Accuracy TR Entry
Setting	Actual	Setting	Actual	Setting	Actual			ни Енну		
0 dB		0 dB		0 dB		0 dBm		1		
0 dB		10 dB		10 dB		-10 dBm		2		
0 dB		20 dB		20 dB		-20 dBm		3		
0 dB		30 dB		30 dB		30 dBm		4		
0 dB		40 dB		40 dB		-40 dBm		5		
0 dB		50 dB		50 dB		-50 dBm		6		

9. Calculate the actual total attenuation by adding the actual attenuation for the 1 dB step attenuator to the actual attenuation for the 10 dB step attenuator for each total attenuation setting listed in Table 2-29.


NOTE The external attenuators and cables are now part of the "source."

10.Adjust the signal generator amplitude for a power meter reading of $0 \text{ dBm} \pm 0.2 \text{ dB}$. Record the power meter reading here:

 $Amptd_{0dBm} = ___ dBm$

11.Connect the equipment as indicated in Figure 2-19. The fixed attenuator must connect directly to the analyzer input.

75 Ω Inputs: The minimum loss pad should be connected to the analyzer input using a Type N (f) to BNC (m) 75 Ω adapter.

Figure 2-19 Amplitude Accuracy Test Setup

12.Set the analyzer as follows:

```
FREQUENCY, Center Freq, 50 MHz
SPAN, 6 kHz
BW/Avg, Resolution BW, 1 kHz
AMPLITUDE, More, Y Axis Units (or Amptd Units), dBm
AMPLITUDE, Ref Level, 0 dBm
Attenuation, 10 dB (Man)
```

- 13.Perform the following steps for each of the nominal amplitude values listed in Table 2-29:
 - a. Set the 1 dB step attenuator as indicated in Table 2-29.
 - b. Set the 10 dB step attenuator as indicated in Table 2-29.
 - c. Press Single and wait for the sweep to finish.
 - d. Press **Peak Search (or Search)**. Even though the signal may be slightly above the reference level for the first nominal amplitude setting, the marker can still make a valid measurement.
 - e. Record the Mkr 1 amplitude value as the measured amplitude in Table 2-29.
 - f. If the nominal amplitude is 0 dBm, calculate the amplitude accuracy as follows:

Amplitude Accuracy = Measured Amplitude – Amptd0dBm

g. If the amplitude is less than 0 dBm, calculate the amplitude accuracy as follows:

Amplitude Accuracy = Measured Amplitude – $(Amptd_{0 dBm} - ActualTotalAtten + RefAtten_{0 dB})$

h. Record the amplitude accuracy in the performance verification test record as indicated in Table 2-29.

Performance Verification Tests

18. Overall Amplitude Accuracy: HP E4401B and E4411B

Measuring -20 dBm Reference Level

- 1. Press AMPLITUDE, Ref Level, -20 dBm.
- 2. Copy the actual total attenuation values from Table 2-29 into the actual total attenuation column in Table 2-30. Not all values in Table 2-29 will be required in Table 2-30.

Table 2-30	Amplitude Accuracy Worksheet, -20 dBm Reference Level
10010 1 00	

1 dB Step Attenuator	10 dB Step Attenuator	Total Attenuation		Nominal Amplitude	Measured Amplitude	Amplitude Accuracy
Setting	Actual	Setting Actual				(TR Entry)
0 dB	20 dB	20 dB		–20 dB		7
0 dB	30 dB	30 dB		30 dB		8
0 dB	40 dB	40 dB		-40 dB		9
0 dB	50 dB	50 dB		–50 dB		10

- 3. Perform the following steps for each of the nominal amplitude values listed in Table 2-30:
 - a. Set the 1 dB step attenuator as indicated in Table 2-30.
 - b. Set the 10 dB step attenuator as indicated in Table 2-30.
 - c. Press **Single** and wait for the sweep to finish.
 - d. Press **Peak Search (or Search)**. Even though the signal may be slightly above the reference level for the first nominal amplitude setting, the marker can still make a valid measurement.
 - e. Record the Mkr 1 amplitude value as the measured amplitude in Table 2-30.
 - f. Calculate the amplitude accuracy as follows:
- Amplitude Accuracy = Measured Amplitude $(Amptd_{0 dBm} ActualTotalAtten + RefAtten_{0 dBm})$
 - g. Record the amplitude accuracy in the performance verification test record as indicated in Table 2-30.

Measuring -40 dBm Reference Level

- 1. Press AMPLITUDE, Ref Level, -40 dBm.
- 2. Copy the actual total attenuation values from Table 2-30 into the actual total attenuation column in Table 2-31. Not all values in Table 2-30 will be required in Table 2-31.

1 dB Step Attenuator	10 dB Step Attenuator	Total Attenuation		Nominal Amplitude	Measured Amplitude	Amplitude Accuracy
Setting	Actual	Setting Actual				(TR Entry)
0 dB	40 dB	40 dB		-40 dB		10
0 dB	50 dB	50 dB		-50 dB		11

 Table 2-31
 Amplitude Accuracy Worksheet, -40 dBm Reference Level

- 3. Perform the following steps for each of the nominal amplitude values listed in Table 2-31:
 - a. Set the 1 dB step attenuator as indicated in Table 2-31.
 - b. Set the 10 dB step attenuator as indicated in Table 2-31.
 - c. Press Single and wait for the sweep to finish.
 - d. Press **Peak Search (or Search)**. Even though the signal may be slightly above the reference level for the first nominal amplitude setting, the marker can still make a valid measurement.
 - e. Record the Mkr 1 amplitude value as the measured amplitude in Table 2-31.
 - f. Calculate the amplitude accuracy as follows:

Amplitude Accuracy = Measured Amplitude – $(Amptd_{0 dBm} - ActualTotalAtten + RefAtten_{0 dB})$

g. Record the amplitude accuracy in the performance verification test record as indicated in Table 2-31.

Measuring -50 dBm Reference Level

- 1. Press AMPLITUDE, Ref Level, -50 dBm.
- 2. Copy the actual total attenuation values from Table 2-31 into the actual total attenuation column in Table 2-32. Not all values in Table 2-31 will be required in Table 2-32.

1 dB Step Attenuator	10 dB Step Attenuator	Total Attenuation		Nominal Amplitude	Measured Amplitude	Amplitude Accuracy
Setting	Actual	Setting	Actual			(TR Entry)
0 dB	50 dB	50 dB		–50 dB		13

Table 2-32Amplitude Accuracy Worksheet, -50 dBm Reference Level

- 3. Perform the following steps for each of the nominal amplitude values listed in Table 2-32:
 - a. Set the 1 dB step attenuator as indicated in Table 2-32.
 - b. Set the 10 dB step attenuator as indicated in Table 2-32.
 - c. Press Single and wait for the sweep to finish.
 - d. Press **Peak Search (or Search)**. Even though the signal may be slightly above the reference level for the first nominal amplitude setting, the marker can still make a valid measurement.
 - e. Record the Mkr 1 amplitude value as the measured amplitude in Table 2-32.
 - f. Calculate the amplitude accuracy as follows:

Amplitude Accuracy = Measured Amplitude – $(Amptd_{0 dBm} - ActualTotalAtten + RefAtten$

g. Record the amplitude accuracy in the performance verification test record as indicated in Table 2-32.

19. Overall Amplitude Accuracy: HP E4402B, E4403B, E4404B, E4405B, E4407B and E4408B

This test measures the absolute amplitude of the analyzer at 50 MHz. A synthesized signal generator and attenuators are used as the signal source to the analyzer. A power meter is used to measure this signal source with the attenuators set to 0 dB. The value measured is recorded as the source amplitude. The attenuators are used to adjust the signal levels applied to the analyzer from the initial signal amplitude (set with the power meter) and -50 dBm. The amplitude measured by the analyzer is compared to the actual signal level and the amplitude error is calculated.

There are no related adjustments for this performance test.

Equipment Required

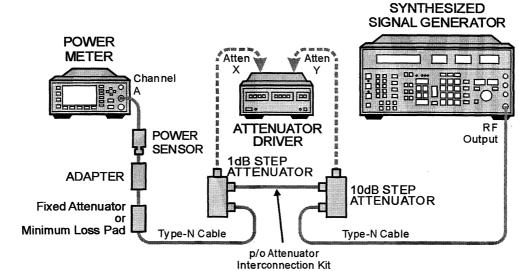
Synthesized signal generator 10 dB step attenuator 1 dB step attenuator Attenuator interconnection kit Attenuator driver (if programmable step attenuators are used) 6 dB fixed attenuator Power meter Power sensor Cable, Type-N, 62 cm (24 in.) (m) (2 required) Cable, BNC Adapter, Type-N (f) to Type-N (f)

Additional Equipment for Option BAB

Adapter, Type N (f) to APC 3.5 (f)

Procedure

Measuring 0 dBm Reference Level


- 1. On the analyzer, press **Preset** and wait for the preset routine to finish.
- 2. Connect a BNC cable from AMPTD REF OUT to the INPUT 50 Ω connector using a Type N (m) to BNC (f) adapter.
- 3. Perform a complete self-alignment and set Auto Align Off. Press System, Alignments, Align Now, All, and wait for the alignment routine to finish. Then, press Return, Auto Align, Off.
- 4. Zero and calibrate the power meter and power sensor connected to Channel A of the power meter.

Performance Verification Tests

19. Overall Amplitude Accuracy: HP E4402B, E4403B, E4404B, E4405B, E4407B and E4408B

5. Connect the equipment as shown in Figure 2-20. The power sensor should connect directly to the 6 dB fixed attenuator using an adapter.

Figure 2-20 Measure Source Test Setup

wl713a

6. Preset the synthesized signal generator. Manually press **Blue Key**, **Special**, **0**, **0**. Set the signal generator as follows:

FREQUENCY, 50 MHz AMPLITUDE, +6 dBm

- 7. Set the 10 dB and 1 dB step attenuators to 0 dB.
- 8. From the metrology data for the step attenuators at 50 MHz, obtain the actual attenuation for the 0 dB setting of each attenuator (in some cases, this might be zero by definition). Add the two actual attenuations to obtain the 0 dB reference attenuation.

 $RefAtten_{0dB} = 10 dB Actual_{0dB} + 1 dB Actual_{0dB}$

For example, if the actual attenuation for the 10 dB step attenuator is 0.03 dB, 10 dB Actual_{0dB} is 0.03 dB. If the actual attenuation for the 1 dB step attenuator is 0.02 dB, 1 dB Actual_{0dB} is 0.02 dB. In this case RefAtten_{0dB} is 0.05 dB.

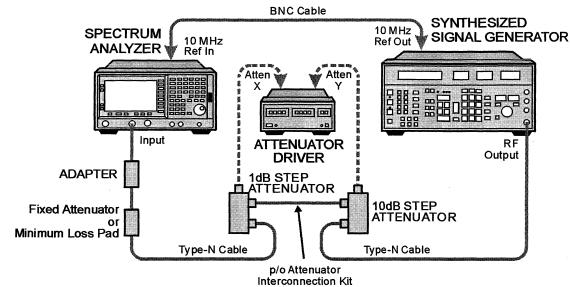
9. Retrieve metrology data for the step attenuators at 50 MHz. Enter the actual attenuation values for each attenuator setting as indicated in Table 2-33. If using a programmable attenuator, the section three 40 dB step should be used for the 40 dB setting on the 10 dB step attenuator. Similarly, the section three 4 dB step should be used for the 4 dB setting on the 1 dB step attenuator.

1 dB Atten	-	10 dB StepTotalAttenuatorAttenuation		Nominal Amptd.	Meas. Amptd.	Amptd. Accuracy		
Setting	Actual	Setting	Actual	Setting	Actual			(TR Entry)
0 dB		0 dB		0 dB		0 dBm		1
0 dB		10 dB		10 dB		-10 dBm		2
0 dB		20 dB		20 dB		-20 dBm		3
0 dB		30 dB	- <u>.</u> .	30 dB		-30 dBm		4
0 dB		40 dB		40 dB		-40 dBm		5
0 dB		50 dB		50 dB		-50 dBm		6

Amplitude Accuracy Worksheet, 0 dBm Reference Level

10.Calculate the actual total attenuation by adding the actual attenuation for the 1 dB step attenuator to the actual attenuation for the 10 dB step attenuator for each total attenuation setting listed in Table 2-33.

NOTE


Table 2-33

The external attenuators and cables are now part of the "source."

11.Adjust the signal generator amplitude for a power meter reading of $0 \text{ dBm} \pm 0.2 \text{ dB}$. Record the power meter reading here:

 $Amptd_{0dBm} = ___ dBm$

12.Connect the equipment as indicated in Table 2-33. The fixed attenuator must connect directly to the analyzer input.

Figure 2-21 Amplitude Accuracy Test Setup

wl745a

13.Set the analyzer as follows:

FREQUENCY, Center Freq, 50 MHz SPAN, 6 kHz BW/Avg, Resolution BW, 1 kHz AMPLITUDE, More, Y Axis Units (or Amptd Units), dBm AMPLITUDE, Ref Level, 0 dBm Attenuation, 10 dB (Man)

- 14.Perform the following steps for each of the nominal amplitude values listed in Table 2-33:
 - a. Set the 1 dB step attenuator as indicated in Table 2-33.
 - b. Set the 10 dB step attenuator as indicated in Table 2-33.
 - c. Press Single and wait for the sweep to finish.
 - d. Press **Peak Search (or Search)**. Even though the signal may be slightly above the reference level for the first nominal amplitude setting, the marker can still make a valid measurement.
 - e. Record the Mkr 1 amplitude value as the measured amplitude in Table 2-33.
 - f. If the nominal amplitude is 0 dBm, calculate the amplitude accuracy as follows:

Amplitude Accuracy = Measured Amplitude – $Amptd_{0dBm}$

g. If the amplitude is less than 0 dBm, calculate the amplitude accuracy as follows:

Amplitude Accuracy = Measured Amplitude – $(Amptd_{0dBm} - ActualTotalAtten + RefAtten_{0dBm})$

h. Record the amplitude accuracy in the performance verification test record as indicated in Table 2-33.

19. Overall Amplitude Accuracy: HP E4402B, E4403B, E4404B, E4405B, E4407B and E4408B

Measuring -20 dBm Reference Level

- 1. Press AMPLITUDE, Ref Level, -20 dBm.
- 2. Copy the actual total attenuation values from Table 2-33 into the actual total attenuation column in Table 2-34. Not all values in Table 2-33 will be required in Table 2-34.

1able 2-34 Amplitude Accuracy worksneet, -20 dBm Reference Le	Table 2-34	Worksheet, -20 dBm Reference Level
---	-------------------	------------------------------------

1 dB Step Attenuator	10 dB Step Attenuator	Total Attenuation		Nominal Amplitude	Measured Amplitude	Amplitude Accuracy
Setting	Actual	Setting	Actual			(TR Entry)
0 dB	20 dB	20 dB		-20 dB		7
0 dB	30 dB	30 dB		30 dB		8
0 dB	40 dB	40 dB		-40 dB		9
0 dB	50 dB	50 dB	-	-50 dB		10

- 3. Perform the following steps for each of the nominal amplitude values listed in Table 2-34:
 - a. Set the 1 dB step attenuator as indicated in Table 2-34.
 - b. Set the 10 dB step attenuator as indicated in Table 2-34.
 - c. Press **Single** and wait for the sweep to finish.
 - d. Press **Peak Search (or Search)**. Even though the signal may be slightly above the reference level for the first nominal amplitude setting, the marker can still make a valid measurement.
 - e. Record the Mkr 1 amplitude value as the measured amplitude in Table 2-34.
 - f. Calculate the amplitude accuracy as follows:

Amplitude Accuracy = Measured Amplitude – $(Amptd_{0dBm} - ActualTotalAtten + RefAtten_{0dB})$

g. Record the amplitude accuracy in the performance verification test record as indicated in Table 2-34.

Measuring -40 dBm Reference Level

- 1. Press AMPLITUDE, Ref Level, -40 dBm.
- 2. Copy the actual total attenuation values from Table 2-34 into the actual total attenuation column in Table 2-35. Not all values in Table 2-34 will be required in Table 2-35.

19. Overall Amplitude Accuracy: HP E4402B, E4403B, E4404B, E4405B, E4407B and E4408B

1 dB Step Attenuator	10 dB Step Attenuator	Total Attenuation		Nominal Amplitude	Measured Amplitude	Amplitude Accuracy
Setting	Actual	Setting	Actual			(TR Entry)
0 dB	40 dB	40 dB		-40 dB		10
0 dB	50 dB	50 dB		50 dB		11

Table 2-35Amplitude Accuracy Worksheet, -40 dBm Reference Level

- 3. Perform the following steps for each of the nominal amplitude values listed in Table 2-35:
 - a. Set the 1 dB step attenuator as indicated in Table 2-35.
 - b. Set the 10 dB step attenuator as indicated in Table 2-35.
 - c. Press Single and wait for the sweep to finish.
 - d. Press **Peak Search (or Search)**. Even though the signal may be slightly above the reference level for the first nominal amplitude setting, the marker can still make a valid measurement.
 - e. Record the Mkr 1 amplitude value as the measured amplitude in Table 2-35.
 - f. Calculate the amplitude accuracy as follows:

Amplitude Accuracy = Measured Amplitude – $(Amptd_{0dBm} - ActualTotalAtten + RefAtten_0)$

g. Record the amplitude accuracy in the performance verification test record as indicated in Table 2-35.

Measuring -50 dBm Reference Level

- 1. Press AMPLITUDE, Ref Level, -50 dBm.
- 2. Copy the actual total attenuation values from Table 2-34 into the actual total attenuation column in Table 2-36. Not all values in Table 2-34 will be required in Table 2-36.

Table 2-36Amplitude Accuracy Worksheet, -50 dBm Reference Level

1 dB Step Attenuator	10 dB Step Attenuator	Total Attenuation		Nominal Amplitude	Measured Amplitude	Amplitude Accuracy
Setting	Actual	Setting	Actual			(TR Entry)
0 dB	50 dB	50 dB		–50 dB		13

19. Overall Amplitude Accuracy: HP E4402B, E4403B, E4404B, E4405B, E4407B and E4408B

- 3. Perform the following steps for each of the nominal amplitude values listed in Table 2-36:
 - a. Set the 1 dB step attenuator as indicated in Table 2-36.
 - b. Set the 10 dB step attenuator as indicated in Table 2-36.
 - c. Press Single and wait for the sweep to finish.
 - d. Press **Peak Search (or Search)**. Even though the signal may be slightly above the reference level for the first nominal amplitude setting, the marker can still make a valid measurement.
 - e. Record the Mkr 1 amplitude value as the measured amplitude in Table 2-36.
 - f. Calculate the amplitude accuracy as follows:

Amplitude Accuracy = Measured Amplitude - (Amptd0dBm - ActualTotalAtten + RefAtten0dB)

g. Record the amplitude accuracy in the performance verification test record as indicated in Table 2-36.

20. Resolution Bandwidth Accuracy

The output of a synthesized signal generator is connected to the input of the analyzer, characterized through a 1 dB step attenuator set to 3 dB.

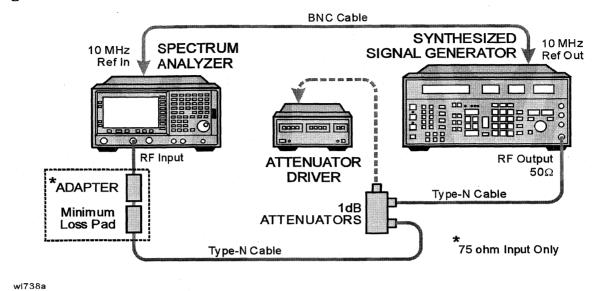
The amplitude of the synthesized signal generator is set to a reference amplitude 5 dB below top of screen. A marker reference is set and the attenuator is set to 0 dB.

The markers of the analyzer are then used to measure the 3 dB bandwidth. The first marker is set on the left filter skirt so that the marker delta amplitude is 1 dB plus the attenuator error for the 3 dB setting. The second marker is similarly set on the right filter skirt. The frequency difference between the two markers is the 3 dB bandwidth.

Resolution bandwidth settings ≤ 300 Hz (Option 1DR) are not measured. These bandwidths are digitally derived; therefore, their accuracy is verified by design.

The related adjustment for this performance test is "IF Amplitude."

Equipment Required


Synthesized signal generator Cable, BNC, 122-cm (48-in) Cable, Type-N, 152-cm (60-in) (2 required) 1 dB step attenuator Attenuator/switch driver (if programmable step attenuators are used)

Additional Equipment for 75 Ω Input

Pad, minimum loss Adapter, Type-N (f), to BNC (m), 75 Ω

Additional Equipment for Option BAB

Adapter, Type-N (f), to APC 3.5 (f)

Figure 2-22 Resolution Bandwidth Accuracy Test Setup

CAUTION Use only 75 Ω cables, connectors, or adapters on instruments with 75 Ω connectors, or the connectors will be damaged.

Procedure

- 1. Connect the equipment as shown in Figure 2-22.
- 2. On the synthesized signal generator, press **Blue Key**, **Special**, **0**, **0** and set the controls as follows:

FREQUENCY, 50 MHz AMPLITUDE, 0 dBm (50 Ω Input only) AMPLITUDE, 6 dBm (75 Ω Input only)

3. On the analyzer, press **Preset**, then wait for the preset routine to finish. Press **System**, **Alignments**, **Auto Align**, **Off**. Set the analyzer by pressing the following keys:

FREQUENCY, 50 MHz SPAN, 7.5 MHz AMPLITUDE, Scale/Div 1 dB AMPLITUDE, Y Axis Units (or Amptd Units), dBm BW/Avg, 5 MHz BW/Avg, Video BW, 30 Hz

4. Set the 1 dB step attenuator to 3 dB.

Performance Verification Tests 20. Resolution Bandwidth Accuracy

5. Note the error of the external 1 dB step attenuator at 3 dB and 6 dB below using its calibration records.

Attenuator Error (3 dB) _____ dB

Attenuator Error (6 dB) _____ dB

3 dB Resolution Bandwidth Accuracy

- 6. Press Peak Search (or Search), Meas Tools, $Mkr \rightarrow CF$ on the analyzer.
- 7. Adjust the amplitude of the synthesized signal generator for a marker amplitude reading of $-5 \text{ dBm} \pm 0.2 \text{ dB}$.
- 8. Press Peak Search (or Search), Marker, Delta on the analyzer.
- 9. Set the attenuator to 0 dB.
- 10.On the analyzer, press **Marker**. Lower the marker frequency by adjusting the knob until the marker delta amplitude is 0 dB plus the attenuator error (3 dB) noted in step 5 to a tolerance of $\pm 0.05 \text{ dB}$.
- 11.Record the marker frequency readout in column 3 of Table 2-37.
- 12.Using the analyzer knob, raise the marker frequency so that the marker delta amplitude is maximum. Continue increasing the marker frequency until the marker reads 0.0 dB plus the attenuator error (3 dB) noted in step 5 to a tolerance of \pm 0.05 dB.
- 13.Record the marker frequency readout in column 4 of Table 2-37.

14.Set the attenuator to 3 dB.

- 15.Press Marker, Normal on the analyzer.
- 16.Repeat step 6 through step 15 for each of the Analyzer Res BW and Analyzer Span settings listed in Table 2-37.
- 17.Subtract the Lower Marker Frequency from the Upper Marker Frequency. Record the difference as the 3 dB Bandwidth, in the performance verification test record as indicated in Table 2-37.

3db Bandwidth = Upper Marker Frequency - Lower Marker Frequency

Column 1	Column 2	Column 3	Column 4	Column 5
Analyzer Res BW	Analyzer Span	Lower Marker Frequency	Upper Marker Frequency	TR Entry 3 dB Bandwidth
5 MHz	7.5 MHz			1)
3 MHz	4.5 MHz			2)
1 MHz	1.5 MHz			3)
300 kHz	450 kHz			4)
100 kHz	150 kHz			5)
30 kHz	45 kHz		-	6)
10 kHz	15 kHz			7)
3 kHz	4.5 kHz			8)
1 kHz	1.5 kHz			9)

Table 2-373 dB Resolution Bandwidth Accuracy

6 dB Resolution Bandwidth Accuracy

- 18.Set the Analyzer Res BW to 120 kHz and the Analyzer Span to 180 kHz as shown in Table 2-38.
- 19.0n the analyzer, press Peak Search (or Search), Meas Tools, $Mkr \rightarrow CF$.
- 20.Set the external 1 dB step attenuator to 6 dB and adjust the amplitude of the synthesized signal generator for a marker amplitude reading of -7 dBm \pm 0.2 dB.
- 21.Press Peak Search (or Search), Marker, Delta on the analyzer.
- 22.Set the attenuator to 0 dB.
- 23.On the analyzer, press Marker. Lower the marker frequency by adjusting the knob until the marker delta amplitude is 0 dB plus the attenuator error (6 dB) noted in step 5 to tolerance of \pm 0.05 dB.
- 24.Record the marker frequency readout in column 3 of Table 2-38.
- 25.Using the analyzer knob, raise the marker frequency so that the marker delta amplitude is maximum. Continue increasing the marker frequency until the marker reads 0.0 dB plus the attenuator error (6 dB) noted in step 5 to a tolerance of \pm 0.05 dB.

26.Record the marker frequency readout in column 4 of Table 2-38.

27.Set the attenuator to 6 dB.

28.Press Marker, Normal on the analyzer.

Performance Verification Tests 20. Resolution Bandwidth Accuracy

- 29.Repeat step 19 to step 28 for each of the Analyzer Res BW and Analyzer Span settings listed in Table 2-38.
- 30.Subtract the Lower Marker Frequency from the Upper Marker Frequency. Record the difference as the 6 dB bandwidth, in the performance verification test record as indicated in Table 2-38.

6 dB Bandwidth = Upper Marker Frequency – Lower Marker Frequency

Table 2-386 dB Resolution Bandwidth Accuracy

Column 1	Column 2	Column 3	Column 4	Column 5
Analyzer Res BW	Analyzer Span	Lower Marker Frequency	Upper Marker Frequency	TR Entry 3 dB Bandwidth
120 kHz	180 kHz			10)
9 kHz	13.5 kHz			11)

Post-test Instrument Restoration

31.Press Preset, System, Alignments, Auto Align, All.

21. Frequency Response: HP E4401B and E4411B

This test measures the amplitude error of the analyzer as a function of frequency. To measure frequencies of 100 kHz and above, the output of a source is fed through a power splitter to a power sensor and the analyzer. The power level of the source is adjusted at 50 MHz to place the displayed signal at the center horizontal graticule line of the analyzer. The power meter is then set to measure dB relative to the power at 50 MHz. At each new source frequency and analyzer center frequency, the power level of the source is adjusted to place the signal at the center horizontal graticule to place the signal at the center horizontal graticule to place the signal at the center horizontal graticule to place the signal at the center horizontal graticule to place the signal at the center horizontal graticule line. The power meter displays the inverse of the frequency response relative to 50 MHz.

To measure frequencies below 100 kHz, a digital voltmeter (DVM) with a 50 Ω load replaces the power sensor and a function generator is used as the source.

For improved amplitude accuracy below 3 GHz, the power splitter is characterized using a specially-calibrated power sensor (the "reference" sensor) connected to one power splitter output port. The other power splitter output port connects to the "buried" sensor; it is not removed from the power splitter. Once the characterization is done, the reference sensor is removed and replaced by the analyzer.

This procedure does not test frequency response with the optional preamplifier (Option 1DS) turned on. If the analyzer is equipped with Option 1DS, also perform the "Frequency Response, Preamp On" procedure.

The related adjustment for this performance test is "Frequency Response."

Analyzers with 75 Ω inputs are tested only down to 1 MHz.

Equipment Required

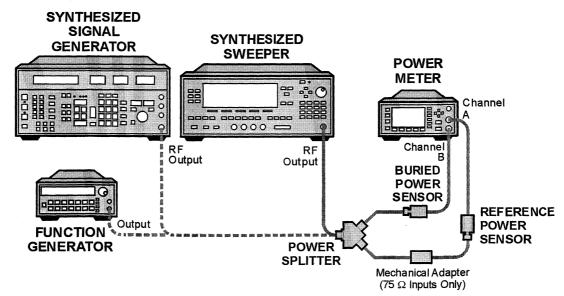
Synthesized signal generator Function generator Power meter RF power sensor, (2 required) RF Power splitter Digital multimeter Adapter, APC 3.5 (f) to APC 3.5 (f) Adapter, Type-N (m) to Type-N (m) Adapter, Type-N (m) to BNC (f) Dual banana plug to BNC (f) Performance Verification Tests 21. Frequency Response: HP E4401B and E4411B

BNC Tee (BNC f,m,f) Cable, BNC, 120-cm (48-in) (2 required) Cable, Type-N, 183-cm (72-in) Cable, APC 3.5 Termination, 50 Ω , BNC (m)

Additional Equipment for 75 Ω Input

Power sensor, 75 Ω Adapter, mechanical, Type-N (f) 75 Ω to Type-N (m) 50 Ω Adapter, Type-N (m) to BNC (m), 75 Ω

CAUTION Use only 75 Ω cables, connectors, or adapters on instruments with 75 Ω connectors, or damage to the connectors will occur.


Procedure

Source/Splitter Characterization

1. Refer to Figure 2-23. Connect one of the HP 8482A power sensors to Channel A of the power meter. This will be the "reference" sensor. Connect the other HP 8482A power sensor to Channel B of the power meter. This will be the "buried" sensor.

 75Ω Inputs, Option 1DP: Connect the HP 8483A power sensor to Channel A of the power meter. This will be the "reference" sensor.

Figure 2-23 Source/Splitter Characterization Setup

wl768a

- 2. Zero and calibrate both power sensors.
- 3. On the power meter, set the Channel A calibration factor to the calibration factor of the reference sensor for 100 kHz.

75 Ω Inputs, Option 1DP: Use the calibration factor of the reference sensor for 1 MHz.

- 4. On the power meter, set the Channel B calibration factor to 100%. Do not change this calibration factor during this test.
- 5. Connect the equipment as shown in Figure 2-23. Use the synthesized signal generator as the source.

75 Ω Inputs, Option 1DP: Connect the reference sensor to the power splitter using the mechanical adapter.

6. Set the source frequency to 100 kHz and amplitude to -4 dBm.

75 Ω Inputs, Option 1DP: Set the source frequency to 1 MHz.

- 7. Adjust the source amplitude to obtain a Channel A power meter reading of $-10 \text{ dBm} \pm 0.01 \text{ dB}$.
- 8. Record the source amplitude setting, and both the Channel A and Channel B power meter readings in Table 2-39.
- 9. Tune the source to the next frequency in Table 2-39.
- 10.On the power meter, set the Channel A calibration factor to the calibration factor of the reference sensor for the current source frequency.
- 11. Adjust the source amplitude to obtain a Channel A power meter reading of $-10 \text{ dBm} \pm 0.01 \text{ dB}.$
- 12.Record the source amplitude setting, and both the Channel A and Channel B power meter readings in Table 2-39.
- 13.Repeat step 9 to step 12 for each frequency in Table 2-39.
- 14.For each entry in Table 2-39, calculate the Splitter Tracking Error as follows:

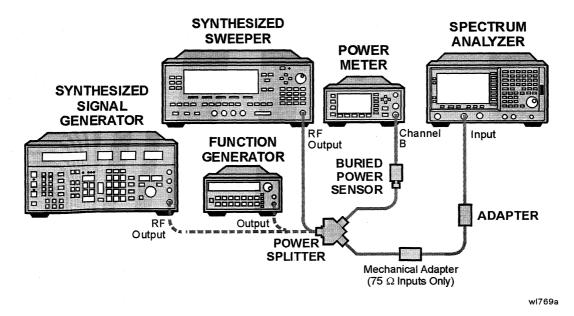
Splitter Tracking Error = Channel A Power – Channel B Power

For example, if Channel A Power is -10.05 dBm and Channel B Power is -10.23 dBm, the Splitter Tracking Error is +0.18 dB.

Performance Verification Tests

21. Frequency Response: HP E4401B and E4411B

Table 2-39Source/splitter characterization


Frequency	Power Met	er Reading	Splitter	Source Power
	Channel A	Channel B	Tracking Error	Setting
100 kHz ^a				
500 kHz ^a				
1 MHz				
5 MHz				anna an ann an Aonaichtean an Aonaichtean an Aonaichtean ann an Aonaichtean ann an Aonaichtean ann an Aonaichte
10 MHz				
20 MHz				
50 MHz				
75 MHz				
175 MHz				
275 MHz				
375 MHz				
475 MHz				
575 MHz				*****
675 MHz				
775 MHz				
875 MHz				
975 MHz				
1075 MHz				
1175 MHz				
1275 MHz				
1375 MHz				
1500 MHz				

a. These values do not apply to analyzers with 75 Ω inputs (Option 1DP).

Measuring Frequency Response, 100 kHz to 1.5 GHz

1. Remove the reference sensor (Channel A sensor) from the power splitter. Connect the power splitter to the analyzer Input 50 Ω using an adapter. Do not use a cable. Refer to Figure 2-24.

Figure 2-24 Frequency Response Test Setup, 100 kHz to 1.5 GHz

75 Ω inputs, Option 1DP: Connect the power splitter to the analyzer Input 75 Ω using a mechanical adapter and a 75 Ω , Type-N(m) to BNC(m) adapter.

2. Set the source frequency to 100 kHz:

75 Ω inputs, Option 1DP: Set the source frequency to 1 MHz.

- 3. Set the source AMPLITUDE to the value corresponding to the source power setting in Table 2-40 for the current source frequency (100 kHz or 1 MHz).
- 4. Preset the analyzer and wait for the preset routine to complete. Set the analyzer controls as follows:

FREQUENCY, Center Freq, 100 kHz ($50 \ \Omega \ Input$) FREQUENCY, Center Freq, 1 MHz ($75 \ \Omega \ Input$) CF Step, 100 MHz SPAN, 20 kHz AMPLITUDE, More, Int Preamp (Off) (*Option 1DS only*) AMPLITUDE, More, Y Axis Units (or Amptd Units), dBm AMPLITUDE, Ref Level, -5 dBm Attenuation, 10 dB (Man) Scale/Div, 1 dB BW/Avg, Resolution BW, 3 kHz (Man) Video BW, 3 kHz (Man) 21. Frequency Response: HP E4401B and E4411B

- 5. Adjust the source AMPLITUDE to obtain the Channel B power meter reading recorded in Table 2-39 ±0.1 dB.
- 6. Record the current Channel B power reading in Table 2-40 as the Current Channel B reading.
- 7. On the analyzer, press Single then Peak Search (or Search).
- 8. Record the Mkr1 amplitude reading in Table 2-40.
- 9. Set the source to the next frequency listed in Table 2-40.
- 10.Set the analyzer center frequency to the next frequency listed in Table 2-40.
- 11.Adjust the source AMPLITUDE to obtain the Channel B power meter reading recorded in Table 2-39 \pm 0.1 dB for the current frequency.
- 12.Record the current Channel B power meter reading in Table 2-40 as the Current Channel B Reading.
- 13.On the analyzer, press Single then Peak Search (or Search).
- 14.Record the Mkr1 amplitude reading in Table 2-40.
- 15.Repeat step 9 to step 14 for each frequency in Table 2-40.
- 16.Copy the splitter tracking errors from Table 2-39 into Table 2-40.
- 17.Calculate the Flatness Error for each frequency in Table 2-40 as follows:
- Flatness Error = Mkr1 Amptd Current Channel B Splitter Tracking Error

For example, if Mkr1 Amptd is -10.32 dBm, Current Channel B is -10.2 and Splitter Tracking Error is 0.18 dB, Flatness Error would be -0.30 dB.

18.Record the Flatness Error for 50 MHz below as the 50 MHz Ref Amptd:

50 MHz Ref Amptd _____

19.Calculate the Flatness Relative to 50 MHz for each frequency in Table 2-40 as follows:

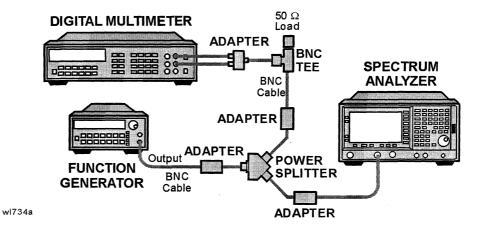
Flatness Relative to 50 MHz = Flatness Error – 50 MHz Ref Amptd

For example, if Flatness Error is -0.30 dB and 50 MHz Ref Amptd is +0.15 dB, Flatness Relative to 50 MHz would be -0.45 dB.

Frequency	Current Channel B Reading	Mkr1 Amptd	Splitter Tracking Error	Flatness Error	Flatness Relative to 50 MHz
100 kHz ^a					
500 kHz ^a					
1 MHz					
5 MHz					
10 MHz					· · ·
20 MHz					
50 MHz					
75 MHz					
$175 \mathrm{~MHz}$					
$275~\mathrm{MHz}$					
375 MHz		·			
475 MHz					
575 MHz					
675 MHz					
775 MHz					
875 MHz					
975 MHz					
1075 MHz					
1175 MHz		· · · · · · · · · · · · · · · · · · ·			
1275 MHz					
1375 MHz					
1500 MHz					

Table 2-40Frequency response worksheet, 100 kHz to 1.5 GHz

a. These values do not apply to analyzers with 75 Ω inputs (Option 1DP).


Performance Verification Tests 21. Frequency Response: HP E4401B and E4411B

Measuring Frequency Response, $\leq 100 \text{ kHz}$

If the analyzer has Option 1DP, skip to the Test Results section.

1. Connect the equipment as shown in Figure 2-25.

Figure 2-25 Frequency Response Test Setup, ≤ 100 kHz

2. Set the function generator controls as follows:

FREQUENCY, 100 kHz AMPLITUDE, -4 dBm

3. Set the DVM as follows:

Function	Synchronous AC Volts
Math	dBm
RES Register	50 Ω
Front/Rear Terminals	Front
Range	Auto

- 4. On the analyzer, press FREQUENCY, 100 kHz.
- 5. Adjust the function generator amplitude until the DVM reading is $-10 \text{ dBm} \pm 0.1 \text{ dB}.$
- 6. Record the actual DVM reading in Table 2-41 as the DVM amplitude reading.
- 7. On the analyzer, press Peak Search (or Search), Marker, Delta.
- 8. Set the analyzer center frequency to the next frequency listed in Table 2-41.

- 9. Set the function generator frequency to the next frequency listed in Table 2-41.
- 10. On the analyzer, press Peak Search (or Search).
- 11.Adjust the function generator amplitude until the $\Delta Mkr1$ amplitude reads 0 dB ±0.05 dB.
- 12.Record the DVM reading in Table 2-41 as the DVM amplitude reading.
- 13.Repeat step 8 through step 12 for each frequency in Table 2-41.
- 14.For each of the frequencies in Table 2-41, subtract the DVM amplitude from the DVM Amplitude at 100 kHz recorded in step 6. Record the result as the Response Relative to 100 kHz in Table 2-41.
- 15.From Table 2-40, note the flatness relative to 50 MHz for the 100 kHz frequency. Record this below as the 100 kHz error relative to 50 MHz:

100 kHz Error Relative to 50 MHz _____ dB

16.Add the 100 kHz error relative to 50 MHz that was recorded in step 15 above to each of the response relative to 100 kHz entries in Table 2-41. Record the results as the Response Relative to 50 MHz in Table 2-41.

Frequency	DVM Amplitude	Response Relative to 100 kHz	Response Relative to 50 MHz
100 kHz		0 dB (Ref)	
75 kHz			
50 kHz			
20 kHz			
9 kHz			

Table 2-41Frequency response worksheet, ≤ 100 kHz

Test Results

1. Enter the most positive number from the Flatness Relative to 50 MHz column of Table 2-40:

_____ dB

2. Enter the most positive number from the Response Relative to 50 MHz column of Table 2-41:

_____ dB

75 Ω inputs, Option 1DP: The frequency range below 100 kHz was not tested; no entry from Table 2-41 is necessary.

Performance Verification Tests

21. Frequency Response: HP E4401B and E4411B

- 3. Record the more positive of numbers from step 1 and step 2 in Table 2-42 as the maximum response for band 0.
- 4. Enter the most negative number from the flatness relative to 50 MHz column of Table 2-40:

____ dB

5. Enter the most negative number from the response relative to 50 MHz column of Table 2-41:

____ dB

75 Ω inputs, Option 1DP: The frequency range below 100 kHz was not tested; no entry from Table 2-41 is necessary.

- 6. Record the more negative of numbers from step 4 and step 5 in Table 2-42 as the minimum response for band 0.
- 7. Subtract the minimum response for band 0 from the maximum response for band 0 and record the result as the peak-to-peak response for band 0 in Table 2-42.

Table 2-42Frequency Response Results

Band	Maximum Response		Minimum Response		Peak-to-peak Response	
	dBm	TR Entry	dBm	TR Entry	dBm	TR Entry
0		1		2		3

22. Frequency Response, HP E4402B and E4403B

This test measures the amplitude error of the analyzer as a function of frequency. To measure frequencies of 100 kHz and above, the output of a source is fed through a power splitter to a power sensor and the analyzer. The power level of the source is adjusted at 50 MHz to place the displayed signal at the center horizontal graticule line of the analyzer. The power meter is then set to measure dB relative to the power at 50 MHz. At each new source frequency and analyzer center frequency, the power level of the source is adjusted to place the signal at the center horizontal graticule to place the signal at the center horizontal graticule to place the signal at the center horizontal graticule to place the signal at the center horizontal graticule to place the signal at the center horizontal graticule line. The power meter displays the inverse of the frequency response relative to 50 MHz.

To measure frequencies below 100 kHz, a DVM with a 50Ω load replaces the power sensor and a function generator is used as the source.

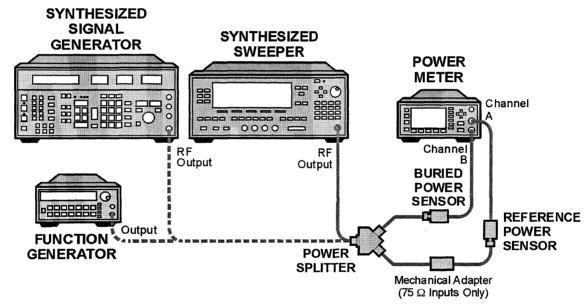
For improved amplitude accuracy below 3 GHz, the power splitter is characterized using a specially-calibrated power sensor (the "reference" sensor) connected to one power splitter output port. The other power splitter output port connects to the "buried" sensor; it is not removed from the power splitter. Once the characterization is done, the reference sensor is removed and replaced by the analyzer.

This procedure does not test frequency response with the optional preamplifier (Option 1DS) turned on. If the analyzer is equipped with Option 1DS, also perform the "Frequency Response, Preamp On" procedure.

The related adjustment for this performance test is "Frequency Response."

Equipment Required

Synthesized sweeper Function generator Power meter RF power sensor (2 required) RF Power splitter Digital multimeter Adapter, APC 3.5 (f) to APC 3.5 (f) Adapter, Type-N (m) to Type-N (m) Adapter, Type-N (m) to BNC (f) Dual banana plug to BNC (f) BNC Tee (BNC f,m,f) Performance Verification Tests 22. Frequency Response, HP E4402B and E4403B


Cable, BNC, 122-cm (48-in) (2 required) Cable, Type-N, 183-cm (72-in) Cable, APC 3.5 Termination, 50 Ω , BNC (m)

Procedure

Source/Splitter Characterization

1. Connect one of the HP 8482A power sensors to Channel A of the power meter. This will be the "reference" sensor. Connect the other HP 8482A power sensor to Channel B of the power meter. This will be the "buried" sensor. Refer to Figure 2-26.

Figure 2-26 Source/Splitter Characterization Setup

wl768a

- 2. Zero and calibrate both power sensors.
- 3. On the power meter, set the Channel A calibration factor to the calibration factor of the reference sensor for 100 kHz.
- 4. On the power meter, set the Channel B calibration factor to 100%. Do not change this calibration factor during this test.
- 5. Connect the equipment as shown in Figure 2-26. Use the function generator as the source.
- 6. Set the function generator frequency to 100 kHz and amplitude to -4 dBm.

- 7. Adjust the function generator amplitude to obtain a Channel A power meter reading of $-10 \text{ dBm} \pm 0.01 \text{ dB}$.
- 8. Record the function generator amplitude setting, and both the Channel A and Channel B power meter readings in Table 2-43.
- 9. Tune the source to the next frequency in Table 2-43.
- 10.On the power meter, set the Channel A calibration factor to the calibration factor of the reference sensor for the current source frequency.
- 11. Adjust the source amplitude to obtain a Channel A power meter reading of $-10~\rm dBm~\pm0.01~\rm dB.$
- 12.Record the source amplitude setting, and both the Channel A and Channel B power meter readings in Table 2-43.
- 13.Repeat step 9 to step 12 for frequencies up to 10 MHz.
- 14.Replace the function generator with the synthesized sweeper.
- 15. Set the synthesized sweeper CW frequency to 10 MHz and the amplitude to -4 dBm.
- 16.Adjust the synthesized sweeper power level to obtain a Channel A power meter reading of $-10 \text{ dBm} \pm 0.1 \text{ dB}$.
- 17.Record the synthesized sweeper power level and both the Channel A and Channel B power meter readings in Table 2-43.
- 18.Repeat step 9 to step 12 for each remaining frequency in Table 2-43.
- 19.For each entry in Table 2-43, calculate the Splitter Tracking Error as follows:

Splitter Tracking Error = Channel A Power – Channel B Power

For example, if Channel A Power is -10.05 dBm and Channel B Power is -10.23 dBm, the Splitter Tracking Error is +0.18 dB.

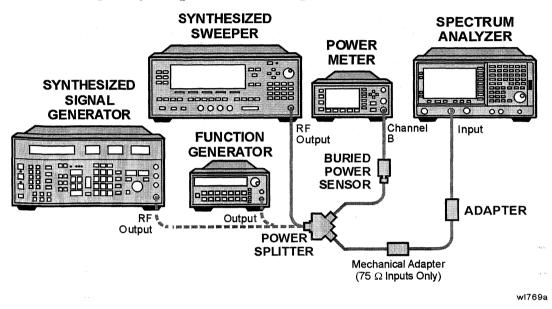
Table 2-43Source/Splitter Characterization

Frequency	Power Meter Reading		Splitter Tracking	Source Power
	Channel A	Channel B	Error	Setting
100 kHz				
500 kHz				
1 MHz				
5 MHz				
10 MHz ^a				

Performance Verification Tests 22. Frequency Response, HP E4402B and E4403B

Table 2-43 Source/Splitter Characterization

Frequency	Power Meter Reading		Splitter Tracking	Source
	Channel A	Channel B	Tracking Error	Power Setting
10 MHz ^b				
20 MHz				0 dB (Ref)
50 MHz				
75 MHz				
175 MHz				
275 MHz				
375 MHz				
475 MHz				
575 MHz				
675 MHz				
775 MHz				
875 MHz				
975 MHz				
1075 MHz				
1175 MHz				
1275 MHz				
1375 MHz		· · · · · · · · · · · · · · · · · · ·		
1500 MHz				
1525 MHz				
1725 MHz				
1925 MHz				
2125 MHz				
2325 MHz				
2525 MHz				
2725 MHz				
2925 MHz				
3000 MHz				


a. This entry is for data taken with function generator as source.

b. This entry is for data taken with synthesized sweeper as source.

Measuring Frequency Response, 100 kHz to 3.0 GHz

1. Remove the reference sensor (Channel A sensor) from the power splitter. Connect the power splitter to the INPUT 50Ω of the analyzer using an adapter. Do not use a cable. Refer to Figure 2-27.

- 2. Set the source frequency at 10 MHz.
- 3. Set the source POWER LEVEL to the value corresponding to the source power setting in Table 2-43 for the current source frequency (10 MHz).
- 4. Preset the analyzer and wait for the preset routine to complete. Set the analyzer controls as follows:

FREQUENCY, Center Freq, 10 MHz CF Step, 100 MHz SPAN, 20 kHz AMPLITUDE, More, Int Preamp, Off (*Option 1DS only*) AMPLITUDE, More, Y Axis Units (or Amptd Units), dBm AMPLITUDE, Ref Level, -5 dBm Attenuation, 10 dB (Man) Scale/Div, 1 dB BW/Avg, Resolution BW, 3 kHz (Man) Video BW, 3 kHz (Man)

- 5. Adjust the source POWER LEVEL to obtain the Channel B power meter reading recorded in Table 1 ±0.1 dB.
- 6. Record the current Channel B power reading in Table 2-44 as the Current Channel B Reading.

- 7. On the analyzer, press Single then Peak Search (or Search).
- 8. Record the Mkr1 amplitude reading in Table 2-44.
- 9. Set the source to the next frequency listed in Table 2-44.
- 10.Set the analyzer center frequency to the next frequency listed in Table 2-44.
- 11. Adjust the source POWER LEVEL to obtain the Channel B power meter reading recorded in Table 2-44 ± 0.1 dB for the current frequency.
- 12.Record the current Channel B power reading in Table 2-44 as the current Channel B reading.
- 13. On the analyzer, press Single then Peak Search (or Search).
- 14.Record the Mkr1 amplitude reading in Table 2-44.
- 15.Repeat step 9 to step 14 for frequencies up to 3.0 GHz in Table 2-44.
- 16.Replace the synthesized sweeper with a function generator.
- 17.Set the function generator amplitude to -4 dBm.

18.Set the function generator frequency to 100 kHz.

- 19.On the analyzer, press FREQUENCY, Center Freq, 100 kHz.
- 20.Adjust the function generator amplitude to obtain the Channel B power meter reading recorded in Table 2-43 \pm 0.1 dB for 100 kHz.
- 21.Record the current Channel B power reading in Table 2-44 as the current Channel B reading.
- 22. On the analyzer, press Single then Peak Search (or Search).
- 23.Record the analyzer Mkr1 Amplitude Reading in Table 2-44 as Mkr1 Amplitude.
- 24.Repeat step 18 to step 23 for frequencies between 100 kHz and 10 MHz.
- 25.Copy the Splitter Tracking Errors from Table 2-43 into Table 2-44.
- 26.Calculate the Flatness Error for each frequency in Table 2-44 as follows:

Flatness Error = Mkr1 Amptd – Current Channel B – Splitter Tracking Error

For example, if Mkr1 Amptd is -10.32 dBm, Current Channel B is -10.2 and Splitter Tracking Error is 0.18 dB, Flatness Error would be -0.30 dB.

27.Record the flatness error for 50 MHz below as the 50 MHz Ref Amptd:

50 MHz Ref Amptd: _____

- 28.Calculate the setup change error (error due to changing the test setup from using a synthesized sweeper to using a function generator) as follows:
 - a. Record the flatness error from Table 2-44 at 10 MHz using the function generator as $FlatError_{FG}$:

FlatError_{FG}=_____dB

b. Record the flatness error from Table 2-44 at 10 MHz using the synthesized sweeper as $FlatError_{SS}$:

FlatError_{SS}=_____ dB

c. Subtract $FlatError_{FG}$ from $FlatError_{SS}$ and record the result as the Setup Change Error:

Setup Change Error = $FlatError_{FG} - FlatError_{SS}$

Setup Change Error =_____ dB

29.For frequencies less than 10 MHz calculate the Flatness Relative to 50 MHz for each frequency in Table 2-44 as follows:

Flatness Relative to 50 MHz = Flatness Error – 50 MHz Ref Amptd – Setup Change Error

For example, if Flatness Error is -30.0 dB, 50 MHz Ref Amptd is +0.15 dB and Setup Change Error is -0.19 dB, Flatness Relative to 50 MHz would be -0.26 dB.

30.For frequencies 10 MHz and above, calculate the flatness relative to 50 MHz for each frequency in Table 2-44 as follows:

Flatness Relative to 50 MHz = Flatness Error – 50 MHz Ref Amptd

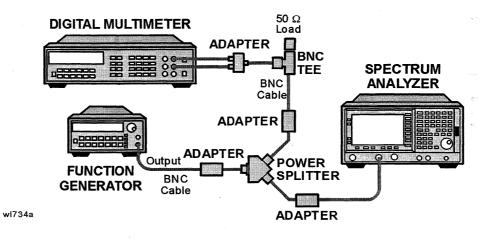
For example, if Flatness Error is -0.30 dB and 50 MHz Ref Amptd is +0.15 dB, Flatness Relative to 50 MHz would be -0.45 dB.

Frequency	Current Channel B Reading	Mkr1 Amptd	Splitter Tracking Error	Flatness Error	Flatness Relative to 50 MHz
100 kHz					-
500 kHz					
1 MHz					
5 MHz		الاتين منه المالي بين بالغان ويوادي مان المالي المالي المالي المالي المالي المالي المالي المالي الم			
10 MHz ^a					
10 MHz ^b				an a gang bahar ing pang bahar ng pang bahar da gang bahar ng Pang bahar ng Pang bahar ng Pang bahar ng Pang ba	
20 MHz		****			
50 MHz		· · · · · · · · · · · · · · · · · · ·			0 dB (Ref)
75 MHz					
175 MHz					
275 MHz		,			
375 MHz		, and a factor of the second secon			
475 MHz					
575 MHz					
675 MHz					
775 MHz		,			
875 MHz					
975 MHz					
1075 MHz					
1175 MHz					
1275 MHz					
1375 MHz					
1525 MHz					
1525 MHz					
1725 MHz					
1925 MHz					
2125 MHz					

Table 2-44Frequency Response Worksheet, 100 kHz to 3.0 GHz

Frequency	Current Channel B Reading	Mkr1 Amptd	Splitter Tracking Error	Flatness Error	Flatness Relative to 50 MHz
2325 MHz					
2525 MHz			· · · · · · · · · · · · · · · · · · ·		
2725 MHz					
2925 MHz					
3000 MHz					

Table 2-44Frequency Response Worksheet, 100 kHz to 3.0 GHz


a. This entry is for data taken with function generator as source.

b. This entry is for data taken with synthesized sweeper as source.

Measuring Frequency Response, ≤ 100 kHz

1. Connect the equipment as shown in Figure 2-28.

Figure 2-28 Frequency Response Test Setup, ≤ 100 kHz

2. Set the function generator controls as follows:

FREQUENCY, 100 kHz AMPLITUDE, -4 dBm Amptd Increment, 0.05 dB

3. Set the DVM as follows:

Function	Synchronous AC Volts	
Math	dBm	
RES Register	$50 \ \Omega$	

Performance Verification Tests

22. Frequency Response, HP E4402B and E4403B

Front/Rear Terminals	Front
Range	Auto

- 4. On the analyzer, press FREQUENCY, 100 kHz.
- 5. Adjust the function generator amplitude until the DVM reading is $-10 \text{ dBm} \pm 0.1 \text{ dB}.$
- 6. Record the actual DVM reading in Table 2-45 as the DVM Amplitude reading.
- 7. On the analyzer, press Peak Search (or Search), Marker, Delta.
- 8. Set the analyzer center frequency to the next frequency listed in Table 2-45.
- 9. Set the function generator frequency to the next frequency listed in Table 2-45.
- 10. On the analyzer, press Peak Search (or Search).
- 11.Adjust the function generator amplitude until the $\Delta Mkr1$ amplitude reads 0 dB ± 0.05 dB.
- 12.Record the DVM reading in Table 2-45 as the DVM Amplitude reading.
- 13.Repeat step 8 through step 12 for each frequency setting listed in Table 2-45.
- 14.For each of the frequencies in Table 2-45, subtract the DVM amplitude from the DVM amplitude at 100 kHz recorded in step 6. Record the result as the response relative to 100 kHz in Table 2-45.
- 15.From Table 2-44, note the flatness relative to 50 MHz for the 100 kHz frequency. Record this below as the 100 kHz Error Relative to 50 MHz:
 - 100 kHz Error Relative to 50 MHz =_____ dB
- 16.Add the 100 kHz error relative to 50 MHz that was recorded in step 15 above to each of the response relative to 100 kHz entries in Table 2-45. Record the results as the response relative to 50 MHz in Table 2-45.

Table 2-45Frequency Response Worksheet, ≤ 100 kHz

Frequency	DVM Amplitude	Response Relative to 100 kHz	Response Relative to 50 MHz
100 kHz		0 dB (Ref)	
75 kHz			
50 kHz			

Table 2-45	Frequency Response	e Worksheet, ≤ 100 kHz
-------------------	--------------------	------------------------

Frequency	DVM Amplitude	Response Relative to 100 kHz	Response Relative to 50 MHz
20 kHz			
9 kHz			

Test Results

Perform the following steps to verify the frequency response of the analyzer.

1. Enter the most positive number from the flatness relative to 50 MHz column of Table 2-44:

_____ dB

2. Enter the most positive number from the response relative to 50 MHz column of Table 2-45:

_____ dB

- 3. Record the more positive of numbers from step 1 and step 2 in Table 2-46 as the maximum response for band 0.
- 4. Enter the most negative number from the flatness relative to 50 MHz column of Table 2-44:

____ dB

5. Enter the most negative number from the response relative to 50 MHz column of Table 2-45:

____ dB

- 6. Record the most negative of numbers from step 4 and step 5 in Table 2-46 as the minimum response for band 0.
- 7. Subtract the minimum response for band 0 from the maximum response for band 0 and record the result as the peak-to-peak response for band 0 in Table 2-46.

Table 2-46	Frequency Response Results
-------------------	----------------------------

Band	Maximun	n Response	Minimum	Response	Peak-to-pea	k Response
	dBm	TR Entry	dBm	TR Entry	dBm	TR Entry
0		1		2		3

23. Frequency Response, HP E4404B, E4405B, E4407B and E4408B

This test measures the amplitude error of the analyzer as a function of frequency. To measure frequencies of 100 kHz and above, the output of a source is fed through a power splitter to a power sensor and the analyzer. The power level of the source is adjusted at 50 MHz to place the displayed signal at the center horizontal graticule line of the analyzer. The power meter is then set to measure dB relative to the power at 50 MHz. At each new source frequency and spectrum analyzer center frequency, the power level of the source is adjusted to place the signal at the center horizontal graticule line. The power meter displays the inverse of the frequency response relative to 50 MHz.

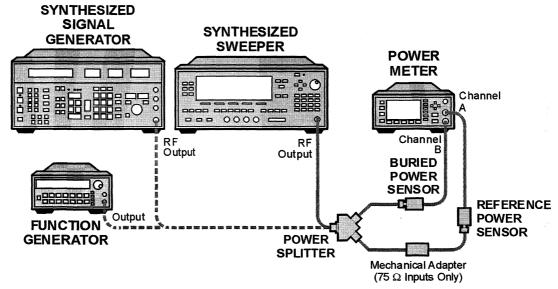
To measure frequencies below 100 kHz, a DVM with a 50Ω load replaces the power sensor and a function generator is used as the source.

For improved amplitude accuracy below 3 GHz, the power splitter is characterized using a specially-calibrated power sensor (the "reference" sensor) connected to one power splitter output port. The other power splitter output port connects to the "buried" sensor; it is not removed from the power splitter. Once the characterization is done, the reference sensor is removed and replaced by the analyzer.

This procedure does not test frequency response with the optional preamplifier (Option 1DS) turned on. If the analyzer is equipped with Option 1DS, also perform the "Frequency Response, Preamp On" procedure.

The related adjustment for this performance test is "Frequency Response."

Equipment Required


Synthesized sweeper Function generator Power meter RF Power sensor (2 required) Microwave power sensor Microwave power splitter Digital multimeter Adapter, APC 3.5 (f) to APC 3.5 (f) Adapter, Type-N (m) to Type-N (m) Adapter, Type-N (m) to BNC (f) Dual banana plug to BNC (f) BNC Tee (BNC f,m,f) Cable, BNC, 122-cm (48-in) (2 required) Cable, Type-N, 183-cm (72-in) Cable, APC 3.5 Termination, 50 Ω , BNC (m)

Procedure

Part 1: Source/splitter characterization

1. Connect the HP 8482A to Channel A of the power meter. This will be the "reference" sensor. Connect the other HP 8482A to Channel B of the power meter. This will be the "buried" sensor. Refer to Figure 2-29.

Figure 2-29 Source/splitter characterization setup

wl768a

- 2. Zero and calibrate both power sensors.
- 3. On the power meter, set the Channel A calibration factor to the calibration factor of the reference sensor for 100 kHz.
- 4. On the power meter, set the Channel B calibration factor to 100%. Do not change this calibration factor during this test.
- 5. Connect the equipment as shown in Figure 2-29. Use the function generator as the source.
- 6. Set the source frequency to 100 kHz and amplitude to -4 dBm.
- 7. Adjust the source amplitude to obtain a Channel A power meter reading of $-10 \text{ dBm} \pm 0.01 \text{ dB}$.
- 8. Record the source amplitude setting, and both the Channel A and Channel B power meter readings in Table 2-47.

23. Frequency Response, HP E4404B, E4405B, E4407B and E4408B

- 9. Tune the source to the next frequency in Table 2-47.
- 10.On the power meter, set the Channel A calibration factor to the calibration factor of the reference sensor for the current source frequency.
- 11. Adjust the source amplitude to obtain a Channel A power meter reading of $-10~\rm dBm~\pm0.01~\rm dB.$
- 12.Record the source amplitude setting, and both the Channel A and Channel B power meter readings in Table 2-47.
- 13.Repeat step 9 to step 12 for frequencies up to 10 MHz.
- 14.Replace the function generator with the synthesized sweeper.
- 15. Set the synthesized sweeper CW frequency to 10 MHz and the amplitude to -4 dBm.
- 16. Adjust the synthesized sweeper power level to obtain a Channel A power meter reading of $-10 \text{ dBm} \pm 0.1 \text{ dB}$.
- 17.Record the synthesized sweeper power level and both the Channel A and Channel B power meter readings in Table 2-47.
- 18.Repeat step 9 to step 12 for each remaining frequency in Table 2-47.
- 19.For each entry in Table 2-47, calculate the splitter tracking error as follows:

Splitter Tracking Error = Channel A Power – Channel B Power

For example, if Channel A Power is -10.05 dBm and Channel B Power is -10.23 dBm, the Splitter Tracking Error is +0.18 dB.

Table 2-47 Source/splitter characterization

Frequency	Power Meter Reading		Splitter Tracking	Source Power
	Channel A	Channel B	Error	Setting
100 kHz				
500 kHz				
1 MHz				
5 MHz				
10 MHz ^a				
$10~\mathrm{MHz^b}$				
20 MHz				
$50 \mathrm{~MHz}$				

Table 2-47	Source/splitter	characterization
	Sour conspired	citat actor induced

Frequency	Power Meter Reading		Splitter	Source
	Channel A	Channel B	Tracking Error	Power Setting
75 MHz				- <u> </u>
175 MHz				- <u></u>
275 MHz				
375 MHz				
475 MHz				
575 MHz				
675 MHz				
775 MHz				
875 MHz				
975 MHz	a - 1			
1075 MHz				·····
1175 MHz				
1275 MHz				
1375 MHz				, <u>an an a</u>
1500 MHz	· · · · · · · · · · · · · · · · · · ·			
1525 MHz				
1725 MHz				
1925 MHz				
2125 MHz				
2325 MHz				
2525 MHz				
2725 MHz				
2925 MHz				α, μ
3000 MHz				

a. This entry is for data taken with function generator as source.

b. This entry is for data taken with synthesized sweeper as source.

Measuring Frequency Response, 100 kHz to 3.0 GHz

1. Remove the reference sensor (Channel A sensor) from the power splitter. Connect the power splitter to the analyzer INPUT 50Ω using an adapter. Do not use a cable. Refer to Figure 2-30.

Figure 2-30 Frequency response test setup, 100 kHz to 3.0 GHz

- 2. Set the source frequency at 10 MHz.
- 3. Set the source POWER LEVEL to the value corresponding to the source power setting in Table 2-48 for the current source frequency (10 MHz).
- 4. Adjust the source POWER LEVEL to obtain the Channel B power meter reading recorded in Table 2-47 \pm 0.1 dB.
- 5. Adjust the synthesized signal generator amplitude for a marker amplitude reading of -14 dBm ± 0.10 dB.
- 6. Preset the analyzer and wait for the preset routine to complete. Set the analyzer controls as follows:

FREQUENCY, Center Freq, 10 MHz CF Step, 100 MHz SPAN, 20 kHz Input/Output (or Input), Coupling (DC) (*HP E4404B and E4405B*) AMPLITUDE, More, Int Preamp, (Off) (*Option 1DS only*) AMPLITUDE, Ref Level, -5 dBm Attenuation, 10 dB (Man) Scale/Div, 1 dB BW/Avg, Resolution BW, 3 kHz (Man) Video BW, 3 kHz (Man)

- 7. Record the current Channel B power reading in Table 2-48 as the current Channel B reading.
- 8. On the analyzer, press Single.
- 9. On the analyzer, press Peak Search (or Search).
- 10.Record the Mkr1 amplitude reading in Table 2-48.
- 11.Set the source to the next frequency listed in Table 2-48.
- 12.Set the analyzer center frequency to the next frequency listed in Table 2-48.
- 13. Adjust the source POWER LEVEL to obtain the Channel B power meter reading recorded in Table 2-47 \pm 0.1 dB for the current frequency.
- 14.Record the current Channel B power reading in Table 2-48 as the current Channel B reading.

15.On the analyzer, press Single then Peak Search (or Search).

16.Record the Mkr1 amplitude reading in Table 2-48.

17.Repeat step 9 to step 14 for each frequency in Table 2-48.

18.Replace the synthesized sweeper with a function generator.

- 19.Set the function generator amplitude to -4 dBm.
- 20.Set the function generator frequency to 100 kHz.
- 21.Set the analyzer center frequency to 100 kHz.
- 22.Adjust the function generator amplitude to obtain the Channel B power meter reading recorded in Table 2-47 \pm 0.1 dB for 100 kHz.
- 23.Record the current Channel B power reading in Table 2-48 as the current Channel B reading.
- 24.On the analyzer, press Single then Peak Search (or Search).
- 25.Record the analyzer Mkr1 Amplitude Reading in Table 2-48 as Mkr1 amplitude.
- 26.Repeat step 18 to step 23 for frequencies between 100 kHz and 10 MHz.
- 27.Copy the splitter tracking errors from Table 2-47 into Table 2-48.

28.Calculate the flatness error for each frequency in Table 2-48 as follows:

Flatness Error = Mkr1 Amptd – Current Channel B – Splitter Tracking Error

For example, if Mkr1 Amptd is -10.32 dBm, Current Channel B is -10.2 and Splitter Tracking Error is 0.18 dB, Flatness Error would be -0.30 dB.

Performance Verification Tests

23. Frequency Response, HP E4404B, E4405B, E4407B and E4408B

29.Record the flatness error for 50 MHz below as the 50 MHz Ref Amptd:

50 MHz Ref Amptd: _____

- 30.Calculate the setup change error (error due to changing the test setup from using a synthesized sweeper to using a function generator) as follows:
 - a. Record the flatness error from Table 2-48 at 10 MHz using the function generator as $FlatError_{FG}$:

FlatError_{FG}=_____dB

b. Record the flatness error from Table 2-48 at 10 MHz using the synthesized sweeper as $FlatError_{SS}$:

FlatError_{SS}=_____ dB

c. Subtract $FlatError_{FG}$ from $FlatError_{SS}$ and record the result as the setup change error:

Setup Change Error = FlatErrorFG – FlatErrorSS

Setup Change Error =_____ dB

31.Calculate the flatness relative to 50 MHz for each frequency in Table 2-48 as follows:

Flatness Relative to 50 MHz = Flatness Error – 50 MHz Ref Amptd – Setup Change Error

For example, if Flatness Error is -30.0 dB, 50 MHz Ref Amptd is +0.15 dB and Setup Change Error is -0.19 dB, Flatness Relative to 50 MHz would be -0.26 dB.

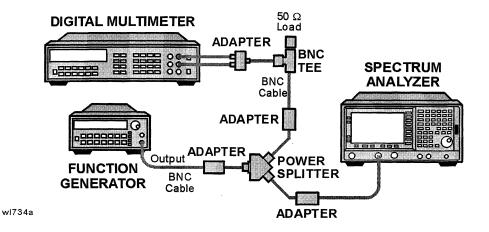
Table 2-48Frequency response worksheet, 100 kHz to 3.0 GHz

Frequency	Current Channel B Reading	Mkr1 Amptd	Splitter Tracking Error	Flatness Error	Flatness Relative to 50 MHz
100 kHz					
500 kHz					
1 MHz					
5 MHz					
10 MHz ^a					
10 MHz ^b					
20 MHz					

Frequency	Current Channel B Reading	Mkr1 Amptd	Splitter Tracking Error	Flatness Error	Flatness Relative to 50 MHz	
50 MHz		· · · · · · · · · · · · · · · · · · ·			0 dB (Ref)	
75 MHz						
175 MHz						
275 MHz					· · · · · · · · · · · · · · · · · · ·	
375 MHz						
475 MHz					· .	
575 MHz		· · · · · · · · · · · · · · · · · · ·				
675 MHz				· · · · · · · · · · · · · · · · · · ·		
775 MHz		······································				
875 MHz				· · · · · · · · · · · · · · · · · · ·		
975 MHz				· · · · · · · · · · · · · · · · · · ·		
1075 MHz						
1175 MHz				н,		
1275 MHz					*	
1375 MHz		·				
1525 MHz						
1525 MHz		adam Will Williamstein angelan in an an eine an de statistica en grier		,		
1725 MHz						
1925 MHz						
2125 MHz						
2325 MHz						
2525 MHz						
2725 MHz						
2925 MHz						
3000 MHz		· · · · · · · · · · · · · · · · · · ·				

Table 2-48Frequency response worksheet, 100 kHz to 3.0 GHz

a. This entry is for data taken with function generator as source.


b. This entry is for data taken with synthesized sweeper as source.

Performance Verification Tests 23. Frequency Response, HP E4404B, E4405B, E4407B and E4408B

Measuring Frequency Response, $\leq 100 \text{ kHz}$

1. Connect the equipment as shown in Figure 2-31.

Figure 2-31 Frequency Response Test Setup, ≤ 100 kHz

2. Set the frequency synthesizer controls as follows:

FREQUENCY, 100 kHz AMPLITUDE, -4 dBm Amptd Increment, 0.05 dB

3. Set the DVM as follows:

Function	Synchronous AC Volts
Math	dBm
RES Register	50 Ω
Front/Rear Terminals	Front
Range	Auto

4. On the analyzer, press the following keys:

FREQUENCY, 100 kHz

- 5. Adjust the function generator amplitude until the DVM reading is $-10 \text{ dBm } \pm 0.1 \text{ dB}.$
- 6. Record the actual DVM reading in Table 2-49 as the DVM amplitude reading.
- 7. On the analyzer, press Peak Search (or Search), Marker, Delta.
- 8. Set the analyzer center frequency to the next frequency listed in Table 2-49.

9. Set the function generator frequency to the next frequency listed in Table 2-49.

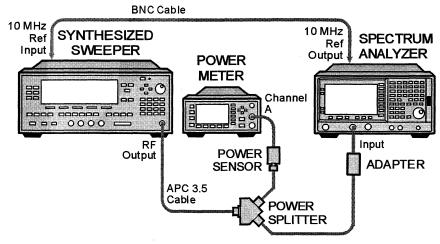
10.On the analyzer, press Peak Search (or Search).

- 11.Adjust the function generator amplitude until the $\Delta Mkr1$ amplitude reads 0 dB ±0.05 dB.
- 12.Record the DVM reading in Table 2-49 as the DVM amplitude reading.
- 13.Repeat step 8 through step 12 for each frequency setting listed in Table 2-49.
- 14.For each of the frequencies in Table 2-49, subtract the DVM amplitude from the DVM amplitude at 100 kHz (recorded in step 6). Record the result as the response relative to 100 kHz in Table 2-49.
- 15.From Table 2-48, note the flatness relative to 50 MHz for the 100 kHz frequency. Record this below as the 100 kHz error relative to 50 MHz:

100 kHz Error Relative to 50 MHz _____ dB

16.Add the 100 kHz error relative to 50 MHz that was recorded in step 15 above to each of the response relative to 100 kHz entries in Table 2-49. Record the results as the Response Relative to 50 MHz in Table 2-49.

Frequency	DVM Amplitude	Response Relative to 100 kHz	Response Relative to 50 MHz
100 kHz		0 dB (Ref)	
75 kHz			
50 kHz			
20 kHz			
9 kHz			


Table 2-49 Frequency response worksheet, ≤ 100 kHz

23. Frequency Response, HP E4404B, E4405B, E4407B and E4408B

Measuring Frequency Response, > 3 GHz

- 1. Replace the Channel B power sensor with the microwave power sensor. Zero and calibrate the power sensor and power meter in log mode. Enter the 50 MHz calibration factor of the power sensor into the power meter.
- 2. Connect the equipment as shown in Figure 2-32.

Figure 2-32 Frequency Response Test Setup, > 3 GHz

wi736a

- 3. On the analyzer, press FREQUENCY, 50 MHz, CF Step 200 MHz.
- 4. Set the synthesized sweeper CW frequency to 50 MHz and FREQ STEP to 200 MHz.
- 5. Adjust the synthesized sweeper POWER LEVEL for a power meter reading of $-10 \text{ dBm } \pm 0.05 \text{ dB}$.
- 6. On the analyzer, press Peak Search (or Search).
- 7. On the analyzer, press Marker, Delta.
- 8. Activate the dB relative mode on the power meter. Power meter readings will now read out relative to the power meter reading at 50 MHz.
- 9. Set the synthesized sweeper CW frequency to the next frequency listed in Table 2-50.
- 10.Enter the appropriate power sensor calibration factor into the power meter.
- 11.On the analyzer, press Peak Search (or Search), Amplitude, Presel Center.
- 12. Adjust the synthesized sweeper POWER LEVEL until the analyzer $\Delta Mkr1$ amplitude reading is 0 dB ± 0.05 dB.

- 13.Record the negative of the power meter reading in Table 2-50 as the Flatness Relative to 50 MHz.
- 14.Repeat step 9 to step 13 for frequencies up to 6.7 GHz in Table 2-50. On the analyzer, pressing **FREQUENCY**, \uparrow will allow you to step through most of the frequencies. Similarly, on the synthesized sweeper, pressing **CW**, \uparrow will allow you to step through most of the frequencies.

If using the HP E4404B, proceed to "Test Results".

15.Set the analyzer center frequency by manually pressing **FREQUENCY, CF Step, 400 MHz**.

16.Set the synthesized sweeper FREQ STEP to 400 MHz.

17.Repeat step 9 to step 13 for frequencies up to 13.2 GHz in Table 2-50.

If using the HP E4404B or HP E4405B, proceed to "Test Results".

18.Repeat step 9 to step 13 for the remaining frequencies in Table 2-50.

Table 2-50

Frequency response worksheet, > 3 GHz

Frequency, GHz	Flatness Relative to 50 MHz, dB
3.05 GHz	
3.1 GHz	
3.3 GHz	
3.5 GHz	
3.7 GHz	
3.9 GHz	
4.1 GHz	
4.3 GHz	
4.5 GHz	
4.7 GHz	
4.9 GHz	
5.1 GHz	
5.3 GHz	
$5.5~\mathrm{GHz}$	
5.7 GHz	
5.9 GHz	

23. Frequency Response, HP E4404B, E4405B, E4407B and E4408B

Table 2-50Frequency response worksheet, > 3 GHz

Frequency, GHz	Flatness Relative to 50 MHz, dB
6.1 GHz	
6.3 GHz	
6.5 GHz	
6.7 GHz	
End of proced	ure for E4404B
6.8 GHz	
7.0 GHz	
7.4 GHz	
7.8 GHz	
8.2 GHz	
8.6 GHz	
9.0 GHz	
9.4 GHz	
9.8 GHz	
10.2 GHz	
10.6 GHz	
11.0 GHz	
11.4 GHz	
11.8 GHz	
12.2 GHz	
12.6 GHz	
12.8 GHz	
13.2 GHz	
End of proced	ure for E4405B
13.3 GHz	
13.7 GHz	
14.1 GHz	
14.5 GHz	
14.9 GHz	

Frequency response worksheet, > 3 GHz

Frequency, GHz	Flatness Relative to 50 MHz, dB
15.3 GHz	
15.7 GHz	
16.1 GHz	
16.5 GHz	
16.9 GHz	
17.3 GHz	
17.7 GHz	
18.1 GHz	
18.5 GHz	
18.9 GHz	
19.3 GHz	
19.7 GHz	
20.1 GHz	
20.5 GHz	
20.9 GHz	
21.3 GHz	
21.7 GHz	
22.1 GHz	
$22.5~\mathrm{GHz}$	
22.9 GHz	
23.3 GHz	
23.7 GHz	
24.1 GHz	
24.5 GHz	
24.9 GHz	
25.1 GHz	

Performance Verification Tests

23. Frequency Response, HP E4404B, E4405B, E4407B and E4408B

Frequency response worksheet, > 3 GHz

Frequency, GHz	Flatness Relative to 50 MHz, dB
25.3 GHz	
25.7 GHz	
26.1 GHz	
26.5 GHz	

Test Results

Perform the following steps to verify the frequency response of the analyzer:

1. Enter the most positive number from the flatness relative to 50 MHz column of Table 2-48:

_____ dB

2. Enter the most positive number from the response relative to 50 MHz column of Table 2-49:

_____ dB

- 3. Record the more positive of numbers from step 1 and step 2 as the maximum response for band 0 in Table 2-51.
- 4. Enter the most negative number from the flatness relative to 50 MHz column of Table 2-48:

____ dB

5. Enter the most negative number from the response relative to 50 MHz column of Table 2-49:

_ dB

- 6. Record the more negative of numbers from step 4 and step 5 as the minimum response for band 0 in Table 2-51.
- 7. Subtract the minimum response for band 0 from the maximum response for band 0 and record the result as the peak-to-peak response to band 0 in Table 2-51.
- 8. Record the most positive number from the flatness relative to 50 MHz column of Table 2-50 for frequencies from 3.05 GHz to 6.7 GHz as the maximum response for band 1 in Table 2-51.
- 9. Record the most negative number from the flatness relative to 50 MHz column of Table 2-50 for frequencies from 3.05 GHz to 6.7 GHz as the maximum response for band 1 in Table 2-51.

10.Subtract the minimum response for band 1 from the maximum response for band 1 and record the result as the peak-to-peak response to band 1 in Table 2-51.

End of procedure for HP E4404B.

- 11.Record the most positive number from the flatness relative to 50 MHz column of Table 2-50 for frequencies from 6.8 GHz to 13.2 GHz as the maximum response for band 2 in Table 2-51.
- 12.Record the most negative number from the flatness relative to 50 MHz column of Table 2-50 for frequencies from 6.8 GHz to 13.2 GHz as the maximum response for band 2 in Table 2-51.
- 13.Subtract the minimum response for band 2 from the maximum response for band 2 and record the result as the peak-to-peak response to band 2 in Table 2-51.

End of procedure for HP E4405B.

- 14.Record the most positive number from the flatness relative to 50 MHz column of Table 2-50 for frequencies from 13.3 GHz to 24.9 GHz as the maximum response for band 3 in Table 2-51.
- 15.Record the most negative number from the flatness relative to 50 MHz column of Table 2-50 for frequencies from 13.3 GHz to 24.9 GHz as the maximum response for band 3 in Table 2-51.
- 16.Subtract the minimum response for band 3 from the maximum response for band 3 and record the result as the peak-to-peak response to band 3 in Table 2-51.
- 17.Record the most positive number from the flatness relative to 50 MHz column of Table 2-50 for frequencies from 25.1 GHz to 26.5 GHz as the maximum response for band 4 in Table 2-51.
- 18.Record the most negative number from the flatness relative to 50 MHz column of Table 2-50 for frequencies from 25.1 GHz to 26.5 GHz as the maximum response for band 4 in Table 2-51.
- 19.Subtract the minimum response for band 4 from the maximum response for band 4 and record the result as the peak-to-peak response to band 4 in Table 2-51.

Performance Verification Tests 23. Frequency Response, HP E4404B, E4405B, E4407B and E4408B

Band	Maximum Response		Minimum Response		Peak-to-peak Response	
	dBm	TR Entry	dBm	TR Entry	dBm	TR Entry
0		1		2		3
1		4		5		6
2		7		8		9
3		10		11		12
4		13		14		15

Table 2-51Frequency Response Results

24. Frequency Response (Preamp On): HP E4401B

This test measures the amplitude error of the spectrum analyzer as a function of frequency. The output of a source is fed through a power splitter to a power sensor and the spectrum analyzer. The power level of the source is adjusted at 50 MHz to place the displayed signal at approximately -32 dBm. At each new source frequency and spectrum analyzer center frequency, the power level of the source is adjusted to place the signal at approximately -32 dBm.

For improved amplitude accuracy the power splitter is characterized using a specially-calibrated power sensor (the "reference" sensor) connected to one power splitter output port. The other power splitter output port connects to the "buried" sensor; it is not removed from the power splitter. Once the characterization is done, the reference sensor is removed and replaced by the spectrum analyzer.

Spectrum analyzers with 75 Ω inputs are tested only down to 1 MHz.

This procedure only tests frequency response with the optional preamplifier (Option 1DS) turned on. Perform the "Frequency Response" procedure to test all other frequency response specifications.

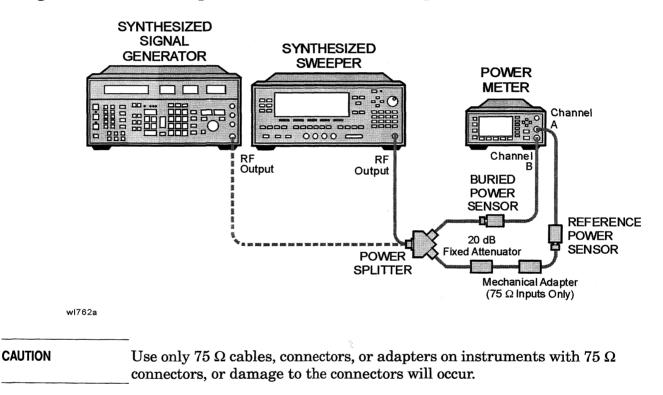
The related adjustment for this performance test is "Frequency Response."

Equipment Required

Synthesized signal generator Power meter RF power sensor (2 required for 50 Ω inputs) 20 dB fixed attenuator Power splitter Cable, Type-N (m), 183 cm Cable, BNC, 120 cm Adapter, Type-N (m) to Type-N (m) Adapter, Type-N (m) to BNC (f)

Additional Equipment for 75 Ω Input

Power sensor, 75 Ω Adapter, Type-N (m) 50 Ω to Type-N (f) 75 Ω , mechanical Adapter, Type-N (m) to BNC (m), 75 Ω Performance Verification Tests 24. Frequency Response (Preamp On): HP E4401B


Procedure

Source/Splitter Characterization

1. Connect one RF power sensor to Channel A of the power meter. This will be the "reference" sensor. Connect the other RF power sensor to Channel B of the power meter. This will be the "buried" sensor. Refer to Figure 2-33.

75 Ω inputs: Connect the 75 Ω power sensor to Channel A of the power meter. This will be the "reference" sensor.

Figure 2-33 Source/Splitter Characterization Setup

- 2. Zero and calibrate both power sensors.
- 3. On the power meter, set the Channel A calibration factor to the calibration factor of the reference sensor at 100 kHz.

75 Ω inputs: Set the Channel A calibration factor to the calibration factor of the reference sensor at 1 MHz.

- 4. On the power meter, seth the Channel B calibration factor to 100%. Do not change this calibration factor during this test.
- 5. Connect the equipment as shown in. Use the synthesized signal generator as the source. Note that the reference sensor connects to the 20 dB fixed attenuator.

75 Ω inputs: Connect the reference sensor to the power splitter using the mechanical adapter.

6. Set the source frequency to 100 kHz and amplitude to +6 dBm.

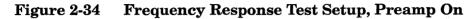
75 Ω inputs: Set the source frequency to 1 MHz and amplitude to +6 dBm.

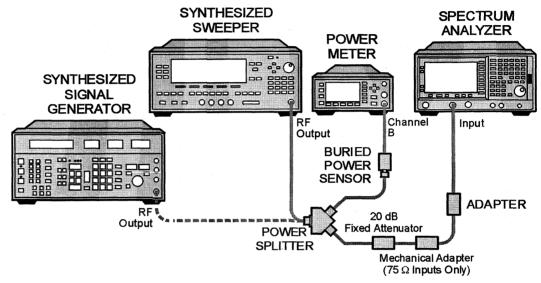
- 7. Adjust the source amplitude to obtain a Channel A power meter reading of -20 dBm ± 0.1 dB.
- 8. Record the Channel A and Channel B power meter readings in Table 2-52.
- 9. Tune the source to the next frequency in Table 2-52.
- 10.On the power meter, set the Channel A calibration factor to the calibration factor of the reference sensor for the current source frequency.
- 11. Adjust the source amplitude to obtain a Channel A power meter reading of $-20~\mathrm{dBm}~\pm0.1~\mathrm{dB}.$
- 12.Record the Channel A and Channel B power meter readings in Table 2-52.
- 13.Repeat step 9 to step 12 for each frequency in Table 2-52.
- 14.For each entry in Table 2-52, calculate the Splitter Tracking Error as follows:

Splitter Tracking Error = Channel A Power – Channel B Power

For example, if Channel A Power is -20.3 dBm and Channel B power is -0.23 dBm, the splitter tracking error is -20.07 dB.

Performance Verification Tests 24. Frequency Response (Preamp On): HP E4401B


Table 2-52Source/Splitter Characterization


Frequency	Power Met	Splitter		
	Channel A Channel B		Tracking Error	
100 kHz ^a				
500 kHz ^a				
1 MHz				
5 MHz				
10 MHz				
20 MHz				
50 MHz				
75 MHz				
175 MHz				
275 MHz				
375 MHz				
475 MHz				
575 MHz				
675 MHz				
$775~\mathrm{MHz}$				
875 MHz				
975 MHz				
1075 MHz				
1175 MHz				
1275 MHz				
1375 MHz				
1500 MHz				

a. These values do not apply to analyzers with 75 Ω inputs (Option 1DP).

Measuring Frequency Response, Preamp On

1. Remove the reference sensor (Channel A sensor) from the 20 dB fixed attenuator. Connect the 20 dB fixed attenuator to the analyzer INPUT 50 Ω using an adapter. Do not use a cable. Refer to Figure 2-34.

wl763a

75 Ω inputs: Connect the 20 dB fixed attenuator to the analyzer INPUT 75 Ω using a mechanical adapter and a 75 Ω , Type-N(m) to BNC(m) adapter.

2. Set the source frequency to 100 kHz:

75 Ω inputs: Set the source frequency to 1 MHz.

- 3. Set the source AMPLITUDE to -6 dBm.
- 4. Preset the analyzer and wait for the preset routine to complete. Set the analyzer controls as follows:

FREQUENCY, Center Freq, 100 kHz ($50 \ \Omega Input$) FREQUENCY, Center Freq, 1 MHz ($75 \ \Omega Input$) CF Step, 100 MHz SPAN, 20 kHz AMPLITUDE, More, Int Preamp (On) AMPLITUDE, More, Y Axis Units (or Amptd Units), dBm AMPLITUDE, Ref Level, -30 dBm Attenuation, 0 dB (Man) Scale/Div, 2 dB BW/Avg, Resolution BW, 3 kHz (Man) Video BW, 3 kHz (Man) 24. Frequency Response (Preamp On): HP E4401B

- 5. On the analyzer, press Peak Search (or Search).
- 6. Adjust the source AMPLITUDE to obtain a marker amplitude reading on the analyzer of $-32.00 \text{ dBm} \pm 0.2 \text{ dB}$.
- 7. Record the current Channel B power reading in Table 2-53 as the Current Channel B reading.
- 8. Record the Mkr1 amplitude reading in Table 2-53.
- 9. Set the source to the next frequency listed in Table 2-53.
- 10.Set the analyzer center frequency to the next frequency listed in Table 2-53.
- 11.On the analyzer, press Peak Search (or Search).
- 12. Adjust the source AMPLITUDE to obtain a marker amplitude reading on the analyzer of -32.00 dBm ± 0.2 dB.
- 13.Record the current Channel B power reading in Table 2-53 as the Current Channel B reading.
- 14.Record the Mkr1 amplitude reading in Table 2-53 as Mkr1 Amptd.
- 15.Repeat step 9 to step 14 for each frequency in Table 2-53.
- 16.Copy the splitter tracking errors from Table 2-52 into Table 2-53.
- 17.Calculate the Flatness Error for each frequency in Table 2-53 as follows:

Flatness Error = Mkr1 Amptd – Current Channel B – Splitter Tracking Error

For example, if Mkr1 Amptd is -33.32 dBm, Current Channel B is -12.4 dBm, and Splitter Tracking Error is -20.07 dB, Flatness Error would be -0.85 dB.

18.Record the Flatness Error for 50 MHz below as the 50 MHz Ref Amptd:

50 MHz Ref Amptd

19.Calculate the Flatness Relative to 50 MHz for each frequency in Table 2-53 as follows:

Flatness Relative to 50 MHz = Flatness Error - 50 MHz Ref Amptd

For example, if Flatness Error is -0.30 dB and 50 MHz Ref Amptd is +0.15 dB, Flatness Relative to 50 MHz would be -0.45 dB.

Frequency	Current Channel B Reading	Mkr1 Amptd	Splitter Tracking Error	Flatness Error	Flatness Relative to 50 MHz
100 kHz ^a		a dha ann an Anna an An			
500 kHz ^a					
1 MHz					
5 MHz					
10 MHz					
20 MHz					
50 MHz					0 dB (Ref)
75 MHz					
175 MHz					
275 MHz					
375 MHz					
475 MHz					
575 MHz					
675 MHz					
775 MHz					
875 MHz					
975 MHz					
1075 MHz					
$1175 \mathrm{MHz}$					
1275 MHz					
1375 MHz					
$1500 \ \mathrm{MHz}$					

Table 2-53Frequency Response Worksheet, Preamp On

a. These values do not apply to analyzers with 75 Ω inputs (Option 1DP).

Performance Verification Tests

24. Frequency Response (Preamp On): HP E4401B

Test Results

- 1. Record the most positive number from the Flatness Relative to 50 MHz column of Table 2-53 as the Maximum Response in Table 2-54 and as TR Entry 1 in the performance verification test record.
- 2. Record the most negative number from the Flatness Relative to 50 MHz column of Table 2-53 as the Minimum Response in Table 2-54 and as TR Entry 2 in the performance verification test record.
- 3. Subtract the Minimum Response value in Table 2-54 from the Maximum Response value in Table 2-54 and record the result as the Peak-to-Peak Response in Table 2-54 and as TR Entry 3 in the performance verification test record.

Table 2-54Frequency Response Results

Maximum	Response	Minimum Response		Peak-to-peak Response	
dBm	TR Entry	dBm	TR Entry	dBm	TR Entry
	1		2		3

25. Frequency Response (Preamp On): HP E4402B

This test measures the amplitude error of the spectrum analyzer as a function of frequency. The output of a source is fed through a power splitter to a power sensor and the spectrum analyzer. The power level of the source is adjusted at 50 MHz to place the displayed signal at approximately -32 dBm. At each new source frequency and spectrum analyzer center frequency, the power level of the source is adjusted to place the signal at approximately -32 dBm.

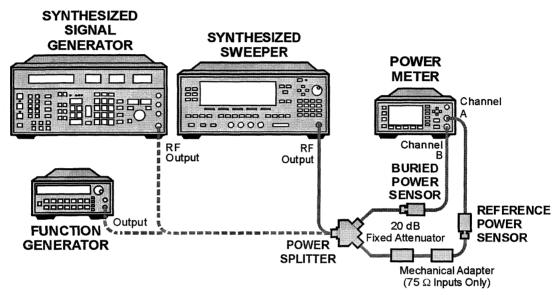
For improved amplitude accuracy the power splitter is characterized using a specially-calibrated power sensor (the "reference" sensor) connected to one power splitter output port. The other power splitter output port connects to the "buried" sensor; it is not removed from the power splitter. Once the characterization is done, the reference sensor is removed and replaced by the spectrum analyzer.

This procedure only tests frequency response with the optional preamplifier (Option 1DS) turned on. Perform the "Frequency Response" procedure to test all other frequency response specifications.

The related adjustment for this performance test is "Frequency Response."

Equipment Required

Function generator Synthesized sweeper Power meter RF power sensor (2 required) 20 dB fixed attenuator Power splitter Cable, Type-N (m), 183 cm Cable, BNC, 120 cm Adapter, Type-N (m) to Type-N (m) Adapter, Type-N (m) to BNC (f)


Procedure

Source/Splitter Characterization

- 1. Connect one RF power sensor to Channel A of the power meter. This will be the "reference" sensor. Connect the other RF power sensor to Channel B of the power meter. This will be the "buried" sensor.
- 2. Zero and calibrate both power sensors.

- 3. On the power meter, set the Channel A calibration factor to the calibration factor of the reference sensor at 1 MHz.
- 4. On the power meter, set the Channel B calibration factor to 100%. Do not change this calibration factor during this test.
- 5. Connect the equipment as shown in Figure 2-35. Use the function generator as the source. Note that the reference sensor connects to the 20 dB fixed attenuator.

wl731a

- 6. Set the function generator frequency to 1 MHz and amplitude to 450 mV rms (approximately +6 dBm).
- 7. Adjust the source amplitude to obtain a Channel A power meter reading of -20 dBm ± 0.1 dB.
- 8. Record the Channel A and Channel B power meter readings in Table 2-55.
- 9. Tune the source to the next frequency in Table 2-55.
- 10.On the power meter, set the Channel A calibration factor to the calibration factor of the reference sensor for the current source frequency.
- 11. Adjust the source amplitude to obtain a Channel A power meter reading of $-20~\rm dBm~\pm0.1~\rm dB.$
- 12.Record the Channel A and Channel B power meter readings in Table 2-55.
- 13.Repeat step 9 to step 12 for frequencies up to 10 MHz.

- 14.Replace the function generator with the synthesized sweeper.
- 15. Set the synthesized sweeper CW frequency to 10 MHz and the amplitude to +6 dBm.
- 16.Adjust the synthesized sweeper power level to obtain a Channel A power meter reading of $-20 \text{ dBm} \pm 0.1 \text{ dB}$.
- 17.Record the synthesized sweeper power level and both the Channel A and Channel B power meter readings in Table 2-55.
- 18.Repeat step 9 to step 12 for each remaining frequency in Table 2-55.
- 19.For each entry in Table 2-55, calculate the Splitter Tracking Error as follows:

Splitter Tracking Error = Channel A Power – Channel B Power

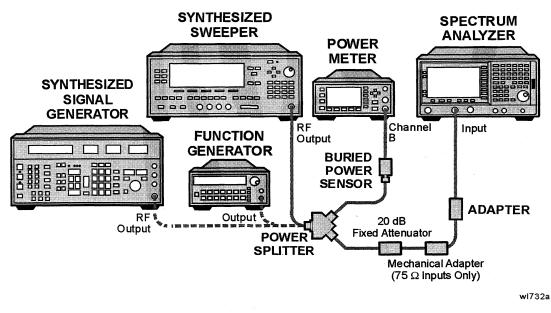
For example, if Channel A Power is -20.3 dBm and Channel B power is -0.23 dBm, the splitter tracking error is -20.07 dB.

 Table 2-55
 Source/Splitter Characterization

Frequency	Power Met	Splitter		
	Channel A	Channel B	Tracking Error	
1 MHz				
5 MHz				
10 MHz ^a				
10 MHz ^b				
20 MHz				
50 MHz				
75 MHz				
175 MHz				
275 MHz				
375 MHz				
475 MHz				
575 MHz				
675 MHz				
775 MHz				
875 MHz				
975 MHz				

Performance Verification Tests 25. Frequency Response (Preamp On): HP E4402B

Frequency	Power Met	Splitter	
	Channel A	Channel B	Tracking Error
1075 MHz			
1175 MHz			
1275 MHz			
1375 MHz			
1500 MHz			
1525 MHz			
1725 MHz			
1925 MHz			
21 25 MH z			
2325 MHz			
2525 MHz			an a ⁹ 1 an an 2 an an 2 an an an 2 an an an 2 an
2725 MHz			
2925 MHz			
3000 MHz			


a. This entry is for data taken with function generator as source.

b. This entry is for data taken with synthesized sweeper as source.

Measuring Frequency Response, Preamp On

- 1. Remove the reference sensor (Channel A sensor) from the 20 dB fixed attenuator. Connect the 20 dB fixed attenuator to the INPUT 50Ω of the analyzer using an adapter. Do not use a cable. Refer to Figure 2-36.
- 2. Set the source frequency at 10 MHz.
- 3. Set the source POWER LEVEL to -6 dBm.

4. Preset the analyzer and wait for the preset routine to complete. Set the analyzer controls as follows:

FREQUENCY, Center Freq, 10 MHz CF Step, 100 MHz SPAN, 20 kHz AMPLITUDE, More, Int Preamp, On AMPLITUDE, More, Y Axis Units (or Amptd Units), dBm AMPLITUDE, Ref Level, -30 dBm Attenuation, 0 dB (Man) Scale/Div, 2 dB BW/Avg, Resolution BW, 3 kHz (Man) Video BW, 3 kHz (Man)

- 5. On the analyzer, press **Peak Search (or Search)**.
- 6. Adjust the source POWER LEVEL to obtain a marker amplitude reading on the analyzer of $-32.00 \text{ dBm} \pm 0.2 \text{ dB}$.
- 7. Record the current Channel B power reading in Table 2-56 as the Current Channel B Reading.
- 8. Record the Mkr1 amplitude reading in Table 2-56.
- 9. Set the source to the next frequency listed in Table 2-56.
- 10.Set the analyzer center frequency to the next frequency listed in Table 2-56.
- 11. On the analyzer, press **Peak Search (or Search)**.
- 12.Adjust the source POWER LEVEL to obtain a marker amplitude reading on the analyzer of $-32.00 \text{ dBm} \pm 0.2 \text{ dB}$.

Performance Verification Tests

25. Frequency Response (Preamp On): HP E4402B

- 13.Record the current Channel B power reading in Table 2-56 as the current Channel B reading.
- 14.Record the Mkr1 amplitude reading in Table 2-56.
- 15.Repeat step 9 to step 14 for frequencies up to 3.0 GHz in Table 2-56.
- 16.Replace the synthesized sweeper with a function generator.
- 17.Set the function generator amplitude to 112 mV rms (-6 dBm or -12 dBm plus nominal power splitter insertion loss).
- 18.Set the function generator frequency to 1 MHz.
- 19.Set the analyzer center frequency to 1 MHz.
- 20. On the analyzer, press Peak Search (or Search).
- 21.Adjust the function generator amplitude to obtain a marker amplitude reading of $-32.00 \text{ dBm} \pm 0.2 \text{ dB}$.
- 22.Record the current Channel B power reading in Table 2-56 as the current Channel B reading.
- 23.Record the analyzer Mkr1 amplitude reading in Table 2-56 as Mkr1 amplitude.
- 24.Repeat step 18 to step 23 for frequencies between 100 kHz and 10 MHz.
- 25.Copy the Splitter Tracking Error values from Table 2-55 into Table 2-56.
- 26.Calculate the flatness error for each frequency in Table 2-56 as follows:

Flatness Error = Mkr1 Amptd – Current Channel B – Splitter Tracking Error

For example, if Mkr1 Amptd is -33.32 dBm, Current Channel B is -12.4 dBm, and Splitter Tracking Error is -20.07 dB, Flatness Error would be -0.85 dB.

27.Record the flatness error for 50 MHz below as the 50 MHz Ref Amptd:

50 MHz Ref Amptd: _____

- 28.Calculate the Setup Change Error (error due to changing the test setup from using a synthesized sweeper to using a function generator) as follows:
 - a. Record the Flatness Error from Table 2-56 at 10 MHz using the function generator as FlatError_{FG}:

FlatError_{FG}=_____dB

b. Record the Flatness Error from Table 2-56 at 10 MHz using the synthesized sweeper as FlatError_{SS}:

FlatError_{SS}=_____dB

c. Subtract $FlatError_{FG}$ from $FlatError_{SS}$ and record the result as the Setup Change Error:

Setup Change Error = $FlatError_{FG} - FlatError_{SS}$

Setup Change Error =_____ dB

29.For frequencies less than 10 MHz calculate the flatness relative to 50 MHz for each frequency in Table 2-56 as follows:

Flatness Relative to 50 MHz = Flatness Error – 50 MHz Ref Amptd – Setup Change Error

For example, if Flatness Error is -0.30 dB, 50 MHz Ref Amptd is +0.15 dB, and Setup Change Error is -0.19 dB, Flatness Relative to 50 MHz would be -0.26 dB.

30.For frequencies 10 MHz and above, calculate the flatness relative to 50 MHz for each frequency in Table 2-56 as follows:

Flatness Relative to 50 MHz = Flatness Error - 50 MHz Ref Amptd

For example, if Flatness Error is -0.30 dB and 50 MHz Ref Amptd is +0.15 dB, Flatness Relative to 50 MHz would be -0.45 dB.

Frequency	Current Channel B Reading	Mkr1 Amptd	Splitter Tracking Error	Flatness Error	Flatness Relative to 50 MHz
1 MHz					
5 MHz					
10 MHz ^a					
10 MHz ^b					
20 MHz					
50 MHz					0 dB (Ref)
75 MHz					
175 MHz					
275 MHz					
375 MHz					
475 MHz					
575 MHz					
675 MHz					
775 MHz					
875 MHz				· · · · · · · · · · · · · · · · · · ·	
975 MHz					
1075 MHz					
1175 MHz		······································			
1275 MHz				an a su a fha a su an	
1375 MHz					
1525 MHz		an Marina an an an Anna			
1525 MHz		A			
1725 MHz					
1925 MHz					
2125 MHz					
2325 MHz					
2525 MHz					

Table 2-56	Frequency	Response	Worksheet,	Preamp On
-------------------	-----------	----------	------------	-----------

Frequency	Current Channel B Reading	Mkr1 Amptd	Splitter Tracking Error	Flatness Error	Flatness Relative to 50 MHz
2725 MHz					
2925 MHz		· ·			
3000 MHz					

 Table 2-56
 Frequency Response Worksheet, Preamp On

a. This entry is for data taken with function generator as source.

b. This entry is for data taken with synthesized sweeper as source.

Test Results

- 1. Record the most positive number from the Flatness Relative to 50 MHz column of Table 2-56 as the Maximum Response in Table 2-57 and as TR Entry 1 in the performance verification test record.
- 2. Record the most negative number from the Flatness Relative to 50 MHz column of Table 2-56 as the Minimum Response in Table 2-57 and as TR Entry 2 in the performance verification test record.
- 3. Subtract the Minimum Response value in Table 2-57 from the Maximum Response value in Table 2-57 and record the result as the Peak-to-Peak Response in Table 2-57 and as TR Entry 3 in the performance verification test record.

Maximum	n Response	Minimum Response		Peak-to-peak Response	
dBm	TR Entry	dBm TR Entry		dBm	TR Entry
	1		2		3

26. Frequency Response (Preamp On): HP E4404B, E4405B, and E4407B

This test measures the amplitude error of the spectrum analyzer as a function of frequency. The output of a source is fed through a power splitter to a power sensor and the spectrum analyzer. The power level of the source is adjusted at 50 MHz to place the displayed signal at approximately -32 dBm. At each new source frequency and spectrum analyzer center frequency, the power level of the source is adjusted to place the signal at approximately -32 dBm.

For improved amplitude accuracy the power splitter is characterized using a specially-calibrated power sensor (the "reference" sensor) connected to one power splitter output port. The other power splitter output port connects to the "buried" sensor; it is not removed from the power splitter. Once the characterization is done, the reference sensor is removed and replaced by the spectrum analyzer.

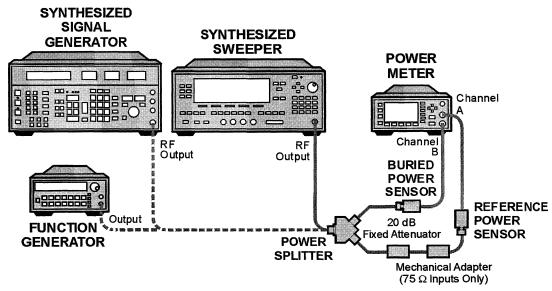
This procedure only tests frequency response with the optional preamplifier (Option 1DS) turned on. Perform the "Frequency Response" procedure to test all other frequency response specifications.

The related adjustment for this performance test is "Frequency Response."

Equipment Required

Function generator Synthesized sweeper Power meter RF power sensor (2 required) 20 dB fixed attenuator Power splitter Cable, Type-N (m), 183 cm Cable, BNC, 120 cm Adapter, Type-N (m) to Type-N (m) Adapter, Type-N (m) to BNC (f)

Additional Equipment for Option BAB


Adapter, Type-N (m) to APC 3.5 (f)

Procedure

Source/Splitter Characterization

- 1. Connect one RF power sensor to Channel A of the power meter. This will be the "reference" sensor. Connect the other RF power sensor to Channel B of the power meter. This will be the "buried" sensor.
- 2. Zero and calibrate both power sensors.
- 3. On the power meter, set the Channel A calibration factor to the calibration factor of the reference sensor at 1 MHz.
- 4. On the power meter, seth the Channel B calibration factor to 100%. Do not change this calibration factor during this test.
- 5. Connect the equipment as shown in Figure 2-37. Use the function generator as the source. Note that the reference sensor connects to the 20 dB fixed attenuator.

Figure 2-37 Source/Splitter Characterization Setup

w1731a

- 6. Set the function generator frequency to 1 MHz and amplitude to 446 mV rms (approximately +6 dBm).
- 7. Adjust the source amplitude to obtain a Channel A power meter reading of $-20 \text{ dBm } \pm 0.1 \text{ dB}$.
- 8. Record the Channel A and Channel B power meter readings in Table 2-58.
- 9. Tune the source to the next frequency in Table 2-58.

Performance Verification Tests 26. Frequency Response (Preamp On): HP E4404B, E4405B, and E4407B

- 10.On the power meter, set the Channel A calibration factor to the calibration factor of the reference sensor for the current source frequency.
- 11. Adjust the source amplitude to obtain a Channel A power meter reading of $-20~dBm~\pm0.1~dB.$
- 12.Record the Channel A and Channel B power meter readings in Table 2-58.
- 13.Repeat step 9 to step 12 for frequencies up to 10 MHz.
- 14.Replace the function generator with the synthesized sweeper.
- 15. Set the synthesized sweeper CW frequency to 10 MHz and the amplitude to +6 dBm.
- 16.Adjust the synthesized sweeper power level to obtain a Channel A power meter reading of $-20 \text{ dBm} \pm 0.1 \text{ dB}$.
- 17.Record the synthesized sweeper power level and both the Channel A and Channel B power meter readings in Table 2-58.
- 18.Repeat step 9 to step 12 for each remaining frequency in Table 2-58.
- 19.For each entry in Table 2-58, calculate the Splitter Tracking Error as follows:

Splitter Tracking Error = Channel A Power – Channel B Power

For example, if Channel A Power is -20.3 dBm and Channel B power is -0.23 dBm, the splitter tracking error is -20.07 dB.

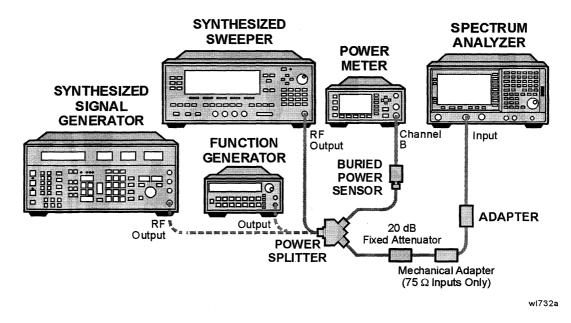
Table 2-58	Source/Splitter	Characterization
-------------------	-----------------	------------------

Frequency	Power Meter Reading		Splitter Tracking
	Channel A	Channel B	Tracking Error
1 MHz			
5 MHz			
10 MHz ^a			
10 MHz ^b			
20 MHz			
50 MHz			
75 MHz			
175 MHz			
275 MHz			

Frequency	Power Met	Splitter Tracking	
	Channel A	Channel B	Error
375 MHz			
475 MHz			
575 MHz			
675 MHz			
775 MHz			
875 MHz			
975 MHz			
1075 MHz			
1175 MHz	· · ·		
1275 MHz			
1375 MHz			
1500 MHz			
1525 MHz			
1725 MHz			
1925 MHz			
2125 MHz			
2325 MHz			
2525 MHz			
2725 MHz			
2925 MHz			
3000 MHz	-		

Table 2-58 Source/Splitter Characterization

a. This entry is for data taken with function generator as source.


b. This entry is for data taken with synthesized sweeper as source.

Performance Verification Tests 26. Frequency Response (Preamp On): HP E4404B, E4405B, and E4407B

Measuring Frequency Response, Preamp On

1. Remove the reference sensor (Channel A sensor) from the 20 dB fixed attenuator. Connect the 20 dB fixed attenuator to the INPUT 50Ω of the analyzer using an adapter. Do not use a cable. Refer to Figure 2-27.

Figure 2-38 Frequency Response Test Setup, Preamp On

- 2. Set the source frequency at 10 MHz.
- 3. Set the source POWER LEVEL to -6 dBm.
- 4. Preset the analyzer and wait for the preset routine to complete. Set the analyzer controls as follows:

FREQUENCY, Center Freq, 10 MHz CF Step, 100 MHz SPAN, 20 kHz Input/Output (or Input), Coupling, (DC) (*HP E4404B and E4405B*) AMPLITUDE, More, Int Preamp, On AMPLITUDE, More, Y Axis Units (or Amptd Units), dBm AMPLITUDE, Ref Level, -30 dBm Attenuation, 0 dB (Man) Scale/Div, 2 dB BW/Avg, Resolution BW, 3 kHz (Man) Video BW, 3 kHz (Man)

- 5. On the analyzer, press Peak Search (or Search).
- 6. Adjust the source POWER LEVEL to obtain a marker amplitude reading on the analyzer of -32.00 dBm ±0.2 dB.

- 7. Record the current Channel B power reading in Table 2-59 as the Current Channel B Reading.
- 8. Record the Mkr1 amplitude reading in Table 2-59.
- 9. Set the source to the next frequency listed in Table 2-59.
- 10.Set the analyzer center frequency to the next frequency listed in Table 2-59.
- 11. On the analyzer, press Peak Search (or Search).
- 12.Adjust the source POWER LEVEL to obtain a marker amplitude reading on the analyzer of $-32.00 \text{ dBm} \pm 0.2 \text{ dB}$.
- 13.Record the current Channel B power reading in Table 2-59 as the current Channel B reading.
- 14.Record the Mkr1 amplitude reading in Table 2-59.

15.Repeat step 9 to step 14 for frequencies up to 3.0 GHz in Table 2-59.

- 16.Replace the synthesized sweeper with a function generator.
- 17.Set the function generator amplitude to 112 mV rms (-6 dBm or -12 dBm plus nominal power splitter insertion loss).
- 18.Set the function generator frequency to 1 MHz.
- 19.Set the analyzer center frequency to 1 MHz.
- 20. On the analyzer, press Peak Search (or Search).
- 21.Adjust the function generator amplitude to obtain a marker amplitude reading of $-32.00 \text{ dBm} \pm 0.2 \text{ dB}$.
- 22.Record the current Channel B power reading in Table 2-59 as the current Channel B reading.
- 23.Record the analyzer Mkr1 amplitude reading in Table 2-59 as Mkr1 amplitude.
- 24.Repeat step 18 to step 23 for frequencies between 100 kHz and 10 MHz.
- 25.Copy the Splitter Tracking Error values from Table 2-58 into Table 2-59.
- 26.Calculate the flatness error for each frequency in Table 2-59 as follows:

Flatness Error = Mkr1 Amptd – Current Channel B – Splitter Tracking Error

For example, if Mkr1 Amptd is -33.32 dBm, Current Channel B is -12.4 dBm, and Splitter Tracking Error is -20.07 dB, Flatness Error would be -0.85 dB.

Performance Verification Tests

26. Frequency Response (Preamp On): HP E4404B, E4405B, and E4407B

27.Record the flatness error for 50 MHz below as the 50 MHz Ref Amptd:

50 MHz Ref Amptd: _____

- 28.Calculate the Setup Change Error (error due to changing the test setup from using a synthesized sweeper to using a function generator) as follows:
 - a. Record the Flatness Error from Table 2-59 at 10 MHz using the function generator as FlatError_{FG}:

FlatError_{FG}=____ dB

b. Record the Flatness Error from Table 2-59 at 10 MHz using the synthesized sweeper as FlatError_{SS}:

FlatError_{SS}=_____dB

c. Subtract $FlatError_{FG}$ from $FlatError_{SS}$ and record the result as the Setup Change Error:

Setup Change Error = $FlatError_{FG} - FlatError_{SS}$

Setup Change Error =_____ dB

29.For frequencies less than 10 MHz calculate the flatness relative to 50 MHz for each frequency in Table 2-59 as follows:

Flatness Relative to 50 MHz = Flatness Error – 50 MHz Ref Amptd – Setup Change Error

For example, if Flatness Error is -0.30 dB, 50 MHz Ref Amptd is +0.15 dB, and Setup Change Error is -0.19 dB, Flatness Relative to 50 MHz would be -0.26 dB.

30.For frequencies 10 MHz and above, calculate the flatness relative to 50 MHz for each frequency in Table 2-59 as follows:

Flatness Relative to 50 MHz = Flatness Error – 50 MHz Ref Amptd

For example, if Flatness Error is -0.30 dB and 50 MHz Ref Amptd is +0.15 dB, Flatness Relative to 50 MHz would be -0.45 dB.

Frequency	Current Channel B Reading	Mkr1 Amptd	Splitter Tracking Error	Flatness Error	Flatness Relative to 50 MHz
1 MHz					
5 MHz					
10 MHz ^a					
10 MHz ^b					
20 MHz					
50 MHz	· · ·				0 dB (Ref)
75 MHz					
175 MHz					
275 MHz					
375 MHz					
475 MHz					
575 MHz			· · · · ·		
675 MHz					
$775 \mathrm{MHz}$					
875 MHz		·····			
975 MHz					
$1075 \mathrm{~MHz}$					
$1175 \mathrm{~MHz}$				· · · ·	
1275 MHz		· · · <u>_ · · · · · · · · · · · · · · · ·</u>			
1375 MHz		, , , , , , , , , , , , , , , , , , ,		······································	
1525 MHz					· · · · · · · · · · · · · · · · · · ·
1525 MHz					
1725 MHz					
1925 MHz					
2125 MHz					
2325 MHz					
2525 MHz					

Table 2-59Frequency Response Worksheet, Preamp On

 Table 2-59
 Frequency Response Worksheet, Preamp On

Frequency	Current Channel B Reading	Mkr1 Amptd	Splitter Tracking Error	Flatness Error	Flatness Relative to 50 MHz
2725 MHz					
2925 MHz					
3000 MHz		· · · · · · · · · · · · · · · · · · ·			

a. This entry is for data taken with function generator as source.

b. This entry is for data taken with synthesized sweeper as source.

Test Results

- 1. Record the most positive number from the Flatness Relative to 50 MHz column of Table 2-59 as the Maximum Response in Table 2-60 and as TR Entry 1 in the performance verification test record.
- 2. Record the most negative number from the Flatness Relative to 50 MHz column of Table 2-59 as the Minimum Response in Table 2-60 and as TR Entry 2 in the performance verification test record.
- 3. Subtract the Minimum Response value in Table 2-60 from the Maximum Response value in Table 2-60 and record the result as the Peak-to-Peak Response in Table 2-60 and as TR Entry 3 in the performance verification test record.

Table 2-60Frequency Response Results

M	Maximum Response		Minimum Response		Peak-to-peak Response	
d	lBm	TR Entry	dBm	TR Entry	dBm	TR Entry
		1		2		3

27. Other Input-Related Spurious Responses: HP E4401B and E4411B

This test measures the ability of the analyzer to reject image and multiple responses. A synthesized source and the analyzer are set to the same frequency and the amplitude of the source is set to -20 dBm. A marker amplitude reference is set on the spectrum analyzer. The source is then tuned to several different frequencies which should generate image and multiple responses. At each source frequency, the source amplitude is set to -20 dBm and the amplitude of the response, if any, is measured using the spectrum analyzer marker functions.

There are no related adjustment procedures for this performance test.

Equipment Required

Synthesized signal generator Power meter RF power sensor Adapter, Type-N (f) to APC 3.5 (f) Adapter, Type-N (f) to Type-N (f) Cable, Type-N, 152-cm (60-in)

Additional Equipment for 75 Ω Input

Power sensor, 75 Ω Adapter, Type-N (f), to BNC (m), 75 Ω Adapter, BNC (m), to BNC (m), 75 Ω Pad, minimum loss

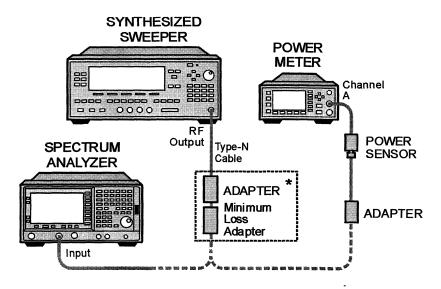
Procedure

1. Zero and calibrate the power meter and RF power sensor in log mode (power reads out in dBm), as described in the power meter operation manual. Enter the 500 MHz calibration factor of the power sensor into the power meter.

75 Ω Input only: Use a 75 Ω power sensor.

2. Press **Preset** on the synthesized sweeper and set the controls as follows:

CW, 542.8 MHz POWER LEVEL, -10 dBm


3. Connect the equipment as shown in Figure 2-39 with the output of the synthesized sweeper connected to the power sensor using an adapter between the cable and the power sensor.

27. Other Input-Related Spurious Responses: HP E4401B and E4411B

75 Ω Input only: Use the minimum loss pad and 75 Ω adapters to connect to the 75 Ω power sensor.

- 4. Adjust the power level of the synthesized sweeper for a -10 dBm ± 0.1 dB reading on the power meter.
- 5. On the synthesized sweeper, press SAVE, 1.

Figure 2-39 Other Input Related Spurious Responses Power Setting Setup

- 6. Set the CW frequency on the synthesized sweeper to 510.7 MHz.
- 7. Adjust the synthesized sweeper power level for a $-10 \text{ dBm} \pm 0.1 \text{ dB}$ reading on the power meter.
- 8. On the synthesized sweeper, press SAVE 2.
- 9. Enter the 1 GHz calibration factor for the power sensor into the power meter.
- 10.Set the CW frequency on the synthesized sweeper to 1310.7 MHz.
- 11. Adjust the synthesized sweeper power level for a $-10~\rm dBm~\pm0.1~\rm dB$ reading on the power meter.
- 12. On the synthesized sweeper, press SAVE 3.
- 13.Enter the 100 MHz calibration factor of the power sensor into the power meter.
- 14.Set the CW frequency of the synthesized sweeper to 100 MHz.
- 15. Adjust the synthesized sweeper power level for a $-10~dBm~\pm0.1~dB$ reading on the power meter.

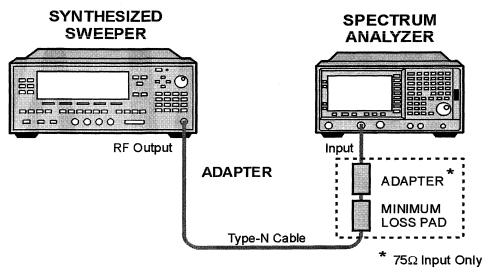
16.On the synthesized sweeper, press SAVE 4.

Table 2-61Other Input-Related Spurious ResponsesWorksheet

Synt	Synthesized Sweeper CW Frequency				
Save Register					
1	$542.8~\mathrm{MHz}^\mathrm{a}$	542.8 MHz	1		
2	$510.7~\mathrm{MHz^b}$	510.7 MHz	2		
3	1310.7 MHz ^b	1310.7 MHz	3		
4	100 MHz	1310.7 MHz	N/A		

a. Image response

b. Multiple response


17.Set the CW frequency on the synthesized sweeper to 500 MHz.

- 18.Adjust the power level of the synthesized sweeper for a -10 dBm ± 0.1 dB reading on the power meter.
- 19.Connect the synthesized sweeper to the Input of the analyzer using the appropriate cable and adapters. See Figure 2-40.

75 Ω Input only: Use the minimum loss pad and a 75 Ω adapter as shown in Figure 2-40.

Performance Verification Tests 27. Other Input-Related Spurious Responses: HP E4401B and E4411B

Figure 2-40 Other Input Related Spurious Responses Measurement Setup

wl78b

20.On the analyzer, press **Preset**, then wait for the preset routine to finish. Set the analyzer by pressing the following keys:

```
FREQUENCY, Center Freq, 500 MHz SPAN, 200 kHz AMPLITUDE, Attenuation, 10 dB (Man) Peak Search (or Search), Meas Tools, Mkr \rightarrow Ref LvI Peak Search (or Search), Meas Tools, Delta Single
```

- 21.On the synthesized sweeper, press RECALL, 1.
- 22.On the analyzer, press **Single** and wait for the completion of a new sweep.
- 23.0n the analyzer, press Peak Search (or Search), and record the $\Delta Mkr1$ amplitude in the performance verification test record as indicated in Table 2-61.
- 24.On the synthesized sweeper, press RECALL, 2.
- 25.On the analyzer, press **Single** and wait for the completion of a new sweep.
- 26.On the analyzer, press Peak Search (or Search), record the $\Delta Mkr1$ amplitude in the performance verification test record as indicated in Table 2-61.
- 27.On the synthesized sweeper, press RECALL, 4.
- 28.On the analyzer press the following keys:

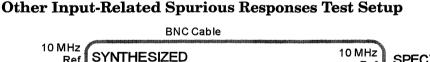
Performance Verification Tests

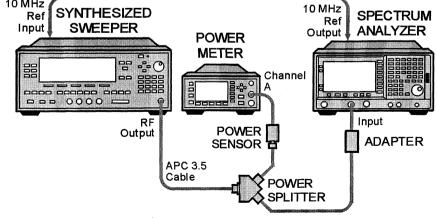
27. Other Input-Related Spurious Responses: HP E4401B and E4411B

FREQUENCY, 100 MHz AMPLITUDE, $-5 \text{ dBm} (50 \Omega Input)$ AMPLITUDE, $+48.75 \text{ dBmV} (75 \Omega Input)$ Marker, Normal Sweep, Sweep (Cont) Peak Search (or Search), Meas Tools, Mkr \rightarrow Ref Lvl Peak Search (or Search), Meas Tools, Delta Single

- 29.On the synthesized sweeper, press **RECALL 3** for a CW frequency of 1310.7 MHz.
- 30.Press **Single** on the analyzer and wait for a completion of a new sweep.
- 31.On the analyzer, press Peak Search (or Search) and record the $\Delta Mkr1$ amplitude in the performance test record as indicated in Table 2-61.

28. Other Input-Related Spurious Responses: HP E4402B, E4403B, E4404B, E4405B, E4407B, E4408B


This test measures the ability of the analyzer to reject image, multiple, and out-of-band responses. A synthesized source and the spectrum analyzer are set to the same frequency and the amplitude of the source is set to -10 dBm and -20 dBm. A marker amplitude reference is set on the spectrum analyzer for each source amplitude setting. The source is then tuned to several different frequencies which should generate image, multiple, and out-of-band responses. At each source frequency, the source amplitude is set to the appropriate amplitude and the amplitude of the response, if any, is measured using the spectrum analyzer marker functions.


There are no related adjustment procedures for this performance test.

Equipment Required

Synthesized sweeper Power meter RF power sensor, (*HP E4402B, E4403B*) Microwave power sensor (*HP E4404B, E4405B, E4407B, E4408B*) RF power splitter (*HP E4402B, E4403B*) Microwave power splitter (*HP E4404B, E4405B, E4407B, E4408B*) Adapter, Type-N (m) to Type-N (m) Adapter, Type-N (m) to APC 3.5 (m) Adapter, APC 3.5 (f) to APC 3.5 (f) Cable, APC 3.5, 91 cm (36 in)

Figure 2-41

wl736a

Procedure

Band 0

- 1. Zero and calibrate the power meter and power sensor in log mode (power reads out in dBm), as described in the power meter operation manual. Enter the power sensor 2 GHz calibration factor into the power meter.
- 2. Preset the synthesized sweeper and set the controls as follows:

CW, 2000 MHz POWER LEVEL, -4 dBm

- 3. Connect the equipment as shown in Figure 2-41. The analyzer provides the 10 MHz reference for the synthesized sweeper.
- 4. Press **Preset** on the analyzer, and wait for the preset routine to finish. Then, set the analyzer by pressing the following keys:

FREQUENCY, Center Freq, 2 GHz SPAN, 200 kHz AMPLITUDE, Ref Level –10 dBm AMPLITUDE, Attenuation 0 dBm (Man)

- 5. Adjust the synthesized sweeper power level for a $-10 \text{ dBm} \pm 0.1 \text{ dB}$ reading on the power meter.
- 6. On the analyzer, press **Single**, and wait for the sweep to finish. Then press following keys:

```
Marker, Select Marker (1)
Peak Search (or Search)
Meas Tools
Delta
```

The signal peak might be slightly above the reference level, but the marker function can still make an accurate measurement.

- 7. Adjust the synthesized sweeper power level for a $-20~dBm~\pm0.1~dB$ reading on the power meter.
- 8. On the analyzer, press **Single**, and wait for the sweep to finish. Press following keys:

```
Marker, Select Marker (2)
Peak Search (or Search)
Meas Tools
Delta
```

- 9. On the analyzer, press AMPLITUDE, Ref Level, -30 dBm.
- 10.Repeat step a through step h using the data in Table 2-62 for Band 0.
 - a. Set the synthesized sweeper to the listed CW frequency.

Performance Verification Tests

28. Other Input-Related Spurious Responses: HP E4402B, E4403B, E4404B, E4405B, E4407B, E4408B

Do not set the synthesized sweeper to frequencies outside the frequency range of the analyzer.

- b. Enter the appropriate power sensor calibration factor into the power meter.
- c. Adjust the synthesized sweeper power level until the power meter reading is equal to the Mixer Level in Table 2-62, ± 0.1 dB.
- d. On the analyzer, press **Single** and wait for the completion of a new sweep. Then, press **Peak Search (or Search)**.
- e. If the Mixer Level in Table 2-62 is -20 dBm, press Marker, Select Marker (2).
- f. If the Mixer Level in Table 2-62 is -10 dBm, press Marker, Select Marker (1).
- g. On the analyzer, press Peak Search (or Search).
- h. Record the ΔMkr amplitude reading in Table 2-62.
- 11.On the analyzer, press the following keys:

Marker, More, Marker All Off Auto Couple SPAN, 1 MHz AMPLITUDE, Ref Level, -10 dBm AMPLITUDE, Attenuation, 0 dB Sweep, Sweep, (Cont)

NOTE End of procedure for HP E4402B and E4403B

Band 1

12.On the spectrum analyzer, press the following keys:

FREQUENCY Center Freq, 4 GHz

13.On the synthesized sweeper, press CW, 4 GHz.

- 14.Enter the power sensor 4 GHz calibration factor into the power meter.
- 15.On the analyzer, press AMPLITUDE, Presel Center.
- 16.On the analyzer, press the following keys:

Marker, More, Marker All Off

17.Repeat step 5 through step 11 for the synthesized sweeper CW frequencies listed in Table 2-62 for Band 1.

End of procedure for HP E4404B

NOTE

Band 2

18.On the spectrum analyzer, press the following keys:

FREQUENCY, Center Freq, 9 GHz

- 19.On the synthesized sweeper, press CW, 9 GHz.
- 20.Enter the power sensor 9 GHz calibration factor into the power meter.
- 21.On the analyzer press AMPLITUDE, Presel Center.
- 22.On the analyzer press the following keys:

Marker, More, Marker All Off

23.Repeat step 5 through step 11 for the synthesized sweeper CW frequencies listed in Table 2-62 for Band 2.

End of procedure for HP E4405B.

Band 3

NOTE

24.On the spectrum analyzer, press the following keys:

FREQUENCY Center Freq, 15 GHz

25.On the synthesized sweeper, press: CW, 15 GHz.

- 26.Enter the power sensor 15 GHz calibration factor into the power meter.
- 27.On the analyzer press: AMPLITUDE, Presel Center.
- 28.On the analyzer press the following keys:

Marker, More, Marker All Off

29.Repeat step 5 through step 11 for the synthesized sweeper CW frequencies listed in Table 2-62 for Band 3 for the 15 GHz spectrum analyzer center frequency.

Band 4

30.On the spectrum analyzer, press:

FREQUENCY, Center Freq, 21 GHz

- 31.On the synthesized sweeper, press: CW, 21 GHz.
- 32.Enter the power sensor 21 GHz calibration factor into the power meter.
- 33.On the analyzer, press AMPLITUDE, Presel Center.

Performance Verification Tests

28. Other Input-Related Spurious Responses: HP E4402B, E4403B, E4404B, E4405B, E4407B, E4408B

34.On the analyzer, press the following:

Marker, More, Marker All Off

35.Repeat step 5 through step 11 for the synthesized sweeper CW frequencies listed in Table 2-62 for Band 4 for the 21 GHz spectrum analyzer center frequency.

Table 2-62	Other Input-Related Spurious Responses
-------------------	--

Band	Spectrum Analyzer Center Frequency, (GHz)	Synthesized Sweeper CW Frequency, (MHz)	Mixer Level, (dBm)	∆Mkr1 or ∆Mkr2 Amplitude
0	2.0	2042.8 ^a	-20	
	2.0	2642.8 ^a	-20	
	2.0	1820.8 ^b	-20	
	2.0	278.5°	-20	

Note: The following data applies only to the HP E4404B, E4405B, E4407B and E4408B

0	2.0	5600.0 ^c	-10	
	2.0	6242.8 ^b	-10	
1	4.0	4042.8 ^a	-20	
	4.0	4642.8 ^a	-20	
	4.0	3742.9 ^b	-20	
	4.0	2242.8 ^c	-10	

Note: The following data applies only to the HP E4405B, E4407B and E4408B

2	9.0	9042.8ª	-20	
	9.0	964 2.8 ^a	-20	
	9.0	4982.1 ^b	-20	
	9.0	9342.8°	-10	

Note: The following data applies only to the HP E4407B and E4408B

3	15.0	15042.8ª	-20	
	15.0	15642.8 ^a	-20	

28. Other Input-Related Spurious Responses: HP E4402B, E4403B, E4404B, E4405B, E4407B, E4408B

Band	Spectrum Analyzer Center Frequency, (GHz)	Synthesized Sweeper CW Frequency, (MHz)	Mixer Level, (dBm)	∆Mkr1 or ∆Mkr2 Amplitude
	15.0	18830.35 ^b	-20	
	15.0	4151.75 ^c	-10	
4	21.0	21042.8 ^a	-20	
	21.0	21642.8 ^a	-20	
	21.0	21342.8 ^b	-20	
	21.0	5008.95 ^c	-10	

Table 2-62	Other Input-Related Spurious Responses
	other input netwee spurious nesponses

a. Image response

b. Multiple response

c. Out-of-band response

29. Spurious Responses: HP E4401B and E4411B

This test is performed in two parts. Part 1 measures third order intermodulation distortion; Part 2 measures second harmonic distortion.

To test second harmonic distortion, a low pass filter is used to filter the source output, ensuring that harmonics read by the spectrum analyzer are internally generated and not coming from the source. To measure the distortion products, the power at the mixer is set 25 dB higher than specified.

For example, the specification states that with -40 dBm at the input mixer, the distortion products should be suppressed by >75 dBc, the equivalent second harmonic intercept (SHI) is > +35 dBm (-40 dBm + 75 dBc). Measuring with -15 dBm at the mixer and verifying the distortion products suppressed by >50 dBc also ensures the SHI is > +35 dBm (-15 dBm + 50 dBc).

For third order intermodulation distortion, two signals are combined in a directional bridge to provide isolation. These two signals are applied to the spectrum analyzer input. The power level of the two signals is several dB higher than specified, so the distortion products should be suppressed by less than the amount specified. In this manner, the equivalent third order intercept (TOI) is measured.

For example, the specification states that with two -30 dBm signals at the input mixer, the distortion products should be suppressed by >80 dBc, which yields a third order intercept of > 10 dBm (-30 dBm + (80 dBc/2)). Measuring with -20 dBm at the mixer and verifying the distortion products are suppressed by >60 dBc, the equivalent TOI is also > 10 dBm (-20 dBm + (60 dBc/2)).

There are no related adjustment procedures for this performance test.

Equipment Required

Synthesized signal generator Synthesized sweeper Power meter, dual channel RF power sensor Power splitter Directional bridge 50 MHz low pass filter Cable, BNC, 120-cm Cable, APC 3.5, 91-cm (2 required) Adapter, Type-N (m) to APC 3.5 (f) (3 required) Adapter, Type-N (m) to SMA (m) Adapter, Type-N (m) to BNC (f) Adapter, Type-N (m) to Type-N (m) Adapter, SMA (f) to BNC (m) Adapter, APC 3.5 (f) to APC 3.5 (f)

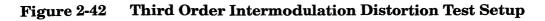
Additional Equipment for 75 Ω Input

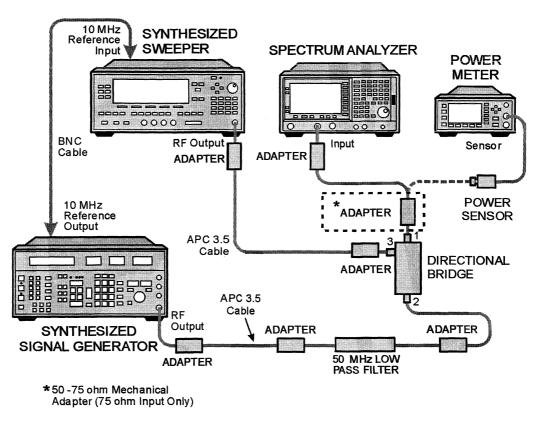
Power sensor, 75 Ω Adapter, mechanical, Type-N (m) 50 Ω , to Type-N (m), 75 Ω Adapter, Type-N (m), to BNC (m), 75 Ω

Procedure

This performance test consists of two parts:

Part 1: Third Order Intermodulation Distortion


Part 2: Second Harmonic Distortion


Perform Part 1 before Part 2.

Part 1: Third Order Intermodulation Distortion

1. Zero and calibrate the power meter and RF power sensor in log mode (power reads out in dBm), as described in the power meter operation manual.

75 Ω Input only: Use a 75 Ω power sensor.

wl753a

CAUTIONUse only 75 Ω cables, connectors, or adapters on instruments with 75 Ω
connectors, or damage to the connectors will occur.

2. Connect the equipment as shown in Figure 2-42 with the output of the directional bridge connected to the power sensor.

75 Ω Input only: Use the 75 Ω power sensor with the 50 Ω to 75 Ω mechanical adapter.

Table 2-63Test Equipment Settings for

TOI Test	F1, MHz	F2, MHz	Low Pass Filter, MHz
1	50.0	50.05	50
Option 1DR	50.0	50.05	50

3. Perform step 4 through step 29 using the information and entries from Table 2-63. Then continue on with step 30 through step 38.

- 4. Press **Blue Key**, **Special**, **0**, **0** on the signal generator. Set the frequency to the F1 value for TOI Test 1 in Table 2-63. Set the amplitude to -10 dBm.
- 5. Press **PRESET** on the synthesized sweeper. Set the CW frequency of the synthesized sweeper to the F2 value for TOI Test 1 in Table 2-63. Then press the following:

POWER LEVEL, +4 dBm RF Off

- 6. Enter the power sensor calibration factor for the signal generator frequency into the power meter.
- 7. Adjust the amplitude of the signal generator until the power meter reads $-12 \text{ dBm } \pm 0.1 \text{ dB}$.

75 Ω Input only: The power measured at the output of the 50 Ω directional bridge by the 75 Ω power sensor is the equivalent power "seen" by the 75 Ω analyzer.

8. Disconnect the power sensor from the directional bridge. Connect the directional bridge directly to the analyzer input using an adapter (do not use a cable).

75 Ω Input only: Use a 50 Ω to 75 Ω mechanical adapter and a 75 Ω Type-N(m) to BNC(m) adapter.

Support the directional bridge and low pass filter to minimize stress on the analyzer input connector.

9. On the analyzer, press **Preset**, then wait until the preset routine is finished. Press **System, Alignments, Auto Align, Off.** Set the analyzer center frequency to the F1 value for TOI Test 1 in Table 2-63. Then, set up the analyzer by pressing the following keys:

FREQUENCY, CF Step, 50 kHz (Man) SPAN, 20 kHz AMPLITUDE, More, Y Axis Units (or Amptd Units), dBm AMPLITUDE, Ref Level, -5 dBm ($50 \Omega Input only$) AMPLITUDE, Ref Level, -10 dBm ($75 \Omega Input only$) AMPLITUDE, Attenuation, 5 dB (Man) ($50 \Omega Input only$) AMPLITUDE, Attenuation, 0 dB(Man) ($75 \Omega Input only$) BW/Avg, 1 kHz (Man) BW/Avg, Video BW, 300 Hz (Man) Peak Search (or Search), More, Search Param, Peak Excursn, 3 dB

10.On the analyzer, press the following keys:

Peak Search (or Search) Meas Tools Mkr \rightarrow CF Delta

CAUTION

29. Spurious Responses: HP E4401B and E4411B

- 11.0n the analyzer, press **FREQUENCY**, \uparrow .
- 12.If the resolution bandwidth is \geq 1kHz, press SPAN, 4 kHz.
- 13.On the synthesized sweeper, set the RF On.
- 14. On the analyzer, press Peak Search (or Search).
- 15.On the synthesized sweeper, adjust the power level until the $\Delta Mkr1$ amplitude reads 0 dB ± 0.05 dB.
- 16.On the analyzer, press: **FREQUENCY**, \downarrow , \downarrow . The center frequency should now be lower than the signal generator frequency by the CF Step value.
- 17.Set the spectrum analyzer reference level to -15 dBm.

75 Ω Input only: Set the reference level to -20 dBm.

- 18.On the analyzer, press BW/Avg, Average, 20, and wait for "Vavg 20" to appear along the left side of the display.
- 19.On the analyzer, press: **Peak Search (or Search)** and record the marker amplitude reading in Table 2-64 as the Lower Distortion Amplitude.
- 20.On the analyzer, press BW/Avg, Average Off.
- 21.On the spectrum analyzer, increment the center frequency by three times the CF Step value. Press **FREQUENCY**, \uparrow , \uparrow , \uparrow . The center frequency should now be one CF Step value above the synthesized sweeper frequency.
- 22. Set the synthesized signal generator frequency to F2 as indicated in Table 2-63.
- 23.Set the synthesized sweeper CW frequency to F1 as indicated in Table 2-63.
- 24.On the analyzer, press BW/Avg, Average, 20, and wait for Vavg 20 to appear along the left side of the display.
- 25.On the analyzer, press **Peak Search (or Search)** and record the marker amplitude reading in Table 2-64 as the Upper Distortion Amplitude.
- 26.On the analyzer, press BW/Avg, Average Off.
- 27.Of the Lower Distortion Amplitude and Upper Distortion Amplitudes recorded in Table 2-64, enter the most positive value as the Worst Distortion Amplitude in Table 2-64. For example, if the Upper Distortion Amplitude is -62 dBc and the Lower Distortion Amplitude is -63 dBc, enter -62 dBc as the Worst Distortion Amplitude.

- 28.If the analyzer has a 50 Ω input, enter -17 dBm as the Mixer Level in Table 2-64 (-12 dBm input power - 5 dB input attenuation). If the analyzer has a 75 Ω input, enter +36.75 dBmV as the Mixer Level in Table 2-64 (-12 dBm = +36.75 dBmV).
- 29.Calculate the equivalent TOI by subtracting one half of the Worst Distortion Amplitude (in dB) from the Mixer Level (in dBm or dBmV). Enter the result in Table 2-64 as the Calculated TOI. For example, if the Worst Distortion Amplitude is -62 dBc and the Mixer Level is -17 dBm, the Calculated TOI would be:

TOI = -17 dBm - (-62 dB/2) = -17 dBm + 31 dB = +14 dBm

Table 2-64	Third Order Intermodulation Distortion Worksheet

TOI Test	Lower Distortion Amplitude	Upper Distortion Amplitude	Worst Distortion Amplitude	Mixer Level	Calculated TOI
1					
Option 1DR					

- 30.If the analyzer is equipped with Option 1DR, Narrow Resolution Bandwidth, perform step 31 through step 36. Otherwise, continue with step 37.
- 31.Set synthesized signal generator frequency to the F1 value used in TOI Test 1 of Table 2-63.
- 32.Set synthesized sweeper CW frequency to the F2 value used in TOI Test 1 of Table 2-63.
- 33.On the spectrum analyzer, press **Preset**, then wait until the preset routine is finished. Press **System**, **Alignments**, **Auto Align**, **Off**. Set the spectrum analyzer by pressing the following keys:

FREQUENCY, CF Step, 50 kHz (Man) SPAN, 20 kHz AMPLITUDE, More, Y Axis Units (or Amptd Units), dBm AMPLITUDE, Ref Level, -5 dBm (50Ω Input only) AMPLITUDE, Ref Level, -10 dBm (75Ω Input only) AMPLITUDE, Attenuation, 5 dB (Man) (50Ω Input only) AMPLITUDE, Attenuation, 0dB (Man) (75Ω Input only) BW/Avg, 1 kHz (Man) BW/Avg, Video BW, 300 Hz (Man) Peak Search (or Search), More, Search Param, Peak Excursn, 3 dB Performance Verification Tests 29. Spurious Responses: HP E4401B and E4411B

34.On the analyzer, press the following keys:

Peak Search (or Search) Meas Tools Mkr \rightarrow CF

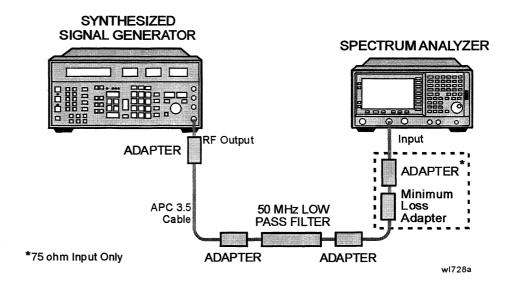
35.Set the analyzer as follows:

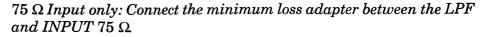
SPAN, 500 Hz BW/Avg, Resolution BW, 30 Hz BW/Avg, Video BW, 10 Hz

36.Repeat step 10 through step 29. This is the TOI test for Option 1DR.

37.On the analyzer, press System, Alignments, Auto Align, On.

38.Part 1: Third Order Intermodulation Distortion is complete. Proceed to Part 2: Second Harmonic Distortion.


Part 2: Second Harmonic Distortion


1. Set the synthesized signal generator controls as follows:

FREQUENCY, 40 MHz AMPLITUDE, -10 dBm (50 Ω Input only) AMPLITUDE, -4.3 dBm (75 Ω Input only)

2. Connect the equipment as shown in Figure 2-43.

Figure 2-43 Second Harmonic Distortion Test Setup

3. Press **Preset** on the spectrum analyzer, then wait for the preset routine to finish. Set the spectrum analyzer by pressing the following keys:

```
FREQUENCY, 40 MHz
SPAN, 1 MHz
AMPLITUDE, -10 dBm (50 Ω Input only)
AMPLITUDE, +44 dBmV (75 Ω Input only)
Attenuation Auto Man 10 dB
BW/Avg, 30 kHz
```

- 4. Adjust the synthesized signal generator amplitude to place the peak of the signal at the reference level.
- 5. Set the spectrum analyzer control as follows:

SPAN, 50 kHz BW/Avg, 1 kHz Video BW Auto Man, 100 Hz

6. Wait for two sweeps to finish, then press the following spectrum analyzer keys:

Peak Search (or Search) Mkr \rightarrow , Mkr \rightarrow CF Step Marker, Delta FREQUENCY, \uparrow

- 7. Press **Peak Search (or Search)**. The Δ Mkr1 amplitude reading is the second harmonic suppression.
- 8. If the analyzer has a 50 Ω input, calculate the second harmonic intercept (SHI) using the second harmonic suppression value read in step 7 as follows:

SHI = -20 dBm – Second Harmonic Suppression

For example, if the second harmonic suppression is -62 dB, the SHI would be +42 dBm:

+42 dBm = -20 dBm - (-62 dB)

9. If the analyzer has a 75 Ω input, calculate the second harmonic intercept (SHI) using the second harmonic suppression value read in step 7 as follows:

SHI = +34 dBmV - Second Harmonic Suppression

For example, if the second harmonic suppression is -65 dB, the SHI would be +99 dBmV:

+99 dBmV = +34 dBmV - (-65 dB)

30. Spurious Responses: HP E4402B and E4403B

This test is performed in two parts. Part 1 measures third order intermodulation distortion; Part 2 measures second harmonic distortion.

To test second harmonic distortion, a low pass filter is used to filter the source output, ensuring that harmonics read by the spectrum analyzer are internally generated and not coming from the source. To measure the distortion products, the power at the mixer is set 25 dB higher than specified.

For example, the specification states that with -30 dBm at the input mixer, the distortion products should be suppressed by >75 dBc, the equivalent second harmonic intercept (SHI) is > +45 dBm (-30 dBm + 75 dBc). Measuring with -15 dBm at the mixer and verifying the distortion products suppressed by >60 dBc also ensures the SHI is > +45 dBm (-15 dBm + 60 dBc).

For third order intermodulation distortion, two signals are combined in a directional bridge to provide isolation. These two signals are applied to the spectrum analyzer input. The power level of the two signals is several dB higher than specified, so the distortion products should be suppressed by less than the amount specified. In this manner, the equivalent third order intercept (TOI) is measured.

For example, the specification states that with two -30 dBm signals at the input mixer, the distortion products should be suppressed by >82 dBc, which yields a third order intercept of > +11 dBm (-30 dBm + (75 dBc/2)). Measuring with -20 dBm at the mixer and verifying the distortion products are suppressed by >62 dBc, the equivalent TOI is also > +11 dBm (-20 dBm + (62 dBc/2)).

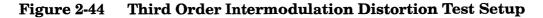
There are no related adjustment procedures for this performance test.

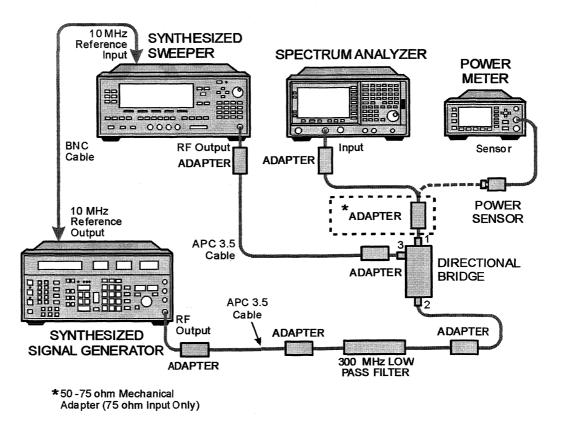
Equipment Required

Synthesized signal generator Synthesized sweeper Power meter, dual channel RF power sensor Power splitter Directional bridge 300 MHz low pass filter Cable, APC 3.5, 91-cm (2 required) Cable, BNC, 120-cm Adapter, Type-N (m) to APC 3.5 (f) (3 required) Adapter, Type-N (m) to SMA (m) Adapter, Type-N (m) to BNC (f) Adapter, Type-N (m) to Type-N (m) Adapter, SMA (f) to BNC (m) Adapter, APC 3.5 (f) to APC 3.5 (f)

Procedure

This performance test consists of two parts:


Part 1: Third Order Intermodulation Distortion


Part 2: Second Harmonic Distortion

Perform Part 1 before Part 2.

Part 1: Third Order Intermodulation Distortion

1. Zero and calibrate the power meter and RF power sensor in log mode (power reads out in dBm), as described in the power meter operation manual.

w1761a

- 2. Connect the equipment as shown in Figure 2-44 with the output of the directional bridge connected to the power sensor.
- 3. Perform step 4 through step 29 using the information and entries from Table 2-65. Then continue on with step 30 through step 38.

Table 2-65Test Equipment Settings for TOI

TOI Test	F1, MHz	F2, MHz	Low Pass Filter, MHz
1	300.0	300.05	300
Option 1DR	300.0	300.05	300

- 4. Press **Blue Key**, **Special**, **0**, **0** on the signal generator. Set the frequency to F1 in Table 2-65 for TOI Test 1. Set the amplitude to -10 dBm.
- 5. Press **PRESET** on the synthesized sweeper, and set the frequency to F2 in Table 2-65 for TOI Test 1. Set the synthesized sweeper controls as follows:

POWER LEVEL, +4 dBm RF Off

- 6. Enter the power sensor calibration factor for the signal generator frequency into the power meter.
- 7. Adjust the amplitude of the signal generator until the power meter reads $-12~\rm dBm~\pm0.1~\rm dB.$
- 8. Disconnect the power sensor from the directional bridge. Connect the directional bridge directly to the analyzer input using an adapter (do not use a cable).

CAUTION Support the directional bridge and low pass filter to minimize stress on the analyzer input connector.

9. On the analyzer, press **Preset**, then wait until the preset routine is finished. Press: **System**, **Alignments**, **Auto Align**, **Off**. Set up the analyzer by pressing the following keys:

FREQUENCY, CF Step, 50 kHz (Man) SPAN, 20 kHz AMPLITUDE, More, Y Axis Units (or Amptd Units), dBm AMPLITUDE, Ref Level, -5 dBm AMPLITUDE, Attenuation, 5 dB (Man) BW/Avg, 1 kHz (Man) BW/Avg, Video BW, 300 Hz (Man) Peak Search (or Search), More, Search Param, Peak Excursn, 3 dB 10.On the analyzer, press the following keys:

```
Peak Search (or Search) Meas Tools Mkr \rightarrow CF Delta
```

11.On the analyzer, press: **FREQUENCY**, \uparrow .

12.If the resolution bandwidth is ≥ 1 kHz, press: SPAN, 4 kHz.

13.On the synthesized sweeper, set the RF on.

14. On the analyzer, press Peak Search (or Search).

15.0n the synthesized sweeper, adjust the power level until the $\Delta Mkr1$ amplitude reads 0 dB ±0.05 dB.

16.On the analyzer, press **FREQUENCY**, \downarrow , \downarrow . The center frequency should now be lower than the signal generator frequency by the CF Step value.

- 17.Set the spectrum analyzer reference level to -15 dBm.
- 18.On the analyzer, press: **BW/Avg**, **Average**, **20**, and wait for "Vavg 20" to appear along the left side of the display.
- 19.On the analyzer, press: **Peak Search (or Search)** and record the marker amplitude reading in Table 2-66 as the Lower Distortion Amplitude.
- 20.On the analyzer, press: BW/Avg, Average Off.
- 21.On the spectrum analyzer, press **FREQUENCY**, \uparrow , \uparrow , \uparrow . The center frequency should now be one CF Step value above the synthesized sweeper frequency.
- 22. Set the synthesized signal generator frequency to F2 as indicated in Table 2-65.
- 23.Set the synthesized sweep CW frequency to F1 as indicated in Table 2-65.
- 24.On the analyzer, press BW/Avg, Average, 20, and wait for "Vavg 20" to appear along the left side of the display.
- 25.On the analyzer, press **Peak Search (or Search)** and record the marker amplitude reading in Table 2-66 as the Upper Distortion Amplitude.
- 26.On the analyzer, press BW/Avg, Average Off.
- 27.Of the Lower Distortion Amplitude and Upper Distortion Amplitudes recorded in Table 2-66, enter the most positive value as the Worst Distortion Amplitude in Table 2-66. For example, if the Upper Distortion Amplitude is -62 dBc and the Lower Distortion Amplitude is -63 dBc, enter -62 dBc as the Worst Distortion Amplitude.

- 28.Enter -17 dBm as the Mixer Level in Table 2-66 (-12 dBm input power 5 dB input attenuation).
- 29.Calculate the equivalent TOI by subtracting one half of the Worst Distortion Amplitude (in dB) from the Mixer Level (in dBm). Enter the result in Table 2-66 as the Calculated TOI. For example, if the Worst Distortion Amplitude is -62 dBc and the Mixer Level is -17 dBm, the Calculated TOI would be:

$$TOI = -17 \text{ dBm} - (-62 \text{ dB}/2) = -17 \text{ dBm} + 31 \text{ dBm} = +14 \text{ dBm}$$

 Table 2-66
 Third Order Intermodulation Distortion Worksheet

TOI Test	Lower Distortion Amplitude	Upper Distortion Amplitude	Worst Distortion Amplitude	Mixer Level	Calculated TOI
1					
Option 1DR					

- 30.If the analyzer is equipped with Option 1DR, Narrow Resolution Bandwidth, perform step 31 through step 36. Otherwise, continue with step 37.
- 31.Set synthesized signal generator frequency to F1 as indicated in Table 2-65 for TOI Test 1.
- 32. Set synthesized sweeper CW frequency to F2 as indicated in Table 2-65 for TOI Test 1.
- 33.On the spectrum analyzer, press **Preset**, then wait until the preset routine is finished. Press **System**, **Alignments**, **Auto Align**, **Off**. Set the spectrum analyzer by pressing the following keys:

FREQUENCY, CF Step, 50 kHz (Man) SPAN, 20 kHz AMPLITUDE, More, Y Axis Units (or Amptd Units), dBm AMPLITUDE, Ref Level, -5 dBm AMPLITUDE, Attenuation, 5 dB (Man) BW/Avg, 1 kHz (Man) BW/Avg, Video BW, 300 Hz (Man) Peak Search (or Search), More, Search Param, Peak Excursn, 3 dB

34.On the analyzer, press the following keys:

Peak Search (or Search) Meas Tools Mkr \rightarrow CF

35.Set the analyzer as follows:

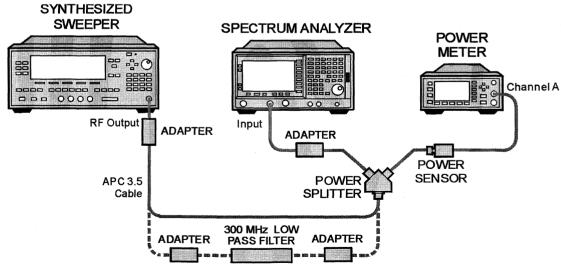
SPAN, 500 Hz BW/Avg, Resolution BW, 30 Hz Video BW, 10 Hz

36.Repeat step 10 through step 29. This is the TOI test for Option 1DR.

- 37.On the analyzer, press System, Alignments, Auto Align, On.
- 38.Part 1: Third Order Intermodulation Distortion is complete. Proceed to Part 2: Second Harmonic Distortion.

Part 2: Second Harmonic Distortion

1. Zero and calibrate the power meter and RF power sensor. Enter the power sensor 300 MHz calibration factor into the power meter.


Measuring the 300 MHz Frequency Response Error

2. Press Preset on the analyzer, and set the controls as follows:

FREQUENCY, 300 MHz SPAN, 10 MHz

3. Connect the equipment as shown in Figure 2-45, with the output of the synthesized sweeper connected to the power splitter input and the power splitter outputs connected to the analyzer and power sensor.

Figure 2-45 Second Harmonic Distortion Test Setup

wi741a

4. Preset the synthesized sweeper and set the controls as follows:

CW, 300 MHz POWER LEVEL, 0 dBm

- 5. On the analyzer, press Peak Search (or Search), Marker, Delta.
- 6. Record the power meter reading at 300 MHz in Table 2-67.
- 7. Set the synthesized sweeper CW to 600 MHz.
- 8. On the analyzer, press FREQUENCY, 600 MHz, then Peak Search (or Search).
- 9. Adjust the synthesized sweeper POWER LEVEL until the $\Delta Mkr1$ amplitude reads 0 dB ±0.10 dB.
- 10.Enter the power sensor 600 MHz calibration factor into the power meter.
- 11.Record the power meter reading at 600 MHz in Table 2-67.
- 12.Subtract the power meter reading at 600 MHz from the power meter reading at 300 MHz. Record this difference as the 300 MHz Frequency Response Error in Table 2-67. For example, if the power meter reading at 600 MHz is -6.45 dBm and the power meter reading at 300 MHz is -7.05 dBm, the 300 MHz Frequency Response Error would be -0.60 dB:

$$-0.60 \text{ dB} = -7.05 \text{ dBm} - (-6.45 \text{ dBm})$$

Table 2-67Second Harmonic Distortion Worksheet

Description	Measurement
Power Meter Reading at 300 MHz	dBm
Power Meter Reading at 600 MHz	dBm
300 MHz Frequency Response Error (FRE)	dB

Measuring the 300 MHz Second Harmonic Distortion

- 1. Connect the equipment as shown in Figure 2-45 using the 300 MHz Low Pass Filter.
- 2. On the synthesized sweeper, press:

CW, 300 MHz POWER LEVEL, -10 dBm

3. Enter the power sensor 300 MHz calibration factor into the power meter.

4. On the analyzer, press the following:

```
FREQUENCY, 300 MHz
SPAN, 100 kHz
AMPLITUDE, Ref Level, -10 dBm
AMPLITUDE, Attenuation, 10 dB (Man)
BW/Avg, Resolution BW 1 kHz (Man)
Video BW, 1 kHz (Man)
Markers, Off
```

- 5. Adjust the synthesized sweeper POWER LEVEL until the power meter reading is $-10 \text{ dBm } \pm 0.2 \text{ dB}$.
- 6. On the analyzer, press the following:

Peak Search (or Search), Marker, Delta FREQUENCY, 600 MHz BW/Avg, 10

Wait for the "Vavg 10" to appear along the left side of the display.

- 7. On the analyzer, press **Peak Search (or Search)**. The Δ Mkr1 amplitude is the second harmonic suppression.
- 8. Calculate the 300 MHz Second Harmonic Intercept (SHI) using the second harmonic suppression value read in step 7 and the 300 MHz Frequency Response Error (FRE) from Table 2-67 as follows:

300 MHz SHI = -20 dBm - Second Harmonic Suppression + 300 MHz FRE

For example, if the second harmonic suppression is -59 dB, and the 300 MHz FRE is -0.60 dB, the SHI would be +38.4 dBm:

+38.4 dBm = -20 dBm - (-59 dB) + (-0.60 dB)

9. On the synthesized sweeper, press Marker, Off.

31. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B

This test is performed in two parts. Part 1 measures third order intermodulation distortion; Part 2 measures second harmonic distortion.

To test second harmonic distortion, a low pass filter is used to filter the source output, ensuring that harmonics read by the spectrum analyzer are internally generated and not coming from the source. To measure the distortion products, the power at the mixer is set 25 dB higher than specified.

A power meter, power sensor, and power splitter are used to characterize the frequency response of the analyzer so this uncertainty can be eliminated.

For example, the specification states that with -30 dBm at the input mixer, the distortion products should be suppressed by >75 dBc, the equivalent second harmonic intercept (SHI) is > +45 dBm (-30 dBm + 75 dBc). Measuring with -15 dBm at the mixer and verifying the distortion products suppressed by >60 dBc also ensures the SHI is > +45 dBm (-15 dBm + 60 dBc).

For third order intermodulation distortion, two signals are combined in a directional bridge or directional coupler to provide isolation. These two signals are applied to the spectrum analyzer input. The power level of the two signals is several dB higher than specified, so the distortion products should be suppressed by less than the amount specified. In this manner, the equivalent third order intercept (TOI) is measured.

For example, the specification states that with two -30 dBm signals at the input mixer, the distortion products should be suppressed by >75 dBc, which yields a third order intercept of > +7.5 dBm (-30 dBm +(75 dBc/2)). Measuring with -20 dBm at the mixer and verifying the distortion products are suppressed by >55 dBc, the equivalent TOI is also > +7.5 dBm (-20 dBm + (55 dBc/2)).

There are no related adjustment procedures for this performance test.

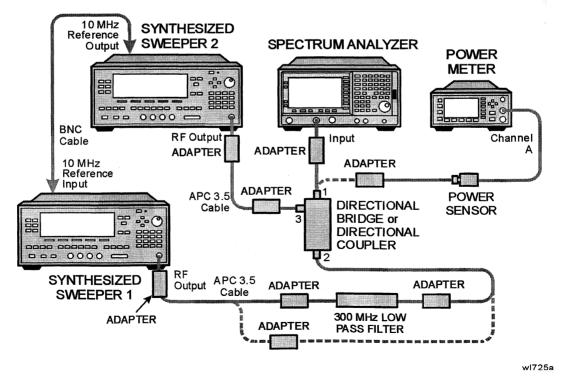
Equipment Required

Synthesized sweeper (2 required) Power meter, dual channel Microwave power sensor Microwave power splitter Directional bridge Directional coupler 300 MHz low pass filter 1 GHz low pass filter 1.8 GHz low pass filter (2 required) 4.4 GHz low pass filter (2 required) Cable, BNC, 120-cm (48-in) Cable, APC 3.5, 91-cm (48-in) (2 required) Adapter, Type-N (m) to APC 3.5 (f) (3 required) Adapter, Type-N (m) to SMA (m) Adapter, Type-N (m) to BNC (f) Adapter, Type-N (m) to Type-N (m) Adapter, SMA (f) to BNC (m) Adapter, APC 3.5 (f) to APC 3.5 (f)

Procedure

This performance test consists of two parts:

Part 1: Third Order Intermodulation Distortion


Part 2: Second Harmonic Distortion

Perform Part 1 before Part 2.

Part 1: Third Order Intermodulation Distortion

1. Zero and calibrate the power meter and microwave power sensor in log mode (power reads out in dBm), as described in the power meter operation manual.

Figure 2-46 Third Order Intermodulation Distortion Test Setup

31. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B

- 2. Connect the equipment as shown in Figure 2-46 using the 300 MHz low pass filter with the output of the directional bridge connected to the power sensor.
- 3. Perform step 4 through step 29 using the information and entries from Table 2-68. Then continue on with step 31 through step 44.

Table 2-68	Test Equipment Settings for TOI
	rest inquipment settings for 101

TOI Test	F1, MHz	F2, MHz	Low Pass Filter, MHz	Bridge or Coupler	Presel Center
1	300.0	300.05	300	Bridge	No
Option 1DR	300.0	300.05	300	Bridge	No
2	5000.0	5000.05	None	Coupler	Yes
3	8000.0	8000.05	None	Coupler	Yes

- 4. Press **PRESET** on synthesized sweeper 1. Set the CW frequency to F1 as indicated in Table 2-68, and set the power level to -10 dBm.
- 5. Press **PRESET** on synthesized sweeper 2. Set the CW frequency to F2 as indicated in Table 2-68, and set the controls as follows:

```
POWER LEVEL, +4 dBm RF Off
```

- 6. Enter the power sensor calibration factor for F1 into the power meter.
- 7. Adjust the power level of synthesized sweeper 1 until the power meter reads -12 dBm ± 0.1 dB.
- 8. Disconnect the power sensor from the directional bridge (or directional coupler). Connect the directional bridge (or directional coupler) directly to the analyzer input using an adapter (do not use a cable).

CAUTION Support the directional bridge (or directional coupler) and low pass filter to minimize stress on the analyzer input connector.

9. On the analyzer, press **Preset**, then wait until the preset routine is finished. Press **System**, **Alignments**, **Auto Align**, **Off**. Set up the analyzer by pressing the following keys:

FREQUENCY, CF Step, 50 kHz (Man) SPAN, 20 kHz AMPLITUDE, Ref Level, -5 dBm AMPLITUDE, Attenuation, 5 dB (Man) BW/Avg, 1 kHz (Man) BW/Avg, Video BW, 300 Hz (Man) Peak Search (or Search), More, Search Param, Peak Excursn, 3 dB

10.On the analyzer, press the following keys:

```
Peak Search (or Search)
Meas Tools
Mkr \rightarrow CF
Delta
```

11.On the analyzer, Press **FREQUENCY**, \uparrow . The center frequency should now be equal to synthesized sweeper 2 frequency.

12.If the resolution bandwidth is ≥ 1 kHz, press **SPAN**, 4 kHz.

13.On the synthesized sweeper 2, set the RF On.

- 14. On the analyzer, press **Peak Search (or Search)**.
- 15.Adjust the power level of synthesized sweeper 2 until the $\Delta Mkr1$ amplitude reads 0 dB ±0.05 dB.
- 16.On the analyzer, press **FREQUENCY**, \downarrow , \downarrow . The center frequency should now be lower than synthesized sweeper 1 by the CF Step value.
- 17.Set the spectrum analyzer reference level to -15 dBm.
- 18.On the analyzer, press **BW/Avg**, **Average**, **20**, and wait for "Vavg 20" to appear along the left side of the display.
- 19.On the analyzer, press **Peak Search (or Search)** and record the marker amplitude reading in Table 2-69 as the Lower Distortion Amplitude.
- 20.On the analyzer, press BW/Avg, Average Off.
- 21.On the analyzer, press **FREQUENCY**, \uparrow , \uparrow , \uparrow . The center frequency should now be one CF Step value above synthesized sweeper 2 frequency.
- 22.Set synthesized sweeper 1 CW to F2 as indicated in Table 2-68.
- 23.Set synthesized sweeper 2 CW to F1 as indicated in Table 2-68.
- 24.On the analyzer, press **BW/Avg**, **Average**, **20**, and wait for "Vavg 20" to appear along the left side of the display.
- 25.On the analyzer, press **Peak Search (or Search)** and record the marker amplitude reading in Table 2-69 as the Upper Distortion Amplitude.
- 26.On the analyzer, press BW/Avg, Average Off.
- 27.Of the Lower Distortion Amplitude and Upper Distortion Amplitudes recorded in Table 2-69, enter the most positive value as the Worst Distortion Amplitude in Table 2-69. For example, if the Upper Distortion Amplitude is -62 dBc and the Lower Distortion Amplitude is -63 dBc, enter -62 dBc as the Worst Distortion Amplitude.

Performance Verification Tests

31. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B

- 28.Enter -17 dBm as the Mixer Level in Table 2-69 (-12 dBm input power 5 dB input attenuation).
- 29.Calculate the equivalent TOI by subtracting one half of the Worst Distortion Amplitude (in dB) from the Mixer Level (in dBm). Enter the result in Table 2-69 as the Calculated TOI. For example, if the Worst Distortion Amplitude is -62 dBc and the Mixer Level is -17 dBm, the Calculated TOI would be:

TOI = -17 dBm - (-62 dB/2) = -17 dBm + 31 dBm = +14 dBm

30.Record the Calculated TOI in the performance verification test record as specified in Table 2-69.

TOI Test	Lower Distortion Amplitude	Upper Distortion Amplitude	Worst Distortion Amplitude	Mixer Level	Calculated TOI (TR Entry)
1				r	1
Option 1DR					2
2					3
3					4

Table 2-69Third Order Intermodulation Distortion Worksheet

- 31.If the analyzer is equipped with Option 1DR, Narrow Resolution Bandwidth, perform step 32 through step 37. Otherwise, continue with step 38.
- 32.Set synthesized sweeper 1 CW frequency to F1 as indicated in TOI Test 1 of Table 2-68.
- 33.Set synthesized sweeper 2 CW frequency to F2 as indicated in TOI Test 1 of Table 2-68.

34.On the analyzer, press **Preset**, and wait until the preset routine is finished. Press **System**, **Alignments**, **Auto Align**, **Off**. Set the analyzer by pressing the following keys:

FREQUENCY, CF Step, 50 kHz (Man) SPAN, 20 kHz AMPLITUDE, Ref Level, -5 dBm AMPLITUDE, Attenuation, 5 dB (Man) BW/Avg, 1 kHz (Man) BW/Avg, Video BW, 300 Hz (Man) Peak Search (or Search), More, Search Param, Peak Excursn, 3 dB 35.On the analyzer, press the following keys:

```
Peak Search (or Search) Meas Tools Mkr \rightarrow CF
```

36.On the analyzer, press the following keys:

SPAN, 500 Hz BW/Avg, Resolution BW, 30 Hz BW/Avg, Video BW, 10 Hz

37.Repeat step 9 through step 26. This is the TOI test for Option 1DR.

38.Replace the directional bridge with the directional coupler. The cable from synthesized sweeper 1 should be connected directly to the input of the directional coupler; no low pass filter is required when testing frequencies >3 GHz. See Figure 2-46.

39.Connect the output of the directional coupler to the power sensor.

- 40.Repeat step 4 through step 29 using information and entries for TOI Test 2 in Table 2-68 and Table 2-69.
- 41.Connect the output of the directional bridge to the power sensor.
- 42. Repeat step 4 through step 29 using information and entries for TOI Test 3 in Table 2-68 and Table 2-69.
- 43.On the analyzer, press System, Alignments, Auto Align, All.
- 44.Part 1: Third Order Intermodulation Distortion is complete. Proceed to Part 2: Second Harmonic Distortion.

Part 2: Second Harmonic Distortion

1. Zero and calibrate the power meter and microwave power sensor. Enter the power sensor 300 MHz calibration factor into the power meter.

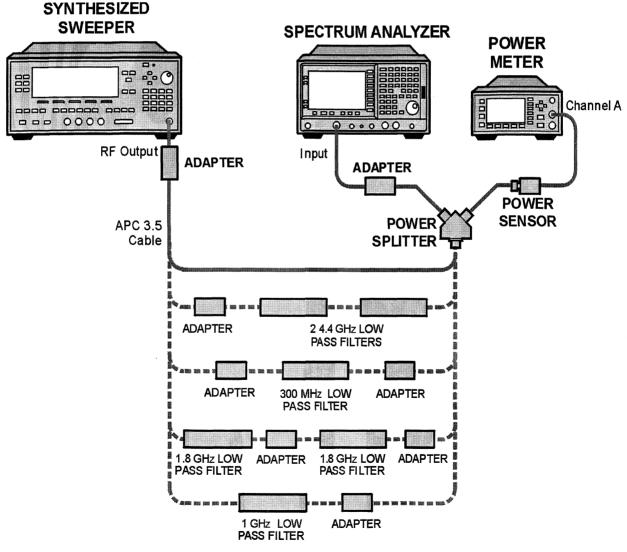
Measuring the Noise Level at 6.2 GHz

- 2. Remove any cables or adapters from the analyzer INPUT.
- 3. On the analyzer, press **Preset**, and wait until the preset routine is finished. Set the analyzer by pressing the following keys:

FREQUENCY, 6.2 GHz SPAN, 0 Hz AMPLITUDE, Ref Level, -40 dBm AMPLITUDE, Attenuation, 10 dB BW/Ave, Resolution BW 1 kHz Video BW, 30 Hz Sweep, Sweep time, 5 s Performance Verification Tests

31. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B


- 4. Wait until "VAvg 10" is displayed along the left side of the display.
- 5. Press **Peak Search (or Search)** and record the marker amplitude reading as the 6.2 GHz Noise Level in Table 2-70.


Measuring 300 MHz Frequency Response Error

1. Press **Preset** on the analyzer, and set the controls as follows:

FREQUENCY, 300 MHz SPAN, 10 MHz

2. Connect the equipment as shown in Figure 2-47, with the output of the synthesized sweeper connected to the power splitter input and the power splitter outputs connected to the analyzer and power sensor.

sl7103b

3. Preset the synthesized sweeper and set the controls as follows:

CW, 300 MHz POWER LEVEL, 0 dBm

- 4. On the analyzer, press Peak Search (or Search), Marker, Delta.
- 5. Record the power meter reading at 300 MHz in Table 2-70.
- 6. Set the synthesized sweeper CW to 600 MHz.
- 7. On the analyzer, press FREQUENCY, 600 MHz, then Peak Search (or Search).
- 8. Adjust the synthesized sweeper POWER LEVEL until the Δ Mkr1 amplitude reads 0 dB ±0.10 dB.
- 9. Enter the power sensor 600 MHz calibration factor into the power meter.
- 10.Record the power meter reading at 600 MHz in Table 2-70.
- 11.Subtract the power meter reading at 600 MHz from the power meter reading at 300 MHz. Record this difference as the 300 MHz Frequency Response Error in Table 2-70. For example, if the power meter reading at 600 MHz is -6.45 dBm and the power meter reading at 300 MHz is -7.05 dBm, the 300 MHz Frequency Response Error would be -0.60 dB:

-0.60 dB = -7.05 dBm - (-6.45 dBm)

Measuring 900 MHz Frequency Response Error

12.On the synthesized sweeper, press the following:

CW, 900 MHz POWER LEVEL, 0 dBm

- 13.On the analyzer, press FREQUENCY, 900 MHz.
- 14.Enter the power sensor 1 GHz calibration factor into the power meter.
- 15.On the analyzer, press Marker, Off.
- 16.On the analyzer, press Peak Search (or Search).
- 17.On the analyzer, press Peak Search (or Search), Marker, Delta.
- 18.Record the power meter reading in Table 2-70 as the 900 MHz power meter reading.

19.On the synthesized sweeper, press CW, 1.8 GHz.

20.0n the analyzer, press FREQUENCY, 1.8 GHz.

21.On the analyzer, press the following:

Performance Verification Tests

31. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B

Peak Search (or Search) AMPLITUDE Presel Center

22.On the analyzer, press Peak Search (or Search).

- 23. Adjust the synthesized sweeper POWER LEVEL until the $\Delta Mkr1$ amplitude reads 0 dB ±0.1 dB.
- 24.Enter the power sensor 2 GHz calibration factor into the power meter.
- 25.Record the power meter reading in Table 2-70 as the 1.8 GHz power meter reading.
- 26.On the analyzer, press Marker, Off.
- 27.Subtract the power meter reading at 1.8 GHz from the power meter reading at 900 MHz. Record this difference as the 900 MHz Frequency Response Error in Table 2-70. For example, if the power meter reading at 1.8 GHz is -6.35 dBm and the power meter reading at 900 MHz is -7.05 dBm, the 900 MHz Frequency Response Error would be -0.7 dB:

-0.70 dB = -7.05 dBm - (-6.35 dBm)

Measuring 1.55 GHz Frequency Response Error

1. On the synthesized sweeper, press the following:

CW, 1.55 GHz POWER LEVEL, 0 dBm

- 2. On the analyzer, press FREQUENCY, 1.55 GHz.
- 3. Enter the power sensor 2 GHz calibration factor into the power meter.
- 4. On the analyzer, press Marker, Off.
- 5. On the analyzer, press the following:

Peak Search (or Search) AMPLITUDE Presel Center

- 6. On the analyzer, press Peak Search (or Search), Marker, Delta.
- 7. Record the power meter reading in Table 2-70 as the 1.55 GHz power meter reading.
- 8. On the synthesized sweeper, press CW, 3.1 GHz.
- 9. On the analyzer, press FREQUENCY, 3.1 GHz.
- 10.On the analyzer, press the following:

Peak Search (or Search) AMPLITUDE Presel Center

- 11.On the analyzer, press Peak Search (or Search).
- 12. Adjust the synthesized sweeper POWER LEVEL until the $\Delta Mkr1$ amplitude reads 0 dB ±0.1 dB.
- 13.Enter the power sensor 3 GHz calibration factor into the power meter.
- 14.Record the power meter reading in Table 2-70 as the 3.1 GHz power meter reading.
- 15.On the analyzer, press Marker, Off.
- 16.Subtract the power meter reading at 3.1 GHz from the power meter reading at 1.55 GHz. Record this difference as the 1.55 GHz Frequency Response Error in Table 2-70. For example, if the power meter reading at 3.1 GHz is -6.05 dBm and the power meter reading at 1.55 GHz is -7.35 dBm, the 3.1 GHz Frequency Response Error would be -1.2 dB:

-1.2 dB = -7.35 dBm - (-6.15 dBm)

Measuring 3.1 GHz Frequency Response Error

1. On the synthesized sweeper, press the following:

CW, 3.1 GHz POWER LEVEL, 0 dBm

- 2. On the analyzer, press FREQUENCY, 3.1 GHz.
- 3. Enter the power sensor 3 GHz calibration factor into the power meter.
- 4. On the analyzer, press Marker, Off.
- 5. On the analyzer, press the following:

Peak Search (or Search) AMPLITUDE Presel Center

- 6. On the analyzer, press Peak Search (or Search), Marker, Delta.
- 7. Record the power meter reading in Table 2-70 as the 3.1 GHz power meter reading.
- 8. On the synthesized sweeper, press CW, 6.2 GHz.
- 9. On the analyzer, press FREQUENCY, 6.2 GHz.
- 10.On the analyzer, press the following:

Performance Verification Tests

31. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B

Peak Search (or Search) AMPLITUDE Presel Center

- 11.On the analyzer, press Peak Search (or Search).
- 12. Adjust the synthesized sweeper POWER LEVEL until the $\Delta Mkr1$ amplitude reads 0 dB ± 0.1 dB.
- 13.Enter the power sensor 6 GHz calibration factor into the power meter.
- 14.Record the power meter reading in Table 2-70 as the 6.2 GHz power meter reading.
- 15.On the analyzer, press Marker, Off.
- 16.Subtract the power meter reading at 6.2 GHz from the power meter reading at 3.1 GHz. Record this difference as the 3.1 GHz Frequency Response Error in Table 2-70. For example, if the power meter reading at 6.2 GHz is -6.05 dBm and the power meter reading at 3.1 GHz is -7.25 dBm, the 3.1 GHz Frequency Response Error would be -1.2 dB:

$$-1.2 \text{ dB} = -7.25 \text{ dBm} - (-6.05 \text{ dBm})$$

Description	Measurement
6.2 GHz Noise Level	dBm
Power Meter Reading at 300 MHz	dBm
Power Meter Reading at 600 MHz	dBm
300 MHz Frequency Response Error (FRE)	dB
Power Meter Reading at 900 MHz	dBm
Power Meter Reading at 1.8 GHz	dBm
900 MHz Frequency Response Error (FRE)	dB
Power Meter Reading at 1.55 GHz	dBm
Power Meter Reading at 3.1 GHz	dBm
1.55 GHz Frequency Response Error (FRE)	dB
Power Meter Reading at 3.1 GHz	dBm
Power Meter Reading at 6.2 GHz	dBm
3.1 GHz Frequency Response Error (FRE)	dB

Table 2-70 Second Harmonic Distortion Worksheet

Measuring 300 MHz Second Harmonic Distortion

- 1. Connect the equipment as shown in Figure 2-47 using the 300 MHz Low Pass Filter.
- 2. On the synthesized sweeper, press the following:

CW, 300 MHz POWER LEVEL, -10 dBm

- 3. Enter the power sensor 300 MHz calibration factor into the power meter.
- 4. On the analyzer, press the following:

FREQUENCY, 300 MHz SPAN, 100 kHz AMPLITUDE, Ref Level, -10 dBm AMPLITUDE, Attenuation, 10 dB (Man) BW/Avg, Resolution BW 1 kHz (Man) Video BW, 1 kHz (Man) Markers, Off

- 5. Adjust the synthesized sweeper POWER LEVEL until the power meter reading is $-10 \text{ dBm } \pm 0.2 \text{ dB}$.
- 6. On the analyzer, press the following:

Peak Search (or Search), Marker, Delta FREQUENCY, 600 MHz BW/Avg, 10

Wait for the "VAvg 10" to appear along the left side of the display.

- 7. On the analyzer, press Peak Search (or Search). The $\Delta Mkr1$ amplitude is the second harmonic suppression.
- 8. Calculate the 300 MHz Second Harmonic Intercept (SHI) using the second harmonic suppression value read in step 7 and the 300 MHz Frequency Response Error (FRE) from Table 2-70 as follows:
- 300 MHz SHI = -20 dBm Second Harmonic Suppression + 300 MHz FRE

For example, if the second harmonic suppression is -59 dB, and the 300 MHz FRE is -0.60 dB, the SHI would be +38.4 dBm:

+38.4 dBm = -20 dBm - (-59 dB) + (-0.60 dB)

9. Record the 300 MHz SHI as TR Entry 5 in the performance verification test record.

Measuring 900 MHz Second Harmonic Distortion

Performance Verification Tests

- 31. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B
- 1. Replace the 300 MHz low pass filter with the 1 GHz low pass filters as shown in Figure 2-47.
- 2. On the synthesized sweeper, press the following:

CW, 900 MHz POWER LEVEL, --10 dBm

- 3. Enter the power sensor 1 GHz calibration factor into the power meter.
- 4. On the analyzer, press FREQUENCY, Center Freq, 900 MHz.
- 5. On the analyzer, press Peak Search (or Search).
- 6. Adjust the synthesized sweeper POWER LEVEL until the power meter reading is $-10 \text{ dBm } \pm 0.1 \text{ dB}$.
- 7. On the analyzer, press the following:

Peak Search (or Search) Marker Delta

8. On the analyzer, press the following:

FREQUENCY Center Freq, 1.8 GHz

9. On the analyzer, press the following:

AMPLITUDE, Ref Level, –20 dBm Video BW, 30 Hz (Man)

- 10.On the analyzer, press BW/Avg, Average, 10 Hz. Wait until "VAvg 10" is displayed along the left side of the display.
- 11.On the analyzer, press Peak Search (or Search). The $\Delta Mkr1$ amplitude reading is the second harmonic suppression.
- 12.Calculate the 900 MHz Second Harmonic Intercept (SHI) using the second harmonic suppression value read in step 11 and the 300 MHz Frequency Response Error (FRE) from Table 2-70 as follows:

900 MHz SHI = -20 dBm - Second Harmonic Suppression + 900 GHz FRE

For example, if the second harmonic suppression is -73 dB, and the 900 MHz FRE is 0.70 dB, the SHI would be +52.3 dBm:

+52.3 dBm = -20 dBm - (-73 dB) + (-0.70 dB)

13.Record the 900 MHz SHI as TR Entry 6 in the performance verification test record.

Measuring 1.55 GHz Second Harmonic Distortion

- 1. Replace the 1.GHz low pass filter with the two 1.8 GHz low pass filters as shown in Figure 2-47. Two filters are necessary to reduce the second harmonics from the source to less than -100 dBc.
- 2. On the synthesized sweeper, press the following:

CW, 1.55 GHz POWER LEVEL, +6 dBm

- 3. Enter the power sensor 2 GHz calibration factor into the power meter.
- 4. On the analyzer, press the following:

FREQUENCY, 1.55 GHz AMPLITUDE, Ref Level, 0 dBm AMPLITUDE, Attenuation, 10 dB (man)

- 5. On the analyzer, press Peak Search (or Search).
- 6. Adjust the synthesized sweeper POWER LEVEL until the power meter reading is 0 dBm ±0.1 dB.
- 7. On the analyzer, press the following:

Peak Search (or Search) Marker Delta

8. On the analyzer, press the following:

FREQUENCY Center Freq, 3.1 GHz

- 9. Remove the 1.8 GHz low pass filters and connect the synthesized sweeper output directly to the power splitter input. See Figure 2-47.
- 10.On the analyzer, press the following:

Peak Search (or Search) AMPLITUDE Presel Center

- 11.Reinstall the filters between the synthesized sweeper and the power splitter.
- 12.On the analyzer, press the following:

AMPLITUDE, Ref Level, -40 dBm Video BW, 30 Hz (Man)

- 13.On the analyzer, press BW/Avg, Average, 10 Hz. Wait until "VAvg 10" is displayed along the left side of the display.
- 14.On the analyzer, press Peak Search (or Search). The $\Delta Mkr1$ amplitude reading is the second harmonic suppression.

Performance Verification Tests

31. Spurious Responses: HP E4404B, E4405B, E4407B, and E4408B

- 15.Calculate the 1.55 GHz Second Harmonic Intercept (SHI) using the second harmonic suppression value read in step 14 and the 300 MHz Frequency Response Error (FRE) from Table 2-70 as follows:
- 1.55 GHz SHI = -10 dBm Second Harmonic Suppression + 1.55 GHz FRE

For example, if the second harmonic suppression is -93 dB, and the 1.55 GHz FRE is -1.05 dB, the SHI would be +81.95 dBm:

+81.95 dBm = -10 dBm - (-93 dB) + (-1.05 dB)

16.ecord the 1.55 GHz SHI as TR Entry 7 in the performance verification test record.

Measuring 3.1 GHz Second Harmonic Distortion

- 1. Replace the 300 MHz low pass filter with the two 4.4 GHz low pass filters as shown in Figure 2-47. Two filters are necessary to reduce the second harmonics from the source to less than -110 dBc.
- 2. On the synthesized sweeper, press the following:

CW, 3.1 GHz POWER LEVEL, +6 dBm

- 3. Enter the power sensor 3 GHz calibration factor into the power meter.
- 4. On the analyzer, press the following:

FREQUENCY, 3.1 GHz AMPLITUDE, Ref Level, 0 dBm AMPLITUDE, Attenuation, 10 dB (man)

5. On the analyzer, press the following:

Peak Search (or Search) AMPLITUDE Presel Center

- 6. Adjust the synthesized sweeper POWER LEVEL until the power meter reading is 0 dBm ± 0.1 dB.
- 7. On the analyzer, press the following:

Peak Search (or Search) Marker Delta

8. On the analyzer, press the following:

FREQUENCY Center Freq, 6.2 GHz

- 9. Remove the 4.4 GHz low pass filters and connect the synthesized sweeper output directly to the power splitter input. See Figure 2-47.
- 10.On the analyzer, press the following:

Peak Search (or Search) AMPLITUDE Presel Center

- 11.Reinstall the filters between the synthesized sweeper and the power splitter.
- 12.On the analyzer, press the following:

AMPLITUDE, Ref Level, -40 dBm Video BW, 30 Hz (Man)

- 13.On the analyzer, press **BW/Avg**, **Average**, **10 Hz**. Wait until "VAvg 10" is displayed along the left side of the display.
- 14.On the analyzer, press **Peak Search (or Search)**. The Δ Mkr1 amplitude reading is the second harmonic suppression.

15.If the marker does not appear to be on a signal, do the following:

- a. Press Marker, Select Marker (2)
- b. Compare the Mkr2 and the 6.2 GHz Noise Level recorded in Table 2-70.
- c. If the difference between Mkr2 and the 6.2 GHz Noise Level recorded in Table 2-70 is less than 2 dB, check the box on the performance verification test record that the 3.1 GHz SHI test was noise limited.
- 16.If the measurement is not noise limited, calculate the 3.1 GHz Second Harmonic Intercept (SHI) using the second harmonic suppression value read in step 14 and the 3.1 GHz Frequency Response Error (FRE) from Table 2-70 as follows:

3.1 GHz SHI = -10 dBm – Second Harmonic Suppression + 3.1 GHz FRE

For example, if the second harmonic suppression is -103 dB, and the 3.1 GHz FRE is -1.20 dB, the SHI would be +91.8 dBm:

+91.8 dBm = -10 dBm - (-103 dB) + (-1.20 dB)

17.Record the 3.1 GHz SHI as TR Entry 8 in the performance verification test record.

32. Gain Compression: HP E4401B, E4402B, E4403B, and E4411B

This test verifies the ability of the analyzer to measure relatively low-amplitude signals in the presence of higher-amplitude signals. Gain compression is measured by applying two signals, separated by a defined amount in frequency. The higher-amplitude signal is set to yield the specified total power at the input mixer (the power at the input mixer is defined as the input power level minus the input attenuation). The lower-amplitude signal is set at least 35 dB below the higher-amplitude signal, such that its power does not significantly add to the total power. The higher-amplitude signal is turned off and the lower-amplitude signal level is measured. This is the uncompressed amplitude.

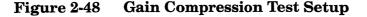
The higher-amplitude signal is turned on and the amplitude of the lower-amplitude signal is again measured. This is the compressed amplitude. The difference between the uncompressed and compressed amplitude is the measured gain compression.

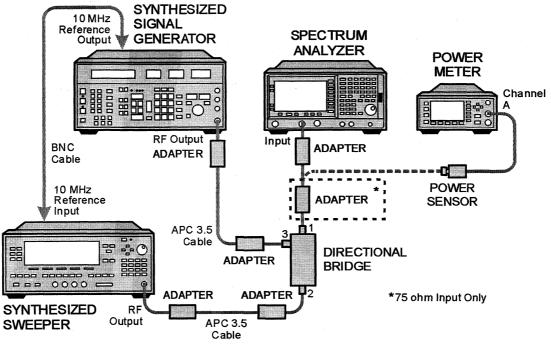
There are no adjustments related to this performance test.

Equipment Required

Synthesized sweeper Synthesized signal generator Power meter, dual channel RF power sensor Directional bridge Cable, BNC, 120-cm (48-in) Cable, APC 3.5 (m) (2 required) Adapter, Type-N (m) to Type-N (m) Adapter, Type-N (m) to APC 3.5 (f) (3 required) Adapter, Type-N (m) to SMA (m)

Additional Equipment for 75 Ω Input


Power sensor, 75 Ω Adapter, Type-N (m), to BNC (m), 75 Ω Adapter, mechanical, Type-N (m), 50 Ω to Type-N (f), 75 Ω


Procedure

1. Zero and calibrate the power meter and power sensor combination in log mode (power reads out in dBm) as described in the power meter operation manual.

2. Connect the equipment as shown in Figure 2-48, with port 1 of the directional bridge connected to the power sensor.

75 Ω Input only: Use the 75 Ω power sensor with the mechanical adapter. The power measured at the output of the 50 Ω directional bridge by the 75 Ω power sensor is the equivalent power "seen" by the 75 Ω analyzer.

wl723a

CAUTION

Use only 75 Ω cables, connectors, or adapters on instruments with 75 Ω connectors, or damage to the connectors will occur.

3. Set the synthesized signal generator controls as follows:

FREQUENCY, 50 MHz AMPLITUDE, -100 dBm

4. Press **INSTRUMENT PRESET** on the synthesized sweeper, then set the controls as follows:

CW, 53 MHz POWER LEVEL, -3 dBm

5. Enter the power sensor calibration factor for the synthesizer frequency into the power meter.

- 6. Adjust the synthesized sweeper power level setting until the power meter reading is the same as indicated in Table 2-71.
- 7. Record the actual synthesized sweeper power level setting in Table 2-71 for each frequency indicated.

Table 2-71 Source Frequency and Amplitude Settings

Synthesized Signal Generator		Synthesized Sweeper				
Frequency, GHz	Amplitude, dBm	CW Frequency, MHz	Desired Power Level, dBm	Actual Power Level, dBm		
0.05	-40	53	0.0			
0.05	-40	50.004	0.0			
1.40	-40	1403	0.0			
2.50 ^a	-40 ^a	2503 ^a	0.0 ^a			

a. E4402B and E4403B only.

Table 2-72Spectrum Analyzer Settings

Test Frequency	Spectru	Spectrum Analyzer						TR Entry
	Center Freq	Span	RBW	VBW	Ref Lvl	Scale	Atten	
MHz	GHz	kHz	kHz	kHz	dBm	dB/	dB	
53	0.05	150	30	0.300	-10.0	10	0.0	1
50.004 ^a	0.05 ^a	1.0 ^a	0.030 ^a	0.030 ^a	-10.0 ^a	10 ^a	0.0 ^a	2
1403	1.40	150	30	0.300	-10.0	10	0.0	3
2503 ^b	2.50^{b}	150 ^b	30 ^b	0.300 ^b	-10.0 ^b	10 ^b	0.0 ^b	4

a. Option 1DR only.

b. E4402B and E4403B only.

- 8. Repeat step 3 through step 7 for each of the settings listed in Table 2-71.
- 9. Disconnect the power sensor from the directional bridge and connect the directional bridge to the input of the analyzer using an adapter. Do not use a cable.

75 Ω Input only: Use a 75 Ω adapter, Type-N (m) to BNC (m) and a mechanical adapter, Type-N (m) 50 Ω to Type-N (f) 75 Ω

10.Set the synthesized sweeper amplitude Off.

11.Set the synthesized signal generator amplitude to -24 dBm.

12.On the analyzer, press **Preset**, then wait for the preset routine to finish. Press **System**, **Alignments**, **Auto Align**, **Off**. Set up the analyzer as follows:

FREQUENCY, Center Freq, 50 MHz (or as indicated in Table 2-72) SPAN, 150 kHz (or as indicated in Table 2-72) AMPLITUDE, More 1 of 2, Y Axis Units (or Amptd Units), dBm AMPLITUDE, Ref Level, -10 dBm, Attenuation 0 dB AMPLITUDE, Scale/Div, 10 dB BW/Avg, Resolution BW, 30 kHz (or as indicated in Table 2-72) BW/Avg, Video BW, 300 Hz (or as indicated in Table 2-72)

13.On the synthesized sweeper, set the appropriate power level to the setting recorded in Table 2-71. Then set RF to Off.

75 Ω Input only: Adjust the power level for a 2.0 dBm reading.

- 14.On the analyzer, press Peak Search (or Search).
- 15.Adjust the amplitude of the synthesized signal generator to achieve a marker amplitude reading within 0.5 dB of the value indicated in Table 2-71. The marker amplitude is the uncompressed amplitude.
- 16.On the analyzer, press the following keys:

Peak Search (or Search) Marker Delta

- 17.On the synthesized sweeper, set RF to On. The amplitude should be the same as recorded in Table 2-71.
- 18.0n the spectrum analyzer, press Peak Search (or Search). This is the compressed amplitude. The $\Delta Mkr1$ amplitude is the measured gain compression.
- 19.Record the measured gain compression in the performance test record as the TR Entry listed in Table 2-72.
- 20.Repeat step 6 through step 19 for each set of settings in Table 2-71 and Table 2-72.

33. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B

This test verifies the ability of the analyzer to measure relatively low-amplitude signals in the presence of higher-amplitude signals. Gain compression is measured by applying two signals, separated by a defined amount in frequency. The higher-amplitude signal is set to yield the specified total power at the input mixer (the power at the input mixer is defined as the input power level minus the input attenuation). The lower-amplitude signal is set at least 35 dB below the higher-amplitude signal, such that its power does not significantly add to the total power. The higher-amplitude signal is turned off and the lower-amplitude signal level is measured. This is the uncompressed amplitude.

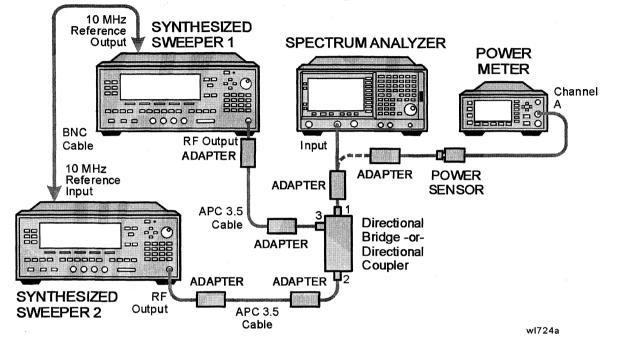
The higher-amplitude signal is turned on and the amplitude of the lower-amplitude signal is again measured. This is the compressed amplitude. The difference between the uncompressed and compressed amplitude is the measured gain compression.

There are no adjustments related to this performance test.

Equipment Required

Synthesized sweeper (2 required) Power meter, dual channel Microwave power sensor Directional bridge Directional coupler Cable, BNC, 120-cm (48-in) Cable, APC 3.5 (m) (2 required) Adapter, Type-N (m) to Type-N (m) Adapter, Type-N (m) to APC 3.5 (f) (3 required) Adapter, Type-N (m) to SMA (m)

Additional Equipment for Option BAB


Adapter, Type-N (m), to APC 3.5 (f)

Procedure

1. Zero and calibrate the power meter and power sensor combination in log mode (power reads out in dBm) as described in the power meter operation manual.

2. Connect the equipment as shown in Figure 2-49, with the load port of the directional bridge connected to the power sensor. The directional bridge should be used for measurements of frequencies less than or equal to 2.5 GHz. Use the directional coupler for higher frequency measurements.

3. Press PRESET on synthesized sweeper 1, then set the controls as follows:

CW, 50 MHz POWER LEVEL, --100 dBm

4. Press **PRESET** on synthesized sweeper 2, then set the controls as follows:

CW, 53 MHz POWER LEVEL, --3 dBm

- 5. Enter the power sensor calibration factor for the synthesized sweeper 2 frequency into the power meter.
- 6. Adjust the synthesized sweeper 2 power level setting until the power meter reading is the same as indicated in Table 7.
- 7. Record the actual synthesized sweeper 2 power level setting in

Performance Verification Tests

33. Gain Compression: HP E4404B, E4405B, E4407B, and E4408B

Table 7 for each frequency indicated.

Table 2-73Source Frequency and Amplitude Settings

First Synthesized	Sweeper	Second Synthesized Sweeper				
CW Frequency, MHz	Power Level, dBm	CW Frequency, MHz	Desired Power Level, dBm	Actual Power Level, dBm		
50	-40	53	-5.0			
50	-40	50.004	-5.0			
1400	-40	1403	0.0			
2500	-40	2503	0.0			
4400	-40	4403	0.0			
7600 ^b	-40	7603	0.0			
14000 ^b	-40	14003	0.0			

Table 2-74Spectrum Analyzer Settings

Test Frequency	Spectrum Analyzer						TR Entry	
MHz	Center Freq GHz	Span kHz	RBW kHz	VBW kHz	Ref Lvl dBm	Scale dB/	Atten dB	
53	0.05	150	30	0.300	-10.0	10	0.0	1
50.004 ^a	0.05 ^a	1.0 ^a	0.030 ^a	0.030 ^a	-10.0 ^a	10 ^a	0.0 ^a	2
1403	1.40	150	30	0.300	-10.0	10	0.0	3
2503	2.50	150	30	0.300	-10.0	10	0.0	4
4403	4.40	150	30	0.300	-10.0	10	0.0	5
7603 ^b	7.60	150	30	0.300	-10.0	10	0.0	6
14003 ^b	14.0	150	30	0.300	-10.0	10	0.0	7

a. Option 1DR only.

b. HP E4405B, E4407B and E4408B only.

8. Repeat step 3 through step 7 for each of the settings listed in Table 7. Use the directional bridge in place of the coupler for frequencies less than or equal to 2503 MHz.

9. Disconnect the power sensor from the directional bridge and connect the directional bridge to the input of the analyzer using an adapter. Do not use a cable.

10.Set the synthesized sweeper 2 power level to Off.

- 11.Set the synthesized sweeper 1 power level to -24 dBm.
- 12.On the analyzer, press **Preset**, then wait for the preset routine to finish. Press: **System**, **Alignments**, **Auto Align**, **Off**. Set up the analyzer as follows:

FREQUENCY, Center Freq, 50 MHz (or as indicated in Table 2-74) SPAN, 150 kHz (or as indicated in Table 2-74) AMPLITUDE, Ref Level, -10 dBm, Attenuation 0 dB AMPLITUDE, Scale/Div, 10 dB BW/Avg, Resolution BW, 30 kHz (or as indicated in Table 2-74) BW/Avg, Video BW, 300 Hz (or as indicated in Table 2-74)

- 13.On the synthesized sweeper 2, set the appropriate power level to the setting recorded in Table 2-73. Then set RF to Off.
- 14.On the analyzer, press Peak Search (or Search).
- 15.Adjust the power level of the synthesized sweeper 1 to achieve a marker amplitude reading within 0.5 dB of the value indicated in Table 2-73. The marker amplitude is the uncompressed amplitude.

16.On the analyzer, press the following keys:

Peak Search (or Search) Marker Delta

- 17.On the synthesized sweeper 2, set RF to On. The amplitude should be the same as recorded in Table 2-73.
- 18.0n the spectrum analyzer, press Peak Search (or Search). This is the compressed amplitude. The $\Delta Mkr1$ amplitude is the measured gain compression.
- 19.Record the measured gain compression in the performance test record as the TR Entries indicated in Table 2-74.
- 20.Repeat step 10 through step 19 for each set of settings in Table 2-73 and Table 2-74 for frequencies less than or equal to 2503 MHz.
- 21.Replace the directional bridge with the directional coupler.
- 22.Repeat step 10 through step 19 for the remaining frequencies in Table 2-73.

34. Displayed Average Noise Level: HP E4401B and HP E4411B

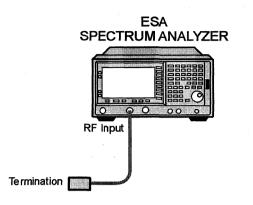
This performance test measures the displayed average noise level (DANL) within the frequency range specified. The analyzer input is terminated in its characteristic impedance. If the analyzer is also equipped with a tracking generator (Option 1DN or 1DQ), the tracking generator is also terminated in its characteristic impedance and set for maximum leveled output power.

The test tunes the analyzer frequency across the band, uses the marker to locate the frequency with the highest response, and then reads the average noise in a narrow span.

To reduce measurement uncertainty due to input attenuator switching and resolution bandwidth switching, a reference level offset is added. The 50 MHz alignment signal is used as the amplitude reference for determining the amount of offset required. The offset is removed at the end of the test by pressing instrument preset.

For analyzers equipped with narrow resolution bandwidths (Option 1DR), DANL is also tested in the 10 Hz resolution bandwidth setting.

The related adjustment for this procedure is "Frequency Response."


Equipment Required

Termination, 50 Ω, Type-N (m) (2 required for Options 1DN or 1DQ)

Additional Equipment for 75 Ω Input

Termination, 75 Ω , Type-N (m) (2 required for Option 1DQ) Adapter, Type-N (f), to BNC (m), 75 Ω

Figure 2-50 Displayed Average Noise Level Test Setup

wi767a

CAUTION Use only 75 Ω cables, connectors, or adapters on instruments with 75 Ω connectors, or damage to the connectors will occur.

Procedure

- 1. Set up the analyzers as shown in Figure 2-50.
- 2. On the analyzer, press **Preset**, then wait for the preset routine to finish. Set the analyzer by pressing the following keys:

```
Input/Output (or Input), Amptd Ref Out (On)
FREQUENCY, 50 MHz
SPAN, 2 kHz
AMPLITUDE, -25 dBm (50 \ \Omega \ Input \ only)
AMPLITUDE, +28.75 dBmV (75 \ \Omega \ Input \ only)
AMPLITUDE, Attenuation, 10 dB
AMPLITUDE, More, Y Axis Units (or Amptd Units), dBm
BW/Avg, Resolution BW, 1 kHz
BW/Avg, Video BW, 1 kHz
Det/Demod, Detector, Sample, Return
```

- 3. On the analyzer, press Single.
- 4. On the analyzer, press **Peak Search (or Search)** and record the Ref Amptd reading below.

Ref Amptd _____ dB

5. On the analyzer, press the following keys:

AMPLITUDE, Attenuation, 0 dB SPAN, 20 kHz BW/Avg, Resolution BW, 1 kHz Performance Verification Tests 34. Displayed Average Noise Level: HP E4401B and HP E4411B

BW/Avg, Video BW, 30 Hz

- 6. On the analyzer, press Single.
- 7. On the analyzer, press **Peak Search (or Search)** and record the amplitude reading below as Meas Amptd(1 kHz RBW).

Meas Amptd(1 kHz RBW)_____ dB

8. Calculate the necessary reference level offset by subtracting the Meas Amptd in step 7 from the Ref Amptd in step 4. If the calculated Ref Lvl Offst is greater that +0.05 dB or less than -0.05 dB, record the Ref Lvl Offst value below. Otherwise, enter 0.

Ref Lvl Offset(1 kHz RBW) = Ref Amptd – Meas Amptd(1 kHz RBW)

Ref Lvl Offst(1 kHz RBW)_____ dB

9. If the analyzer is not equipped with Option 1DR, proceed to step 14.

10.On the analyzer, press the following keys:

AMPLITUDE, Attenuation, 0 dB SPAN, 500 Hz BW/Avg, Resolution BW, 10 Hz BW/Avg, Video BW, 1 Hz

11.On the analyzer, press Single.

12.On the analyzer, press **Peak Search (or Search)** and record the amplitude reading below as Meas Amptd(10 Hz RBW).

Meas Amptd(10 Hz RBW)_____ dB

13.Calculate the necessary reference level offset by subtracting the Meas Amptd in step 12 from the Ref Amptd in step 4. If the calculated Ref Lvl Offst is greater that +0.05 dB or less than -0.05 dB, record the Ref Lvl Offst value below. Otherwise, enter 0.

Ref Lvl Offset(10 Hz RBW) = Ref Amptd – Meas Amptd(10 Hz RBW)

Ref Lvl Offst(10 Hz RBW)_____ dB

- 14.On the analyzer, press Input, Amptd Ref (Off), then AMPLITUDE, More, Ref Lvi Offst, and enter the value recorded in step 8.
- 15.Connect the 50 Ω termination to the analyzer input as shown in Figure 2-50.

75 Ω Input only: Connect the 75 Ω termination to the analyzer Input 75 Ω using an adapter.

- 16. If the analyzer is equipped with Option 1DN, 50 Ω tracking generator, do the following:
 - a. On the analyzer, press Source, Amplitude, 0 dBm.
 - b. Connect a 50 Ω termination to the RF OUT 50 Ω
- 17.If the analyzer is equipped with Option 1DQ, 75 Ω Tracking Generator, do the following:
 - a. On the analyzer, press Source, Amplitude, -6 dBm.
 - b. Connect a 75 Ω termination to the RF OUT 75 Ω .

Measurement Sequence

The DANL Measurement Sequence tables, for analyzers with 50Ω inputs and for analyzers with 75Ω inputs, list the procedures to be performed and the parameters to be used in each procedure. The table also lists the TR Entry number for recording the results in the performance verification test record.

- If the analyzer is not equipped with Option 1DR, narrow bandwidths, or Option 1DS, preamplifier, perform only those procedures with an "X" ("X" = "Don't Care") in each of the Analyzer Options columns. For each procedure performed, use the appropriate Procedure Parameters as described in the DANL Measurement Sequence table. Record the display line amplitude setting as the indicated TR Entry in the performance verification test record.
- 2. If the analyzer is equipped with Option 1DR, but not Option 1DS, perform those procedures with an "X" in each of the Analyzer Options columns, and those procedures with a "Y" in the 1DR option column. For each procedure performed, use the appropriate Procedure Parameters as described in the DANL Measurement Sequence table. Record the display line amplitude setting as the indicated TR Entry in the performance verification test record.
- 3. If the analyzer is equipped with Option 1DS, but not Option 1DR, perform those procedures with an "X" in each of the Analyzer Options columns, and those procedures with a "Y" in the 1DS Option column. For each procedure performed, use the appropriate Procedure Parameters as described in the DANL Measurement Sequence table. Record the display line amplitude setting as the indicated TR Entry in the performance verification test record.
- 4. If the analyzer is equipped with both Option 1DS and Option 1DR, perform all procedures. For each procedure performed, use the appropriate Procedure Parameters as described in the DANL Measurement Sequence table. Record the display line amplitude setting as the indicated TR Entry in the performance verification test record.

5. After performing all applicable DANL measurement procedures, proceed to Remove Reference Level Offset.

Table 2-75DANL Measurement Sequence, 50Ω Inputs

Analyzer Procedure Options		Pr	Procedure Parameters				
1DR	1DS		Start Freq	Stop Freq	Test RBW	Preamp State	
X	X	Measure DANL at 400 kHz	N/A	N/A	1 kHz	Off	1
X	X	Measure DANL	1 MHz	10 MHz	1 kHz	Off	2
X	X	Measure DANL	10 MHz	500 MHz	1 kHz	Off	3
X	X	Measure DANL	500 MHz	1 GHz	1 kHz	Off	4
X	X	Measure DANL	1 GHz	1.5 GHz	1 kHz	Off	5
X	Y	Measure DANL at 400 kHz	N/A	N/A	1 kHz	On	6
X	Y	Measure DANL	1 MHz	10 MHz	1 kHz	On	7
X	Y	Measure DANL	10 MHz	500 MHz	1 kHz	On	8
X	Y	Measure DANL	500 MHz	1 GHz	1 kHz	On	9
X	Y	Measure DANL	1 GHz	1.5 GHz	1 kHz	On	10
Y	X	Measure DANL at 400 kHz	N/A	N/A	10 Hz	Off	11
Y	X	Measure DANL	1 MHz	10 MHz	10 Hz	Off	12
Y	X	Measure DANL	10 MHz	500 MHz	10 Hz	Off	13
Y	X	Measure DANL	500 MHz	1 GHz	10 Hz	Off	14
Y	X	Measure DANL	1 GHz	1.5 GHz	10 Hz	Off	15
Y	Y	Measure DANL at 400 kHz	N/A	N/A	10 Hz	On	16
Y	Y	Measure DANL	1 MHz	10 MHz	10 Hz	On	17
Y	Y	Measure DANL	10 MHz	500 MHz	10 Hz	On	18
Y	Y	Measure DANL	500 MHz	1 GHz	10 Hz	On	19
Y	Y	Measure DANL	1 GHz	1.5 GHz	10 Hz	On	20

Anal Opti	•				ers	TR Entry	
1DR	1DS		Start Freq	Stop Freq	Test RBW	Preamp State	
X	X	Measure DANL	1 MHz	10 MHz	1 kHz	Off	21
X	X	Measure DANL	10 MHz	500 MHz	1 kHz	Off	22
X	X	Measure DANL	500 MHz	1 GHz	1 kHz	Off	23
X	X	Measure DANL	1 GHz	1.5 GHz	1 kHz	Off	24
X	x	Measure DANL	1 MHz	10 MHz	1 kHz	On	25
X	Y	Measure DANL	10 MHz	$500 \mathrm{~MHz}$	1 kHz	On	26
X	Y	Measure DANL	500 MHz	1 GHz	1 kHz	On	27
X	Y	Measure DANL	1 GHz	1.5 GHz	1 kHz	On	28
X	X	Measure DANL	1 MHz	10 MHz	1 kHz	Off	29
Y	X	Measure DANL	10 MHz	500 MHz	10 Hz	Off	30
Y	X	Measure DANL	500 MHz	1 GHz	10 Hz	Off	31
Y	X	Measure DANL	1 GHz	1.5 GHz	10 Hz	Off	32
x	X	Measure DANL	1 MHz	10 MHz	1 kHz	On	33
Y	Y	Measure DANL	10 MHz	500 MHz	10 Hz	On	34
Y	Y	Measure DANL	500 MHz	1 GHz	10 Hz	On	35
Y	Y	Measure DANL	1 GHz	1.5 GHz	10 Hz	On	36

 Table 2-76
 DANL Measurement Sequence, 75 Ω Inputs

Measuring Displayed Average Noise Level (DANL)

1. Set the analyzer as follows using the start and stop frequencies, test RBW and preamp state as specified in Table 2-75 or Table 2-76:

Auto Couple FREQUENCY, Start Freq, (enter specified start frequency) FREQUENCY, Stop Freq, (enter specified stop frequency) AMPLITUDE, -70 dBm (50Ω Input only) Attenuation, 0 dB AMPLITUDE, More, Y Axis Units (or Amptd Units), dBmV, More, Ref Level, -21.24 dBmV (75Ω Input only) AMPLITUDE, More, Ref LvI Offset, (enter Ref LvI Offset (1 kHz) if test RBW = 1 kHz) AMPLITUDE, More, Ref LvI Offset, (enter Ref LvI Offset (10 Hz) if test RBW = 10 Hz) BW/Avg, Resolution BW, 100 kHz BW/Avg, Video BW, 10 kHz AMPLITUDE, More, Int Preamp (Off) (*if preamp state = Off*) AMPLITUDE, More, Int Preamp (On) (*if preamp state = On*) Sweep, Sweep (Cont) Sweep, Sweep Time (Auto)

3. On the analyzer, press Single, View/Trace, Trace 1, Clear Write, BW/Avg, Average Type (Video), Averages, 3, Enter, Single.

Wait until VAvg 3 is displayed to the left of the graticule (the analyzer will take three sweeps, then stop).

- 2. On the analyzer, press Peak Search (or Search).
- 3. On the analyzer, press BW/Avg, Average (Off).
- 4. On the analyzer, press Marker \rightarrow , Mkr \rightarrow CF.
- 5. If the test RBW is 1 kHz, press Span, 20 kHz.

If the test RBW is 10 Hz, press Span, 500 Hz.

6. If the test RBW is 1 kHz, press BW/Avg, Resolution BW, 1 kHz, Video BW, 30 Hz.

If the test $RBW \ is \ 10 \ Hz, \ press \ \text{BW/Avg}, \ \text{Resolution BW}, \ 10 \ \text{Hz}, \ \text{Video} \ \text{BW}, \ 1 \ \text{Hz}.$

- 7. On the analyzer, press Single and wait for the new sweep to finish.
- 8. On the analyzer, press **Display**, **Display Line** (On), and adjust the display line so that it is centered on the average trace noise, ignoring any residual responses (refer to the Residual Responses verification test for any suspect residuals).

Measuring Displayed Average Noise Level at 400 kHz

1. Press **FREQUENCY**, **Center Freq**, **400 kHz**. Set the analyzer by pressing the following keys:

SPAN, 20 kHz (if test $RBW = 1 \ kHz$) SPAN, 500 Hz (if test $RBW = 10 \ Hz$) AMPLITUDE, -70 dBm (50 Ω Input only) Attenuation, 0 dB AMPLITUDE, More, Y Axis Units (or Amptd Units), dBmV, More, Ref Level, -21.24 dBmV (75 Ω Input only) AMPLITUDE, More, Ref LvI Offset, (enter Ref LvI Offset (1 kHz) if test $RBW = 1 \ kHz$) AMPLITUDE, More, Ref LvI Offset, (enter Ref LvI Offset (10 Hz) if test $RBW = 10 \ Hz$) AMPLITUDE, More, Int Preamp (Off) (if preamp state = Off) AMPLITUDE, More, Int Preamp (On) (if preamp state = On) BW/Avg, Resolution BW, 1 kHz (if test $RBW = 10 \ Hz$) BW/Avg, Resolution BW, 10 Hz (if test $RBW = 10 \ Hz$) BW/Avg, Video BW, 30 Hz (if test $RBW = 1 \ kHz$) BW/Avg, Video BW, 30 Hz (*if test* RBW = 10 Hz)

- 2. On the analyzer, press Single and wait for a new sweep to complete.
- 3. On the analyzer, press **Display**, **Display Line** (On). Adjust the display line so that it is centered on the average trace noise, ignoring any residual responses (refer to the Residual Responses verification test for any suspect residuals).

Remove Reference Level Offset

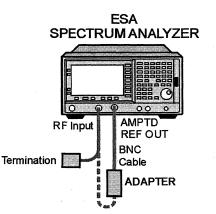
- 1. Press AMPLITUDE, More, Ref LvI Offst, 0 dB.
- 2. On the analyzer, press Preset.

35. Displayed Average Noise Level: HP E4402B and HP E4403B

This performance test measures the displayed average noise level (DANL) within the frequency range specified. The analyzer input is terminated in its characteristic impedance. If the analyzer is also equipped with a tracking generator (Option 1DN), the tracking generator is also terminated in its characteristic impedance and set for maximum leveled output power.

The test tunes the analyzer frequency across the band, uses the marker to locate the frequency with the highest response, and then reads the average noise in a narrow span.

To reduce measurement uncertainty due to input attenuator switching and resolution bandwidth switching, a reference level offset is added. The 50 MHz alignment signal is used as the amplitude reference for determining the amount of offset required. The offset is removed at the end of the test by pressing instrument preset.


For analyzers equipped with narrow resolution bandwidths (Option 1DR), DANL is also tested in the 10 Hz resolution bandwidth setting.

The related adjustment for this procedure is "Frequency Response."

Equipment Required

Termination, 50 Ω , Type-N (m) (2 required for Option 1DN) Cable, BNC Adapter, Type-N (m) to BNC (f)

w1752a

Procedure

- 1. Connect the AMPTD REF OUT to the Input 50 Ω using a BNC cable and adapter as shown in Figure 2-51.
- 2. On the analyzer, press **Preset**, then wait for the preset routine to finish. Set the analyzer by pressing the following keys:

Input/Output (or Input), Amptd Ref Out (On) FREQUENCY, 50 MHz SPAN, 2 kHz AMPLITUDE, -20 dBm AMPLITUDE, Attenuation, 10 dB AMPLITUDE, More, Y Axis Units (or Amptd Units), dBm BW/Avg, Resolution BW, 1 kHz BW/Avg, Video BW, 1 kHz Det/Demod, Detector, Sample, Return

- 3. On the analyzer, press Single.
- 4. On the analyzer, press **Peak Search (or Search)** and record the Ref Amptd reading below.

Ref Amptd _____ dB

5. On the analyzer, press the following keys:

AMPLITUDE, Attenuation, 0 dB SPAN, 20 kHz BW/Avg, Resolution BW, 1 kHz BW/Avg, Video BW, 30 Hz

6. On the analyzer, press Single.

Performance Verification Tests 35. Displayed Average Noise Level: HP E4402B and HP E4403B

7. On the analyzer, press **Peak Search (or Search)** and record the amplitude reading below as Meas Amptd(1 kHz RBW).

Meas Amptd(1 kHz RBW)_____ dB

8. Calculate the necessary reference level offset by subtracting the Meas Amptd in step 7 from the Ref Amptd in step 4. If the calculated Ref Lvl Offst is greater that +0.05 dB or less than -0.05 dB, record the Ref Lvl Offst value below. Otherwise, enter 0.

Ref Lvl Offset(1 kHz RBW) = Ref Amptd – Meas Amptd(1 kHz RBW)

Ref Lvl Offst(1 kHz RBW)_____ dB

9. If the analyzer is not equipped with Option 1DR, proceed to step 14.

10.On the analyzer, press the following keys:

AMPLITUDE, Attenuation, 0 dB SPAN, 500 Hz BW/Avg, Resolution BW, 10 Hz BW/Avg, Video BW, 1 Hz

- 11.On the analyzer, press Single.
- 12.On the analyzer, press **Peak Search (or Search)** and record the amplitude reading below as Meas Amptd(10 Hz RBW).

Meas Amptd(10 Hz RBW)_____ dB

- 13.Calculate the necessary reference level offset by subtracting the Meas Amptd in step 12 from the Ref Amptd in step 4. If the calculated Ref Lvl Offst is greater that +0.05 dB or less than -0.05 dB, record the Ref Lvl Offst value below. Otherwise, enter 0.
- Ref Lvl Offset(10 Hz RBW) = Ref Amptd Meas Amptd(10 Hz RBW)

Ref Lvl Offst(10 Hz RBW)_____ dB

- 14.On the analyzer, press Input, Amptd Ref Out (Off), then AMPLITUDE, More, Ref Lvi Offst, and enter the value recorded in step 8.
- 15.Connect the 50 Ω termination to the analyzer input as shown in Figure 2-51.
- 16.Disconnect the BNC cable and adapter from the AMPTD REF OUT and the Input 50 Ω
- 17. If the analyzer is equipped with Option 1DN, 50 Ω tracking generator, do the following:
 - a. On the analyzer, press Source, Amplitude, 0 dBm.
 - b. Connect a 50 Ω termination to the RF OUT 50 Ω

Measurement Sequence

The DANL Measurement Sequence tables list the procedures to be performed and the parameters to be used in each procedure. The table also lists the TR Entry number for recording the results in the performance verification test record.

- If the analyzer is not equipped with Option 1DR, narrow bandwidths, or Option 1DS, preamplifier, perform only those procedures with an "X" ("X" = "Don't Care") in each of the Analyzer Options columns. For each procedure performed, use the appropriate Procedure Parameters as described in the DANL Measurement Sequence table. Record the display line amplitude setting as the indicated TR Entry in the performance verification test record.
- 2. If the analyzer is equipped with Option 1DR, but not Option 1DS, perform those procedures with an "X" in each of the Analyzer Options columns, and those procedures with a "Y" in the 1DR option column. For each procedure performed, use the appropriate Procedure Parameters as described in the DANL Measurement Sequence table. Record the display line amplitude setting as the indicated TR Entry in the performance verification test record.
- 3. If the analyzer is equipped with Option 1DS, but not Option 1DR, perform those procedures with an "X" in each of the Analyzer Options columns, and those procedures with a "Y" in the 1DS Option column. For each procedure performed, use the appropriate Procedure Parameters as described in the DANL Measurement Sequence table. Record the display line amplitude setting as the indicated TR Entry in the performance verification test record.
- 4. If the analyzer is equipped with both Option 1DS and Option 1DR, perform all procedures. For each procedure performed, use the appropriate Procedure Parameters as described in the DANL Measurement Sequence table. Record the display line amplitude setting as the indicated TR Entry in the performance verification test record.
- 5. After performing all applicable DANL measurement procedures, proceed to Remove Reference Level Offset.

Analyzer I Options		Procedure	P	TR Entry ^a			
1DR	1DS		Start Freq	Stop Freq	Test RBW	Preamp State	
X	X	Measure DANL	10 MHz	1 GHz	1 kHz	Off	1
X	X	Measure DANL	1 GHz	2 GHz	1 kHz	Off	2
X	X	Measure DANL	2 GHz	3 GHz	1 kHz	Off	3
X	Y	Measure DANL	10 MHz	1 GHz	1 kHz	On	4/13
X	Y	Measure DANL	1 GHz	2 GHz	1 kHz	On	5/14
X	Y	Measure DANL	2 GHz	3 GHz	1 kHz	On	6/15
Y	X	Measure DANL	10 MHz	1 GHz	10 Hz	Off	7
Y	X	Measure DANL	1 GHz	2 GHz	10 Hz	Off	8
Y	X	Measure DANL	2 GHz	3 GHz	10 Hz	Off	9
Y	Y	Measure DANL	10 MHz	1 GHz	10 Hz	On	10/16
Y	Y	Measure DANL	1 GHz	2 GHz	10 Hz	On	11/17
Y	Y	Measure DANL	2 GHz	3 GHz	10 Hz	On	12/18

Table 2-77 DANL Measurement Sequence

a. There are two possible TR Entries for measurements made with Preamp On, depending upon the ambient temperature. The first entry is for measurements made with an ambient temperature outside of the 20 to 30 °C range, but within the 0 to 55 °C range. The second entry is for measurements made with an ambient temperature within the 20 to 30 °C range.

Measuring Displayed Average Noise Level (DANL)

1. Set the analyzer as follows using the start and stop frequencies, test RBW and preamp state as specified in Table 2-77:

Auto Couple FREQUENCY, Start Freq, (enter specified start frequency) FREQUENCY, Stop Freq, (enter specified stop frequency) AMPLITUDE, -70 dBm Attenuation, 0 dB AMPLITUDE, More, Ref Lvl Offset, (enter Ref Lvl Offset (1 kHz) if test RBW = 1 kHz) AMPLITUDE, More, Ref Lvl Offset, (enter Ref Lvl Offset (10 Hz) if test RBW = 10 Hz) BW/Avg, Resolution BW, 1 MHz BW/Avg, Video BW, 10 kHz AMPLITUDE, More, Int Preamp (Off) (if preamp state = Off) AMPLITUDE, More, Int Preamp (On) (if preamp state = On) Sweep, Sweep (Cont) Sweep, Sweep Time (Auto)

3. On the analyzer, press Single, View/Trace, Trace 1, Clear Write, BW/Avg, Average Type (Video), Averages, 3, Enter, Single.

Wait until VAvg 3 is displayed to the left of the graticule (the analyzer will take three sweeps, then stop).

- 2. On the analyzer, press Peak Search (or Search).
- 3. On the analyzer, press BW/Avg, Average (Off).
- 4. On the analyzer, press Marker \rightarrow , Mkr \rightarrow CF.
- 5. If the test RBW is 1 kHz, press Span, 20 kHz.

If the test RBW is 10 Hz, press Span, 500 Hz.

6. If the test RBW is 1 kHz, press BW/Avg, Resolution BW, 1 kHz, Video BW, 30 Hz.

If the test RBW is 10 Hz, press BW/Avg, Resolution BW, 10 Hz, Video BW, 1 Hz.

- 7. On the analyzer, press Single and wait for the new sweep to finish.
- 8. On the analyzer, press **Display**, **Display** Line (On), and adjust the display line so that it is centered on the average trace noise, ignoring any residual responses (refer to the Residual Responses verification test for any suspect residuals).

Remove Reference Level Offset

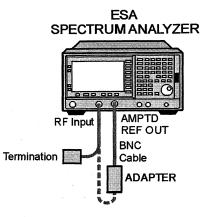
- 1. Press AMPLITUDE, More, Ref Lvi Offst, 0 dB.
- 2. On the analyzer, press **Preset**.

36. Displayed Average Noise Level: HP E4404B and E4405B

This performance test measures the displayed average noise level (DANL) within the frequency range specified. The analyzer input is terminated in its characteristic impedance. If the analyzer is also equipped with a tracking generator (Option 1DN), the tracking generator is also terminated in its characteristic impedance and set for maximum leveled output power.

The test tunes the analyzer frequency across the band, uses the marker to locate the frequency with the highest response, and then reads the average noise in a narrow span.

To reduce measurement uncertainty due to input attenuator switching and resolution bandwidth switching, a reference level offset is added. The 50 MHz alignment signal is used as the amplitude reference for determining the amount of offset required. The offset is removed at the end of the test by pressing instrument preset.


For analyzers equipped with narrow resolution bandwidths (Option 1DR), DANL is also tested in the 10 Hz resolution bandwidth setting.

The related adjustment for this procedure is "Frequency Response".

Equipment Required

Termination, 50 Ω, Type-N (m) (2 required for Option 1DN) Cable, BNC Adapter, Type-N (m) to BNC (f)

Figure 2-52 Displayed Average Noise Level Test Setup

w1752a

Procedure

- 1. Connect the AMPTD REF OUT to the Input 50 Ω using a BNC cable and adapter as shown in Figure 2-52.
- 2. On the analyzer, press **Preset**, then wait for the preset routine to finish. Set the analyzer by pressing the following keys:

Input/Output (or Input), Amptd Ref Out (On) FREQUENCY, 50 MHz SPAN, 2 kHz AMPLITUDE, -20 dBm AMPLITUDE, Attenuation, 10 dB BW/Avg, Resolution BW, 1 kHz BW/Avg, Video BW, 1 kHz Det/Demod, Detector, Sample, Return

- 3. On the analyzer, press Single.
- 4. On the analyzer, press **Peak Search (or Search)** and record the Ref Amptd reading below.

Ref Amptd _____ dB

5. On the analyzer, press the following keys:

AMPLITUDE, Attenuation, 0 dB SPAN, 20 kHz BW/Avg, Resolution BW, 1 kHz BW/Avg, Video BW, 30 Hz

- 6. On the analyzer, press Single.
- 7. On the analyzer, press **Peak Search (or Search)** and record the amplitude reading below as Meas Amptd(1 kHz RBW).

36. Displayed Average Noise Level: HP E4404B and E4405B

Meas Amptd(1 kHz RBW)_____ dB

8. Calculate the necessary reference level offset by subtracting the Meas Amptd in step 7 from the Ref Amptd in step 4. If the calculated Ref Lvl Offst is greater that +0.05 dB or less than -0.05 dB, record the Ref Lvl Offst value below. Otherwise, enter 0.

Ref Lvl Offset(1 kHz RBW) = Ref Amptd – Meas Amptd(1 kHz RBW)

Ref Lvl Offst(1 kHz RBW)_____ dB

9. If the analyzer is not equipped with Option 1DR, proceed to step 14.

10.On the analyzer, press the following keys:

AMPLITUDE, Attenuation, 0 dB SPAN, 500 Hz BW/Avg, Resolution BW, 10 Hz BW/Avg, Video BW, 1 Hz

- 11.On the analyzer, press Single.
- 12.On the analyzer, press **Peak Search (or Search)** and record the amplitude reading below as Meas Amptd(10 Hz RBW).

Meas Amptd(10 Hz RBW)_____ dB

13.Calculate the necessary reference level offset by subtracting the Meas Amptd in step 12 from the Ref Amptd in step 4. If the calculated Ref Lvl Offst is greater that +0.05 dB or less than -0.05 dB, record the Ref Lvl Offst value below. Otherwise, enter 0.

Ref Lvl Offset(10 Hz RBW) = Ref Amptd – Meas Amptd(10 Hz RBW)

Ref Lvl Offst(10 Hz RBW)_____ dB

- 14.On the analyzer, press Input, Amptd Ref Out (Off), then AMPLITUDE, More, Ref Lvi Offst, and enter the value recorded in step 7.
- 15.Connect the 50 Ω termination to the analyzer input as shown in Figure 2-52.
- 16.Disconnect the BNC cable and adapter from the AMPTD REF OUT and the Input 50 Ω
- 17. If the analyzer is equipped with Option 1DN, 50 Ω tracking generator, do the following:
 - a. On the analyzer, press Source, Amplitude, 0 dBm.
 - b. Connect a 50 Ω termination to the RF OUT 50 Ω

Measurement Sequence

The DANL Measurement Sequence tables list the procedures to be performed and the parameters to be used in each procedure. The tables also list the TR Entry number for recording the results in the performance verification test record.

- If the analyzer is not equipped with Option 1DR, narrow bandwidths, or Option 1DS, preamplifier, perform only those procedures with an "X" ("X" = "Don't Care") in each of the Analyzer Options columns. For each procedure performed, use the appropriate Procedure Parameters as described in the DANL Measurement Sequence table. Record the display line amplitude setting as the indicated TR Entry in the performance verification test record.
- 2. If the analyzer is equipped with Option 1DR, but not Option 1DS, perform those procedures with an "X" in each of the Analyzer Options columns, and those procedures with a "Y" in the 1DR option column. For each procedure performed, use the appropriate Procedure Parameters as described in the DANL Measurement Sequence table. Record the display line amplitude setting as the indicated TR Entry in the performance verification test record.
- 3. If the analyzer is equipped with Option 1DS, but not Option 1DR, perform those procedures with an "X" in each of the Analyzer Options columns, and those procedures with a "Y" in the 1DS Option column. For each procedure performed, use the appropriate Procedure Parameters as described in the DANL Measurement Sequence table. Record the display line amplitude setting as the indicated TR Entry in the performance verification test record.
- 4. If the analyzer is equipped with both Option 1DS and Option 1DR, perform all procedures. For each procedure performed, use the appropriate Procedure Parameters as described in the DANL Measurement Sequence table. Record the display line amplitude setting as the indicated TR Entry in the performance verification test record.
- 5. After performing all applicable DANL measurement procedures, proceed to Remove Reference Level Offset.

	Analyzer Procedure Options		I	TR Entry ^a			
1DR	1DS		Start Freq	Stop Freq	Test RBW	Preamp State	
х	X	Measure DANL	10 MHz	1 GHz	1 kHz	Off	1
Х	X	Measure DANL	1 GHz	2 GHz	1 kHz	Off	2
Х	X	Measure DANL	2 GHz	3 GHz	1 kHz	Off	3
X	X	Measure DANL	3 GHz	6 GHz	1 kHz	Off	4
X	X	Measure DANL	6 GHz	6.7 GHz	1 kHz	Off	5
x	Y	Measure DANL	10 MHz	1 GHz	1 kHz	On	6/20
x	Y	Measure DANL	1 GHz	2 GHz	1 kHz	On	7/21
х	Y	Measure DANL	2 GHz	3 GHz	1 kHz	On	8/22
Y	X	Measure DANL	10 MHz	1 GHz	10 Hz	Off	9
Y	X	Measure DANL	1 GHz	2 GHz	10 Hz	Off	10
Y	X	Measure DANL	2 GHz	3 GHz	10 Hz	Off	11
Y	X	Measure DANL	3 GHz	6 GHz	10 Hz	Off	12
Y	x	Measure DANL	6 GHz	6.7 GHz	10 Hz	Off	13
Y	Y	Measure DANL	10 MHz	1 GHz	10 Hz	On	14/23
Y	Y	Measure DANL	1 GHz	2 GHz	10 Hz	On	15/24
Y	Y	Measure DANL	2 GHz	3 GHz	10 Hz	On	16/25

Table 2-78DANL Measurement Sequence, HP E4404B

a. There are two possible TR Entries for measurements made with Preamp On, depending upon the ambient temperature. The first entry is for measurements made with an ambient temperature outside of the 20 to 30 °C range, but within the 0 to 55 °C range. The second entry is for measurements made with an ambient temperature within the 20 to 30 °C range.

	Analyzer Procedure Options]	Procedure Parameters				
1DR	1DS		Start Freq	Stop Freq	Test RBW	Preamp State		
X	x	Measure DANL	10 MHz	1 GHz	1 kHz	Off	1	
Х	X	Measure DANL	1 GHz	2 GHz	1 kHz	Off	2	
Х	X	Measure DANL	2 GHz	3 GHz	1 kHz	Off	3	
Х	X	Measure DANL	3 GHz	6 GHz	1 kHz	Off	4	
X	X	Measure DANL ^c	6 GHz	12 GHz	1 kHz	Off	5	
X	X	Measure DANL ^c	12 GHz	13.2 GHz	1 kHz	Off	6	
X	Y	Measure DANL	10 MHz	1 GHz	1 kHz	On	7/26	
x	Y	Measure DANL	1 GHz	2 GHz	1 kHz	On	8/27	
Х	Y	Measure DANL	2 GHz	3 GHz	1 kHz	On	9/28	
Y	x	Measure DANL	10 MHz	1 GHz	10 Hz	Off	10	
Y	X	Measure DANL	1 GHz	2 GHz	10 Hz	Off	11	
Y	X	Measure DANL	2 GHz	3 GHz	10 Hz	Off	12	
Y	X	Measure DANL	3 GHz	6 GHz	10 Hz	Off	13	
Y	X	Measure DANL	6 GHz	12 GHz	10 Hz	Off	14	
Y	X	Measure DANL	12 GHz	13.2 GHz	10 Hz	Off	16	
Y	Y	Measure DANL	10 MHz	1 GHz	10 Hz	On	17/29	
Y	Y	Measure DANL	1 GHz	2 GHz	10 Hz	On	18/30	
Y	Y	Measure DANL	2 GHz	3 GHz	10 Hz	On	19/31	

Table 2-79DANL Measurement Sequence, HP E4405B

a. There are two possible TR Entries for measurements made with Preamp On, depending upon the ambient temperature. The first entry is for measurements made with an ambient temperature outside of the 20 to 30 °C range, but within the 0 to 55 °C range. The second entry is for measurements made with an ambient temperature within the 20 to 30 °C range.

Measuring Displayed Average Noise Level (DANL)

1. Set the analyzer as follows using the start and stop frequencies, test RBW and preamp state as specified in Table 2-78 for HP E4404B or Table 2-79 for HP E4405B:

Auto Couple FREQUENCY, Start Freq, (enter specified start frequency) FREQUENCY, Stop Freq, (enter specified stop frequency) AMPLITUDE, -70 dBm Attenuation 0 dB AMPLITUDE, More, Ref Lvl Offset, (enter Ref Lvl Offset (1 kHz) if test RBW = 1 kHz) AMPLITUDE, More, Ref Lvl Offset, (enter Ref Lvl Offset (10 Hz) if test RBW = 10 Hz) BW/Avg, Resolution BW, 1 MHz BW/Avg, Video BW, 10 kHz AMPLITUDE, More, Int Preamp (Off) (if preamp state = Off) AMPLITUDE, More, Int Preamp (On) (if preamp state = On) Sweep, Sweep (Cont) Sweep, Sweep Time (Auto)

- 2. If the analyzer is equipped with Option 1DN and the current stop frequency is > 3 GHz, press **Source, Amplitude** (Off).
- 3. On the analyzer, press Single, View/Trace, Trace 1, Clear Write, BW/Avg, Average Type (Video), Averages, 3, Enter, Single.

Wait until VAvg 3 is displayed to the left of the graticule (the analyzer will take three sweeps, then stop).

- 4. On the analyzer, press Peak Search (or Search).
- 5. On the analyzer, press BW/Avg, Average (Off).
- 6. On the analyzer, press Marker \rightarrow , Mkr \rightarrow CF.
- 7. If the test RBW is 1 kHz, press Span, 20 kHz.

If the test RBW is 10 Hz, press Span, 500 Hz.

8. If the test RBW is 1 kHz, press BW/Avg, Resolution BW, 1 kHz, Video BW, 30 Hz.

If the test $RBW \ is \ 10 \ Hz$, press BW/Avg, Resolution BW, 10 Hz, Video BW, 1 Hz.

- 9. On the analyzer, press Single and wait for the new sweep to finish.
- 10.On the analyzer, press **Display, Display Line** (On), and adjust the display line so that it is centered on the average trace noise, ignoring any residual responses (refer to the Residual Responses verification test for any suspect residuals).

.

Remove Reference Level Offset

- 1. Press AMPLITUDE, More, Ref Lvi Offst, 0 dB.
- 2. On the analyzer, press **Preset**.

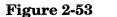
37. Displayed Average Noise Level: HP E4407B and HP E4408B

This performance test measures the displayed average noise level (DANL) within the frequency range specified. The analyzer input is terminated in its characteristic impedance. If the analyzer is also equipped with a tracking generator (Option 1DN), the tracking generator is also terminated in its characteristic impedance and set for maximum leveled output power.

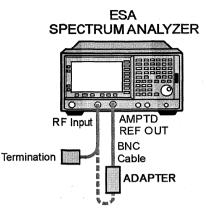
The test tunes the analyzer frequency across the band, uses the marker to locate the frequency with the highest response, and then reads the average noise in a narrow span.

To reduce measurement uncertainty due to input attenuator switching and resolution bandwidth switching, a reference level offset is added. The 50 MHz alignment signal is used as the amplitude reference for determining the amount of offset required. The offset is removed at the end of the test by pressing instrument preset.

For analyzers equipped with narrow resolution bandwidths (Option 1DR), DANL is also tested in the 10 Hz resolution bandwidth setting.


The related adjustment for this procedure is "Frequency Response."

Equipment Required


Termination, 50 Ω , Type-N (m) (2 required for Option 1DN) Cable, BNC Adapter, Type-N (m) to BNC (f)

Additional Equipment for Option BAB

Adapter, APC 3.5 (f) to Type-N (f)

Displayed Average Noise Level Test Setup

wl752a

Procedure

- 1. Connect the AMPTD REF OUT to the Input 50 Ω using a BNC cable and adapter as shown in Figure 2-53.
- 2. On the analyzer, press **Preset**, then wait for the preset routine to finish. Set the analyzer by pressing the following keys:

Input/Output (or Input), Amptd Ref Out (On) FREQUENCY, 50 MHz SPAN, 2 kHz AMPLITUDE, -20 dBm AMPLITUDE, Attenuation, 10 dB BW/Avg, Resolution BW, 1 kHz BW/Avg, Video BW, 1 kHz Det/Demod, Detector, Sample, Return

- 3. On the analyzer, press **Single**.
- 4. On the analyzer, press **Peak Search (or Search)** and record the Ref Amptd reading below.

Ref Amptd _____ dB

5. On the analyzer, press the following keys:

AMPLITUDE, Attenuation, 0 dB SPAN, 20 kHz BW/Avg, Resolution BW, 1 kHz BW/Avg, Video BW, 30 Hz

- 6. On the analyzer, press Single.
- 7. On the analyzer, press **Peak Search (or Search)** and record the amplitude reading below as Meas Amptd(1 kHz RBW).

37. Displayed Average Noise Level: HP E4407B and HP E4408B

Meas Amptd(1 kHz RBW)_____ dB

8. Calculate the necessary reference level offset by subtracting the Meas Amptd in step 7 from the Ref Amptd in step 4. If the calculated Ref Lvl Offst is greater that +0.05 dB or less than -0.05 dB, record the Ref Lvl Offst value below. Otherwise, enter 0.

Ref Lvl Offset(1 kHz RBW) = Ref Amptd – Meas Amptd(1 kHz RBW)

Ref Lvl Offst(1 kHz RBW)_____ dB

9. If the analyzer is not equipped with Option 1DR, proceed to step 14.

10.On the analyzer, press the following keys:

AMPLITUDE, Attenuation, 0 dB SPAN, 500 Hz BW/Avg, Resolution BW, 10 Hz BW/Avg, Video BW, 1 Hz

- 11.On the analyzer, press Single.
- 12.On the analyzer, press **Peak Search (or Search)** and record the amplitude reading below as Meas Amptd(10 Hz RBW).

Meas Amptd(10 Hz RBW)_____ dB

13.Calculate the necessary reference level offset by subtracting the Meas Amptd in step 12 from the Ref Amptd in step 4. If the calculated Ref Lvl Offst is greater that +0.05 dB or less than -0.05 dB, record the Ref Lvl Offst value below. Otherwise, enter 0.

Ref Lvl Offset(10 Hz RBW) = Ref Amptd – Meas Amptd(10 Hz RBW)

Ref Lvl Offst(10 Hz RBW)_____ dB

- 14.On the analyzer, press Input, Amptd Ref Out (Off), then AMPLITUDE, More, Ref Lvi Offst, and enter the value recorded in step 7.
- 15.Connect the 50 Ω termination to the analyzer input as shown in Figure 2-53.
- 16.Disconnect the BNC cable and adapter from the AMPTD REF OUT and the Input 50 Ω
- 17.If the analyzer is equipped with Option 1DN, 50 Ω tracking generator, do the following:
 - a. On the analyzer, press Source, Amplitude, 0 dBm.
 - b. Connect a 50 Ω termination to the RF OUT 50 Ω

Measurement Sequence

The DANL Measurement Sequence tables list the procedures to be performed and the parameters to be used in each procedure. The table also lists the TR Entry number for recording the results in the performance verification test record.

- If the analyzer is not equipped with Option 1DR, narrow bandwidths, or Option 1DS, preamplifier, perform only those procedures with an "X" ("X" = "Don't Care") in each of the Analyzer Options columns. For each procedure performed, use the appropriate Procedure Parameters as described in the DANL Measurement Sequence table. Record the display line amplitude setting as the indicated TR Entry in the performance verification test record.
- 2. If the analyzer is equipped with Option 1DR, but not Option 1DS, perform those procedures with an "X" in each of the Analyzer Options columns, and those procedures with a "Y" in the 1DR option column. For each procedure performed, use the appropriate Procedure Parameters as described in the DANL Measurement Sequence table. Record the display line amplitude setting as the indicated TR Entry in the performance verification test record.
- 3. If the analyzer is equipped with Option 1DS, but not Option 1DR, perform those procedures with an "X" in each of the Analyzer Options columns, and those procedures with a "Y" in the 1DS Option column. For each procedure performed, use the appropriate Procedure Parameters as described in the DANL Measurement Sequence table. Record the display line amplitude setting as the indicated TR Entry in the performance verification test record.
- 4. If the analyzer is equipped with both Option 1DS and Option 1DR, perform all procedures. For each procedure performed, use the appropriate Procedure Parameters as described in the DANL Measurement Sequence table. Record the display line amplitude setting as the indicated TR Entry in the performance verification test record.
- 5. After performing all applicable DANL measurement procedures, proceed to Remove Reference Level Offset.

Analyzer Options		Procedure	Procedure Parameters			TR Entry ^a	
1DR	1DS		Start Freq	Stop Freq	Test RBW	Preamp State	
X	Х	Measure DANL	10 MHz	1 GHz	1 kHz	Off	1
X	X	Measure DANL	1 GHz	2 GHz	1 kHz	Off	2
Х	X	Measure DANL	2 GHz	3 GHz	1 kHz	Off	3
X	X	Measure DANL	3 GHz	6 GHz	1 kHz	Off	4
X	х	Measure DANL	6 GHz	12 GHz	1 kHz	Off	5
X	X	Measure DANL	12 GHz	22 GHz	1 kHz	Off	6
Х	X	Measure DANL	22 GHz	26.5 GHz	1 kHz	Off	7
Х	Y	Measure DANL	10 MHz	1 GHz	1 kHz	On	8/21
Х	Y	Measure DANL	1 GHz	2 GHz	1 kHz	On	9/22
Х	Y	Measure DANL	2 GHz	3 GHz	1 kHz	On	10/23
Y	X	Measure DANL	10 MHz	1 GHz	10 Hz	Off	11
Y	Х	Measure DANL	1 GHz	2 GHz	10 Hz	Off	12
Y	X	Measure DANL	2 GHz	3 GHz	10 Hz	Off	13
Y	X	Measure DANL	3 GHz	6 GHz	$10\mathrm{Hz}$	Off	14
Y	X	Measure DANL	6 GHz	12 GHz	$10 \mathrm{Hz}$	Off	15
Y	X	Measure DANL	12 GHz	22 GHz	$10 \mathrm{Hz}$	Off	16
Y	х	Measure DANL	22 GHz	26.5 GHz	10 Hz	Off	17
Y	Y	Measure DANL	10 MHz	1 GHz	$10 \mathrm{Hz}$	On	18/24
Y	Y	Measure DANL	1 GHz	2 GHz	$10 \mathrm{Hz}$	On	19/25
Y	Y	Measure DANL	2 GHz	3 GHz	10 Hz	On	20/26

Table 2-80 DANL Measurement Sequence

a. There are two possible TR Entries for measurements made with Preamp On, depending upon the ambient temperature. The first entry is for measurements made with an ambient temperature outside of the 20 to 30 °C range, but within the 0 to 55 °C range. The second entry is for measurements made with an ambient temperature within the 20 to 30 °C range.

Measuring Displayed Average Noise Level

1. Set the analyzer as follows using the start and stop frequencies, test RBW and preamp state as specified in Table 2-77:

Auto Couple FREQUENCY, Start Freq, (enter specified start frequency) FREQUENCY, Stop Freq, (enter specified stop frequency) AMPLITUDE, -70 dBm Attenuation, 0 dB AMPLITUDE, More, Ref Lvl Offset, (enter Ref Lvl Offset (1 kHz) if test RBW = 1 kHz) AMPLITUDE, More, Ref Lvl Offset, (enter Ref Lvl Offset (10 Hz) if test RBW = 10 Hz) BW/Avg, Resolution BW, 1 MHz BW/Avg, Video BW, 10 kHz AMPLITUDE, More, Int Preamp (Off) (if preamp state = Off) AMPLITUDE, More, Int Preamp (On) (if preamp state = On) Sweep, Sweep (Cont) Sweep, Sweep Time (Auto)

- 2. If the analyzer is equipped with Option 1DN, press Source, Amplitude (Off).
- 3. On the analyzer, press Single, View/Trace, Trace 1, Clear Write, BW/Avg, Average Type (Video), Averages, 3, Enter, Single.

Wait until VAvg 3 is displayed to the left of the graticule (the analyzer will take three sweeps, then stop).

- 4. On the analyzer, press **Peak Search (or Search)**.
- 5. On the analyzer, press **BW/Avg**, Average (Off).
- 6. On the analyzer, press Marker \rightarrow , Mkr \rightarrow CF.
- 7. If the test RBW is 1 kHz, press Span, 20 kHz.

If the test RBW is 10 Hz, press Span, 500 Hz.

8. If the test RBW is 1 kHz, press **BW/Avg**, **Resolution BW**, 1 kHz, Video **BW**, 30 Hz.

If the test RBW is 10 Hz, press BW/Avg, Resolution BW, 10 Hz, Video BW, 1 Hz.

- 9. On the analyzer, press Single and wait for the new sweep to finish.
- 10.On the analyzer, press **Display**, **Display Line** (On), and adjust the display line so that it is centered on the average trace noise, ignoring any residual responses (refer to the Residual Responses verification test for any suspect residuals).

Performance Verification Tests 37. Displayed Average Noise Level: HP E4407B and HP E4408B

Remove Reference Level Offset

11.Press AMPLITUDE, More, Ref LvI Offst, 0 dB.

12.On the analyzer, press Preset.

38. Residual Responses

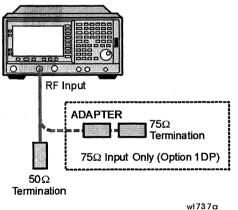
The analyzer input is terminated and the analyzer is swept from 150 kHz to 1 MHz. Then the analyzer is swept in incremental 10 MHz spans from 1 MHz to the upper frequency range. Any responses above the specification are noted.

There are no related adjustment procedures for this performance test.

Equipment Required

Termination, 50 Ω Type-N (m)

Additional Equipment for 75 Ω Input


Termination, 75 Ω , BNC (m) Adapter, Type-N (f) to BNC (m), 75 Ω

Additional Equipment for Option BAB

Adapter, Type-N (f) to APC 3.5 (f)

Figure 2-54 Residual Response Test Setup

SPECTRUM ANALYZER

CAUTION

Use only 75 Ω cables, connectors, or adapters on instruments with 75 Ω input, or damage to the input connector will occur.

Performance Verification Tests **38. Residual Responses**

Procedure

150 kHz to 1 MHz

1. Connect the 50 Ω termination to the analyzer input as shown in Figure 2-54.

75 Ω Input: Use the adapter to connect the 75 Ω termination, and proceed with step 4.

2. Press **Preset** on the analyzer, and initialize the instrument by pressing the following keys:

FREQUENCY, Start Freq, 150 kHz FREQUENCY, Stop Freq, 1 MHz AMPLITUDE, -60 dBm AMPLITUDE, Attenuation, 0 dB BW/Avg, 3 kHz BW/Avg, Video BW, 1 kHz Display, Display Line On, -90 dBm

3. Press **Single** and wait for a new sweep to finish. Look for any residual responses at or above the display line.

If a residual is suspected, press **Single** again. A residual response will persist on successive sweeps, but a noise peak will not. Note the frequency and amplitude of any residual responses above the display line in Table 1.

4. Press **Preset** on the analyzer, and initialize the instrument by pressing the following keys:

FREQUENCY, 5.9 MHz FREQUENCY, CF Step, 9.9 MHz SPAN, 10 MHz AMPLITUDE, -60 dBm (50 Ω Input only) AMPLITUDE, -11.2 dBmV (75 Ω Input only) AMPLITUDE, Attenuation, 0 dB BW/Avg, 10 kHz BW/Avg, Video BW, 3 kHz Display, Display Line On, -90 dBm (50 Ω Input only) Display, Display Line On, -36 dBmV (75 Ω Input only)

5. Repeat step 6 and step 7 until the complete range of frequencies has been checked for the model and frequency ranges below.

Model	Frequency Range
HP E4401B and E4411B	1 MHz to 1.5 GHz
HP E4402B and E4403B	1 MHz to 3.0 GHz
HP E4404B, E4405B, E4407B, and E4408B	1 MHz to 6.7 GHz

6. Press **Single** and wait for a new sweep to finish. Look for any residual responses at or above the display line.

If a residual is suspected, press **Single** again. A residual response will persist on successive sweeps, but a noise peak will not. Record the frequency and amplitude of any residual responses above the display line in Table 2-81.

7. Press **FREQUENCY** \uparrow .

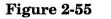
If there are any residuals at or near the frequency specification limits (1 MHz, 1.5 GHz, 3 GHz, or 6.7 GHz), it is recommended that a known frequency source be used as a frequency marker. This will ensure that testing is done at or below the specification limits.

Frequency, MHz	Amplitude, dBm or dBmV		

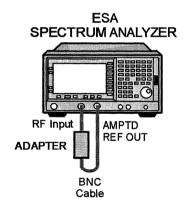
Table 2-81

Residual Responses Worksheet

8. Record the highest residual from Table 2-81 as TR Entry 1 in the performance verification test record. If no residuals are found, then record "N/A" in the performance verification test record.


39. Fast Time Domain Amplitude Accuracy: HP E4401B, E4402B, E4404B, E4405B, and E4407B, Option AYX

The analyzer amplitude reference signal is used to compare the amplitude level of a normal sweep time ($\geq 5 \text{ ms}$) to a fast sweep time ($\leq 5 \text{ ms}$) using the marker functions. The difference should be less than the marker readout resolution specification for the fast sweep times.


Equipment Required

Cable, BNC, 122 cm (48 in) Adapter, Type-N (m) to BNC (f)

Procedure

Fast Time Domain Amplitude Accuracy Test Setup

w1760a

Fast Sweep Time Amplitude Accuracy

1. Connect the equipment as shown in Figure 2-55.

NOTE No test setup is required for HP E4401B.

2. On the spectrum analyzer, press **PRESET**, then wait for the preset routine to finish.

3. Set the analyzer as follows:

FREQUENCY, 50 MHz SPAN, Zero Span Sweep 5 ms Input/Output (or Input), Amptd Ref (On) (HP E4401B only) Input/Output (or Input), Amptd Ref Out (On) (HP E4402B, E4404B, E4405B, E4407B only) AMPLITUDE, Scale Type (Lin) AMPLITUDE, Ref Level, 12.57 mV (HP E4401B, 50 Ω only) AMPLITUDE, Ref Level, 15.05 mV (HP E4401B, 75 Ω only) AMPLITUDE, Ref Level, 30.73 mV (HP E4402B, E4404B, E4405B, E4407B only)

4. On the analyzer, press:

Marker, More 1 of 2, Function, Marker Noise Single Marker, Delta Sweep, 1 ms

5. If the $\Delta Mkr1$ amplitude readout (the second line) is <u>not</u> expressed as a percentage, subtract 1 from the $\Delta Mkr1$ amplitude (ignore the "X") and multiply the result by 100 to obtain the amplitude error in percent:

Amplitude Error = $(\Delta Mkr1 - 1.0) \times 100$

6. If the $\Delta Mkr1$ amplitude readout is expressed as a percentage, subtract 100% from the $\Delta Mkr1$ amplitude reading to obtain the amplitude error in percent:

Amplitude Error = $\Delta Mkr1 - 100$

7. Record the Amplitude Error as TR Entry 1 in the performance verification test record.

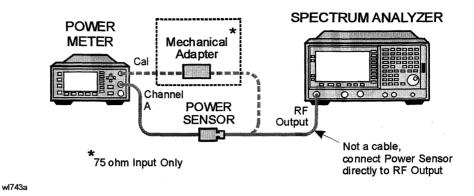
40. Tracking Generator Absolute Amplitude and Vernier Accuracy: HP E4401B and E4411B, Option 1DN or 1DQ

A calibrated power sensor is connected to the tracking generator output to measure the power level at 50 MHz.

The power meter is set to relative mode so that future power level readings are in dB relative to the reference power level setting. The output power level setting is decreased in 1 dB steps and the power level is measured at each step. The difference between the ideal and actual power levels is calculated at each step.

Since a power sweep is accomplished by stepping through the vernier settings, the peak-to-peak variation of the vernier accuracy is equal to the power sweep accuracy.

The related adjustments for this performance test are "Tracking Generator ALC Calibration" and "Tracking Generator Frequency Slope."


Equipment Required

Power meter, compatible with power sensor RF power sensor, 50 Ω

Additional Equipment for Option 1DQ

Power sensor, 75 Ω Adapter, Type-N (f) to BNC (m), 75 Ω Adapter, Type-N (f), 75 Ω to Type-N (m), 50 Ω

Figure 2-56 Absolute Amplitude, Vernier, and Power Sweep Accuracy Test Setup

CAUTION

Use only 75 Ω cables, connectors, or adapters on instruments with 75 Ω connectors, or damage to the connectors will occur.

Procedure

For E4411B analyzers, this test must be performed at 20 to 30 °C.

1. Press **Preset** on the analyzer, then wait for the preset routine to finish. Set the analyzer by pressing the following keys:

FREQUENCY, 50 MHz SPAN, Zero Span AMPLITUDE, 0 dBm (Option 1DN) AMPLITUDE, 42.76 dBmV (Option 1DQ) Source, Amplitude (On), 0 dBm (Option 1DN) Source Amptd, Amplitude (On), +42.76 dBmV (Option 1DQ) Source Amptd, Attenuation, 0 dB Single

- 2. Zero and calibrate the power meter and power sensor in log mode (power reads out in dBm), as described in the power meter operation manual. Enter the 50 MHz Cal Factor of the power sensor into the power meter.
- 3. Connect the 50 Ω power sensor to the RF OUT as shown in Figure 2-56.

Option 1DQ: Connect the 75 Ω power sensor to the RF OUT 75 Ω as shown in Figure 2-56.

4. Read the power level displayed on the power meter and record the result as TR Entry 1 of the performance verification test record as the Absolute Amplitude Accuracy.

Absolute Amplitude Accuracy at 50 MHz = _____dB

40. Tracking Generator Absolute Amplitude and Vernier Accuracy: HP E4401B and E4411B, Option 1DN or 1DQ

Option 1DQ: Add 6 dB to the power level displayed on the power meter and record the result as TR Entry 1 of the performance verification test record as the Absolute Amplitude Accuracy.

- 5. Set the power meter to dB relative mode as described in the power meter operation manual so that the readout is in power level relative to the power level at 50 MHz (press **Rel/Offset**, **Rel**).
- 6. Set the source amplitude to the settings indicated in Table 2-82.

Option 1DQ: Use the source amplitude settings for Option 1DQ analyzers.

- 7. Press **Single** on the analyzer. At each setting, record the power level displayed on the power meter as Measured Power Level in Table 2-82.
- 8. Calculate the Vernier Accuracy by subtracting the Source Vernier Setting from the Measured Power Level for each Source Amplitude Setting in Table 2-82.

Vernier Accuracy = Measured Power Level (dB) – Source Vernier Setting (dB)

9. Locate the most positive and most negative Vernier Accuracy Values for Source Vernier Settings of -1 dBm to -10 dBm recorded in Table 2-82. Record the Positive Vernier Accuracy as TR entry 2 and the Negative Vernier Accuracy as TR entry 3 in the performance verification test record.

Option 1DQ: For source amplitudes of +41.76 dBmV to +27.76 dBmV.

Positive Vernier Accuracy _____ dB

Negative Vernier Accuracy _____ dB

10.Locate the most positive and most negative Vernier Accuracy values for all Source Amplitude Settings in Table 2-82 and record these values below:

Positive Power Sweep Accuracy _____ dB

Negative Power Sweep Accuracy _____ dB

11.Calculate the Power Sweep Accuracy by subtracting the Negative Power Sweep Accuracy recorded in the previous step from the Positive Power Sweep Accuracy recorded in the previous step. Record the Power Sweep Accuracy as TR Entry 4 in the performance verification test record.

Power Sweep Accuracy = Positive Power Sweep Accuracy – Negative Power Sweep Accuracy

Power Sweep Accuracy _____ dB

40. Tracking Generator Absolute Amplitude and Vernier Accuracy: HP E4401B and E4411B, Option 1DN or 1DQ

		T		2
Source Amplitude Setting		Source Vernier Setting	Measured Power Level	Vernier Accuracy
Option 1DN dBm	Option 1DQ dBmV	(dB)	(dB)	(dB)
0 (Ref)	+42.76 (Ref)	0 (Ref)	NA	NA
-1	+41.76	-1		
-2	+40.76	-2		
-3	+39.76	-3		
-4	+38.76	-4		<u> </u>
-5	+37.76	-5		
-6	+36.76	-6		
-7	+35.76	-7		
-8	+34.76	-8		
-9	+33.76	-9		· · · · · · · · · · · · · · · · · · ·
-10	+32.76	-10		······································
-11	+31.76	-11		
-12	+30.76	-12		
-13	+29.76	-13		
-14	+28.76	-14		******
-15	+27.76	-15		

Table 2-82

Vernier Accuracy Worksheet

41. Tracking Generator Absolute Amplitude and Vernier Accuracy: HP E4402B, E4403B, E4404B, E4405B, E4407B and E4408B, Option 1DN

A calibrated power sensor is connected to the tracking generator output to measure the power level at 50 MHz.

The power meter is set to relative mode so that future power level readings are in dB relative to the reference power level setting. The output power level setting is decreased in 1 dB steps and the power level is measured at each step. The difference between the ideal and actual power levels is calculated at each step.

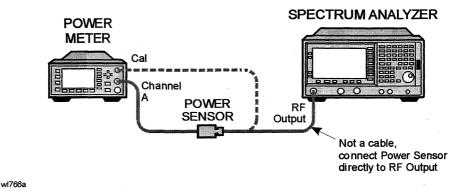
Since a power sweep is accomplished by stepping through the vernier settings, the peak-to-peak variation of the vernier accuracy is equal to the power sweep accuracy.

The related adjustments for this performance test are "Tracking Generator ALC Calibration" and "Tracking Generator Frequency Slope."

Equipment Required

Power meter, compatible with power sensor Power sensor, 50 Ω

Procedure


1. Press **Preset** on the analyzer, then wait for the preset routine to finish. Set the analyzer by pressing the following keys:

FREQUENCY, 50 MHz SPAN, Zero Span AMPLITUDE, 0 dBm System, Alignments, Auto Align, Off Source Amptd, Amplitude (On), -20 dBm Source Amptd, Attenuation Auto Man, -20 dB Single Sweep

- 2. Zero and calibrate the power meter and power sensor in log mode (power reads out in dBm), as described in the power meter operation manual. Enter the 50 MHz Cal Factor of the power sensor into the power meter.
- 3. Connect the 50 Ω power sensor to the as shown in Figure 2-57.

41. Tracking Generator Absolute Amplitude and Vernier Accuracy: HP E4402B, E4403B, E4404B, E4405B, E4407B and E4408B, Option 1DN

4. Read the power level displayed on the power meter, add 20 dB, and record the result as TR Entry 1 of the performance verification test record as the Absolute Amplitude Accuracy.

Absolute Amplitude Accuracy at 50 MHz = _____dB

- 5. Set the power meter to dB relative mode as described in the power meter operation manual so that the readout is in power level relative to the power level at 50 MHz (press **Rel/Offset**, **Rel**).
- 6. Press **Single** on the analyzer. At each setting, record the power level displayed on the power meter in Table 2-83.
- 7. Set the source amplitude to the settings indicated in Table 2-83.

Table 2-83Vernier and Pov

Vernier and Power Sweep Accuracy Worksheet

Source Amplitude Setting (dBm)	Source Vernier Setting (dB)	Measured Power Level (dB)	Vernier Accuracy (dB)
-18	-2		2)
-19	-3		3)
-20 (Ref)	-4	N/A	N/A
-21	-5		4)
-22	-6		5)
-23	-7		6)
-24	-8		7)
-25	-9		8)
-26	-10		9)

41. Tracking Generator Absolute Amplitude and Vernier Accuracy: HP E4402B, E4403B, E4404B, E4405B, E4407B and E4408B, Option 1DN

8. Calculate the Vernier Accuracy by adding 4 dB to the Source Vernier setting and subtracting the result from the Measured Power Level for each Source Amplitude Setting in Table 2-83.

Vernier Accuracy = Measured Power Level (dB) - (Source Vernier Setting (dB) + 4 dB)

9. Record the vernier accuracy values from Table 2-83 as test record entries 2 through 9 in the performance test record.

10.Press System, Alignments, Auto Align, All

42. Tracking Generator Level Flatness: HP E4401B and E4411B, Option 1DN or 1DQ

This test verifies that spectrum analyzers with the tracking generator option (1DN or 1DQ) meet their tracking generator level flatness specification. A calibrated power sensor is connected to the tracking generator output to measure the power level at 50 MHz. The power meter is set for dB relative mode so that future power level readings are in dB, relative to the power level at 50 MHz.

Next, the tracking generator is stepped to several frequencies throughout its range, and the output power difference relative to the power level at 50 MHz is measured for each frequency recorded.

For frequencies below 100 kHz, a digital voltmeter and precision 50 Ω termination are used to measure the power of the tracking generator output. The DVM is set to read out in dBm using the MATH function with R value set to 50 Ω The following equation is used to calculate dBm:

$$dBm = 10 \log((E^2/R)/1mW)$$

The DVM readout is corrected by making the readings relative to the 100 kHz reading from the power sensor.

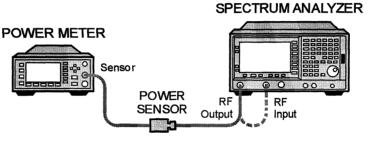
Option 1DN, 50 Ω tracking generators are tested from 9 kHz to 1500 MHz.

Option 1DQ, 75 Ω tracking generators are tested from 1 MHz to 1500 MHz.

The related adjustments for this procedure are "Tracking Generator ALC Calibration" and "Tracking Generator Frequency Slope."

Equipment Required

Power meter Power sensor, 50 Ω , 100 kHz to 1.5 GHz Digital multimeter Termination, 50 Ω Cable, BNC Adapter, Type-N tee, (m) (f) (f) Adapter, Type-N (m) to BNC (f) Adapter, BNC (f) to dual banana plug


Additional Equipment for Option 1DQ

Power sensor, 75 Ω , 1 MHz to 1.5 GHz Adapter, Type-N (f) to BNC (m), 75 Ω

CAUTIONUse only 75 Ω cables, connectors, or adapters on the 75 Ω input of an
Option 1DQ or damage to the input connector will occur.

Procedure

Figure 2-58 Tracking Generator Level Flatness Test Setup, ≥100 kHz

wl712a

Tracking Generator Level Flatness, Center Frequency ≥100 kHz

- 1. Press **Preset** on the spectrum analyzer, then wait for the preset routine to finish.
- 2. Set the analyzer by pressing the following keys:

FREQUENCY, 50 MHz FREQUENCY, CF Step, 100 MHz SPAN, Zero Span Source, Amplitude On, 0 dBm (*Option 1DN*) Source, Amplitude On, 42.76 dBmV (*Option 1DQ*) Single

3. Zero and calibrate the power meter with the power sensor in log mode (power reads out in dBm), as described in the power meter operation manual.

Option 1DQ: Use a 75 Ω power sensor.

- 4. Connect the power sensor to the RF Out on the analyzer. See Figure 2-58.
- 5. Set the power meter to relative mode, as described in the power meter operation manual. Power levels now read out in power level relative to the power level at 50 MHz.

Perform the next four steps for each measurement value in Table 2-84.

42. Tracking Generator Level Flatness: HP E4401B and E4411B, Option 1DN or 1DQ

1. Set the center frequency of the analyzer according to the values in Table 2-84. For 100 kHz, press FREQUENCY, 100 kHz. The ↑ (step up key) may be used to tune to center frequencies above 100 MHz.

Option 1DQ: Start at 1 MHz by pressing FREQUENCY, 1 MHz.

- 2. Press Single on the analyzer.
- 3. Enter the appropriate power sensor Cal Factor into the power meter as indicated in Table 2-84.
- 4. Record the power level displayed on the power meter in the Level Flatness column in Table 2-84.

Table 2-84

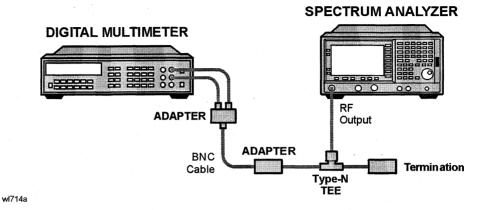
Tracking Generator Level Flatness Worksheet, ≥ 100 kHz

Center Frequency	Level Flatness (dB)	Cal Factor (MHz)
100 kHz ^a		0.1
300 kHz ^a		0.3
500 kHz ^a		0.3
1 MHz		1
2 MHz		3
5 MHz		3
10 MHz		10
20 MHz		30
40 MHz		50
$50 \mathrm{~MHz}$	0 (Ref)	50
80 MHz		100
100 MHz		100
200 MHz		300
300 MHz		300
400 MHz		300
500 MHz		300
600 MHz		300
700 MHz		1000
800 MHz		1000
900 MHz		1000
1000 MHz		1000

Performance Verification Tests 42. Tracking Generator Level Flatness: HP E4401B and E4411B, Option 1DN or 1DQ

Table 2-84Tracking Generator Level Flatness Worksheet, ≥ 100 kHz

Center Frequency	Level Flatness (dB)	Cal Factor (MHz)
1100 MHz		1000
1200 MHz		1000
1300 MHz		1000
1400 MHz		1000
1500 MHz		2000


a. These frequencies do not apply to analyzers with Option 1DQ Tracking Generators (75 Ω RF Output).

5. Disconnect the power sensor from the RF Out on the analyzer.

Tracking Generator Level Flatness, Center Frequency < 100 kHz

NOTE	Perform step 2 to step 7 for 50 Ω tracking generators only (<i>Option 1DN</i>).				
	1. Set up the digital multimeter as follows.				
	Parameter	Setting			
	AC/DC	AC Volts			
	Impedance & Units:				
	Set to 50 Ω impedance	SMATH 10 ^a			
	Set to dBm	MATH 5 ^a			
	Set to Synchronous	SETACV 3 ^a			
	Sub-sampled mode				
	panel, press the blu then use the \Uparrow (up)	A multi-meter functions from the front we shift key, then Recall State (T) key, and ↓ (down) arrows to select the on, then enter the value from the d press enter.			
NOTE	Perform step 2 to step 7 to	for each measurement value in Table 2-86.			

Figure 2-59 Tracking Generator Level Flatness Test Setup, \leq 100 kHz

- 2. Refer to Figure 2-59 to set up the equipment.
- 3. To set the analyzer center frequency to 9 kHz, press FREQUENCY, 9 kHz (or as indicated in Table 2-85).
- 4. Press Single.
- 5. Record the DVM readout in Table 2-85.
- 6. Subtract the 100 kHz Level Flatness readout in Table 2-84 from the 100 kHz DVM Readout in Table 2-85 and record as the DVM Offset at 100 kHz.
 - DVM Offset at 100 kHz _____ dB
 - For example, if the Level Flatness reading from Table 2-84 is + 0.7 dB and the DVM Readout from Table 2-85 is - 0.53 dBm, the DVM offset would be - 1.23 dB.

DVM Offset= DVM Readout – Level Flatness

- 7. Add the DVM Offset at 100 kHz from step 6, above, to each of the DVM Readouts in Table 2-85 and record as the Corrected Level Flatness in column 3.
 - For example, if the DVM Readout from Table 2-85 is + 0.22 dBm, and the DVM Offset is 1.23 dB, the Corrected Level Flatness would be 1.01 dB.

Corrected Level Flatness= DVM + DVM Offset

Table 2-85Tracking Generator Level Flatness Worksheet, < 100 kHz</th>

Center Frequency	DVM Readout (dBm)	Corrected Level Flatness (dBm)
9 kHz ^a		
20 kHz ^a		
40 kHz ^a		
60 kHz ^a		
80 kHz ^a		
100 kHz ^a		

a. These frequencies do not apply to analyzers with Option 1DQ, 75 Ω tracking generators.

- 8. For 50 Ω tracking generators only, locate the most positive Level Flatness reading in Table 2-84 and Table 2-85 for frequencies < 1 MHz and enter this value as Test Record Entry 1 of the performance verification test record.
- 9. For 50 Ω tracking generators only, locate the most negative Level Flatness reading in Table 2-84 and Table 2-85 for frequencies < 1 MHz and enter this value as Test Record Entry 2 of the performance verification test record.
- 10.Locate the most positive Level Flatness reading in Table 2-84 and Table 2-85 for frequencies ≥ 1 MHz and ≤ 10 MHz and enter this value as Test Record Entry 3 of the performance verification test record.
- 11.Locate the most negative Level Flatness reading in Table 2-84 and Table 2-85 for frequencies ≥ 1 MHz and ≤ 10 MHz and enter this value as Test Record Entry 4 of the performance verification test record.
- 12.Locate the most positive Level Flatness reading in Table 2-84 for frequencies ≥ 10 MHz and ≤ 1.5 GHz and enter this value as Test Record Entry 5 of the performance verification test record.
- 13.Locate the most negative Level Flatness reading in Table 2-84 for frequencies ≥ 10 MHz and ≤ 1.5 GHz and enter this value as Test Record Entry 6 of the performance verification test record.

43. Tracking Generator Level Flatness: HP E4402B, E4403B, E4404B, E4405B, E4407B, E4408B, Option 1DN

This test verifies that spectrum analyzers with the tracking generator option 1DN meet their tracking generator level flatness specification. In this test, a calibrated power sensor is connected to the tracking generator output to measure the power level at 50 MHz. The power meter is set for dB Relative mode so that future power level readings are in dB, relative to the power level at 50 MHz.

Next, the tracking generator is stepped to several frequencies throughout its range, and the output power difference relative to the power level at 50 MHz is measured for each frequency recorded.

For frequencies below 100 kHz, a digital voltmeter and precision 50 Ω termination are used to measure the power of the tracking generator output. The DVM is set to read out in dBm using the MATH function with R value set to 50 Ω . The following equation is used to calculate dBm:

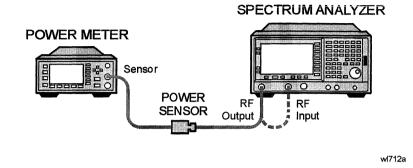
$$dBm = 10 \log((E^2/R)/1mW)$$

The DVM readout is corrected by making the readings relative to the 100 kHz reading from the power sensor.

Option 1DN, 50 Ω tracking generators are tested from 9 kHz to 3000 MHz.

The related adjustment for this procedure is "Modulator Gain and Offset Adjustment."

Equipment Required


Power meter Power sensor, 50Ω Digital multimeter Termination, 50Ω Cable, BNC Cable, Type-N (m) (m) Adapter, Type-N tee, (m) (f) (f) Adapter, Type-N (m) to BNC (f) Adapter, BNC (f) to dual banana plug

43. Tracking Generator Level Flatness: HP E4402B, E4403B, E4404B, E4405B, E4407B, E4408B, Option 1DN

Procedure

Figure 2-60

Tracking Generator Level Flatness Test Setup ≥ 100 kHz

Tracking Generator Level Flatness, Center Frequency $\geq 100 \ kHz$

- 1. Press **Preset** on the spectrum analyzer, then wait for the preset routine to finish.
- 2. Connect the Type-N cable between the RF Input and the tracking generator RF OUT, as shown in Figure 2-60. Do not connect the power sensor to the analyzer yet.
- 3. Disconnect the Type-N cable.
- 4. Set up the spectrum analyzer by pressing the following keys:

FREQUENCY, 50 MHz FREQUENCY, CF Step, 100 MHz SPAN, Zero Span System, Alignments, Auto Align, Off Marker Source, Amplitude (On) Source, Tracking Peak (After pressing, wait for the Peaking message to disappear.) Source, Amplitude, -20 dBm Single

- 5. Zero and calibrate the power meter with the power sensor in log mode (power reads out in dBm), as described in the power meter operation manual.
- 6. Connect the 50 Ω power sensor to the RF OUT 50 Ω on the analyzer. See Figure 2-60.
- 7. Set the power meter to relative mode, as described in the power meter operation manual. Power levels now read out in power level relative to the power level at 50 MHz.

Perform the next four steps for each measurement value in Table 2-86.

- Set the center frequency of the analyzer according to the values in Table 2-86. For 100 kHz, press FREQUENCY, 100 kHz. The ↑ (step up key) may be used to tune to center frequencies above 100 MHz.
- 9. Press **Single** on the analyzer.
- 10.Enter the appropriate power sensor Cal Factor into the power meter as indicated in Table 2-86.
- 11.Record the power level displayed on the power meter in the Level Flatness column in Table 2-86.

Table 2-86 Tra

Tracking Generator Level Flatness Worksheet, ≥ 100 kHz

Center Frequency	Level Flatness (dB)	Cal Factor (MHz)
100 kHz		0.1
300 kHz		0.3
500 kHz	· · · · · · · · · · · · · · · · · · ·	0.3
1 MHz		1
2 MHz		3
5 MHz		3
10 MHz	· · · · · · · · · · · · · · · · · · ·	10
20 MHz		30
40 MHz		50
50 MHz	0 (Ref)	50
80 MHz		100
100 MHz		100
200 MHz		300
300 MHz		300
400 MHz		300
500 MHz		300
600 MHz		300
700 MHz		1000
800 MHz		1000
900 MHz		1000
1000 MHz		1000
1100 MHz	, , , , , , , , , , , , , , , , , , ,	1000

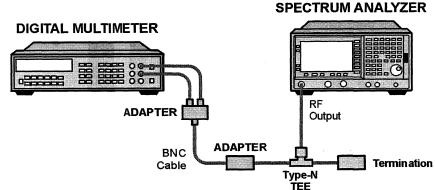
43. Tracking Generator Level Flatness: HP E4402B, E4403B, E4404B, E4405B, E4407B, E4408B, Option 1DN

Center Frequency	Level Flatness (dB)	Cal Factor (MHz)
1200 MHz		1000
1300 MHz		1000
1400 MHz		1000
1500 MHz		2000
1600 MHz		2000
1700 MHz		2000
1800 MHz		2000
1900 MHz		2000
2000 MHz		2000
2100 MHz		2000
2200 MHz		2000
2300 MHz		2000
2400 MHz		2000
2500 MHz		3000
2600 MHz		3000
2700 MHz		3000
2800 MHz		3000
2900 MHz		3000
3000 MHz		3000

Table 2-86 Tracking Generator Level Flatness Worksheet, ≥ 100 kHz

12. Disconnect the power sensor from the RF Out 50 Ω on the analyzer. See Figure 2-60.

Tracking Generator Level Flatness, Center Frequency <100 kHz


1. Set up the digital multimeter as follows.

Parameter	Setting
AC/DC	AC Volts
Impedance & Units:	
Set to 50 Ω impedance	SMATH 10 ^a
Set to dBm	MATH 5 ^a

Parameter	Setting	
Set to Synchronous	SETACV 3 ^a	
Sub-sampled mode		

a.To set the HP 3458A multi-meter functions from the front panel, press the blue shift key, then Recall State (T) key, then use the \uparrow (up) and \downarrow (down) arrows to select the appropriate function, then enter the value from the numeric keypad and press enter.

Figure 2-61 Tracking Generator Level Flatness Test Setup, ≤ 100 kHz

w1714a

2. Refer to Figure 2-61 to set up the equipment.

Repeat step 3 to step 7 for each Center Frequency value in Table 2-87.

3. Set the spectrum analyzer center frequency to 9 kHz, by pressing the following keys:

FREQUENCY, 9 kHz

- 4. Press Single.
- 5. Record the DVM readout in Table 2-87.
- 6. Subtract the 100 kHz Level Flatness readout in Table 2-86 from the 100 kHz DVM Readout in Table 2-87 and record as the DVM Offset at 100 kHz.

DVM Offset at 100 kHz _____ dB

• For example, if the Level Flatness reading from Table 2-86 is + 0.7 dB and the DVM Readout from Table 2-87 is - 0.53 dBm, the DVM offset would be - 1.23 dB.

DVM Offset= DVM Readout – Level Flatness

43. Tracking Generator Level Flatness: HP E4402B, E4403B, E4404B, E4405B, E4407B, E4408B, Option 1DN

- 7. Add the DVM Offset at 100 kHz from step 6, above, to each of the DVM Readouts in Table 2-87 and record as the Corrected Level Flatness in column 3.
 - For example, if the DVM Readout from Table 2-87 is + 0.22 dBm, and the DVM Offset is -1.23 dB, the Corrected Level Flatness would be -1.01 dB.

Corrected Level Flatness= DVM Readout + DVM Offset

8. Press System, Alignments, Auto Align, All

 Table 2-87
 Tracking Generator Level Flatness Worksheet, 100 kHz

Center Frequency	DVM Readout (dBm)	Corrected Level Flatness (dBm)
9 kHz		
20 kHz		
40 kHz		
60 kHz		
80 kHz		1
100 kHz		

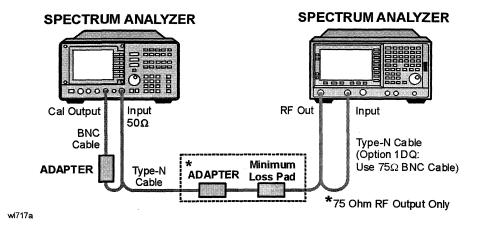
- 1. Locate the most positive Level Flatness reading in Table 2-86 and Table 2-87 for frequencies < 1 MHz and enter this value as Test Record Entry 1 of the performance verification test record.
- 2. Locate the most negative Level Flatness reading in Table 2-86 and Table 2-87 for frequencies < 1 MHz and enter this value as Test Record Entry 2 of the performance verification test record.
- 3. Locate the most positive Level Flatness reading in Table 2-86 and Table 2-87 for frequencies ≥ 1 MHz and ≤ 10 MHz and enter this value as Test Record Entry 3 of the performance verification test record.
- 4. Locate the most negative Level Flatness reading in Table 2-86 and Table 2-87 for frequencies ≥ 1 MHz and ≤ 10 MHz and enter this value as Test Record Entry 4 of the performance verification test record.
- 5. Locate the most positive Level Flatness reading in Table 2-86 for frequencies ≥ 10 MHz and ≤ 1.5 GHz and enter this value as Test Record Entry 5 of the performance verification test record.

- 6. Locate the most negative Level Flatness reading in Table 2-86 for frequencies ≥ 10 MHz and ≤ 1.5 GHz and enter this value as Test Record Entry 6 of the performance verification test record.
- 7. Locate the most positive Level Flatness reading in Table 2-86 for frequencies > 1.5 GHz and enter this value as Test Record Entry 7 of the performance verification test record.
- 8. Locate the most negative Level Flatness reading in Table 2-86 for frequencies > 1.5 GHz and enter this value as Test Record Entry 8 of the performance verification test record.

44. Tracking Generator Harmonic Spurious Outputs: HP E4401B and E4411B, Option 1DN or 1DQ

The measurement for tracking generator harmonic spurious outputs determines the maximum level of tracking generator harmonics. The tracking generator output is connected to the input of a microwave spectrum analyzer, then tuned to several different frequencies as the amplitude of the second and third harmonics relative to the fundamental are measured at each frequency.

There are no related adjustment procedures for this performance test.


Equipment Required

Microwave spectrum analyzer Cable, Type-N, 62 cm (24 in) Cable, BNC to BNC, 23 cm (9 in) Adapter, Type-N (m) to BNC (f)

Additional Equipment Required for Option 1DQ

50 Ω to 75 Ω Minimum loss pad Adapter, Type-N (f) to BNC (m), 75 Ω

Figure 2-62 Harmonic Spurious Outputs Test Setup

CAUTION

Use only 75 Ω cables, connectors, or adapters on instruments with 75 Ω connectors or damage to the connectors will occur.

Procedure

NOTE

The following steps are for an HP 8563E microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.

- 1. Connect the 10 MHz reference output from the microwave spectrum analyzer to the 10 MHz reference input of the spectrum analyzer as shown in Figure 2-62.
- 2. Complete this step only if more than 24 hours have elapsed since performing a front-panel calibration of the microwave spectrum analyzer.

The microwave spectrum analyzer should be allowed to warm up for at least 5 minutes before proceeding.

Complete a front-panel calibration of the microwave spectrum analyzer by performing the following steps:

- a. **Preset** the microwave spectrum analyzer.
- b. Connect a BNC cable between CAL OUTPUT and INPUT 50 Ω
- c. Press CAL, REALIGN LO & IF.
- d. Set FREQUENCY, 300 MHz.
- e. Set SPAN, 20 MHz.
- f. Set AMPLITUDE, -10 dBm.
- g. Press **PEAK SEARCH**.
- h. Press CAL, REF LVL ADJ and use the $\hat{\parallel} \Downarrow$ arrows to adjust the DAC value to a marker amplitude reading of -10 dBm. Press STORE REF LVL.
- i. Disconnect the BNC cable from between the CAL OUTPUT and INPUT 50 Ω
- 3. On the spectrum analyzer, press **Preset** and wait for the preset routine to finish.
- 4. Set up the spectrum analyzer by pressing the following keys:

FREQUENCY, 10 MHz SPAN, Zero Span BW/Avg, 10 kHz Source, Amplitude (On) Source, Amplitude (On), 0 dBm (*Option 1DN*) Source, Amplitude (On), +42.76 dBmV (*Option 1DQ*) Single

	Performance Verification Tests 44. Tracking Generator Harmonic Spurious Outputs: HP E4401B and E4411B, Option 1DN or 1DQ
	5. Set up the microwave spectrum analyzer controls as follows:
	FREQUENCY, 10 MHz FREQUENCY, CF STEP, 10 MHz SPAN, 10 kHz AMPLITUDE, 5 dBm (<i>Option 1DN</i>) AMPLITUDE, 0 dBm (<i>Option 1DQ</i>) BW, 1 kHz
	6. Refer to Figure 2-62 to connect the Type-N cable from the spectrum analyzer RF OUT to the input of the microwave spectrum analyzer.
NOTE	The following steps are for an HP 8563E microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.
	Perform step 7 and step 8 for each measurement value in Table 2-88.
	7. Set the spectrum analyzer center frequency to the next frequency listed in Table 2-88. Similarly, set the microwave spectrum analyzer frequency and step size to match the spectrum analyzer center frequency. Press Single on the spectrum analyzer.
	8. On the microwave spectrum analyzer:
	a. Press \ensuremath{MKR} , $\ensuremath{SIG}\ensuremath{TRK}\xspace$ (On). Wait for the signal to be displayed at center screen.
	b. Press PEAK SEARCH, MKR, SIG TRK (Off), MARKER DELTA.
	c. Press FREQUENCY and ↑ (step-up key) to tune to the second harmonic.
	d. Press PEAK SEARCH and record the marker amplitude reading in Table 2-88 as the 2nd Harmonic Level for the appropriate Tracking Generator Output Frequency.
	 e. Perform this step only if the Tracking Generator Output Frequency is ≤ 500 MHz. Press FREQUENCY and ↑ (step-up key) to tune to the third harmonic. Press PEAK SEARCH.
	Record the marker amplitude reading in Table 2-88 as the 3rd Harmonic Level for the appropriate Tracking Generator Output Frequency.
	f. Press MKR, MARKERS (Off).

Tracking Generator Harmonic Spurious Response Worksheet

1.5 GHz Tracking Generator Output Frequency	2 nd Harmonic Level (dBc)	3 rd Harmonic Level (dBc)
10 MHz		
100 MHz		
300 MHz		
750 MHz	· · ·	N/A

9. From Table 2-88, enter the 2nd Harmonic Level at 10 MHz as Test Record Entry 1 and copy this value into the performance verification test record.

Test Record Entry 1:

TG 2nd Harmonic Spurious Output _____ dB

10.From Table 2-88, locate the most positive 2nd Harmonic Level for tracking generator frequencies of 100 MHz to 750 MHz and record this value as Test Record Entry 2 and copy this value into the performance verification test record.

Test Record Entry 2:

TG 2nd Harmonic Spurious Output _____ dB

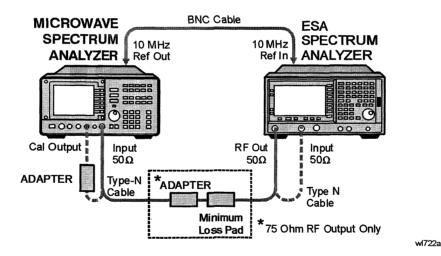
11.From Table 2-88, enter the 3rd Harmonic Level at 10 MHz as Test Record Entry 3 and copy this value into the performance verification test record.

Test Record Entry 3: TG 3rd Harmonic Spurious Output _____ dB

12.From Table 2-88, locate the most positive 3rd Harmonic Level for tracking generator frequencies of 100 MHz to 750 MHz and record this value as Test Record Entry 4 and copy this value into the performance verification test record.

Test Record Entry 4: TG 3rd Harmonic Spurious Output _____ dB

45. Tracking Generator Harmonic Spurious Outputs: HP E4402B, E4403B, E4404B, E4405B, E4407B, and E4408B, Option 1DN


The measurement for tracking generator harmonic spurious outputs determines the maximum level of tracking generator harmonics. The tracking generator output is connected to the input of a microwave spectrum analyzer, then tuned to several different frequencies as the amplitude of the second and third harmonics (relative to the fundamental) are measured at each frequency.

There are no related adjustment procedures for this performance test.

Equipment Required

Microwave spectrum analyzer Cable, Type-N, 62 cm (24 in) Cable, BNC to BNC, 23 cm (9 in) Adapter, Type-N (m) to BNC (f)

Figure 2-63 Harmonic Spurious Outputs Test Setup

Procedure

NOTE

The following steps are for an HP 8563E microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.

1. Complete this step only if more than 24 hours have elapsed since performing a front-panel calibration of the microwave spectrum analyzer.

The microwave spectrum analyzer should be allowed to warm up for at least 5 minutes before proceeding.

Complete a front-panel calibration of the microwave spectrum analyzer by performing the following steps:

- a. **Preset** the microwave spectrum analyzer.
- b. Connect a BNC cable between CAL OUTPUT and INPUT 50 Ω
- c. Press CAL, REALIGN LO & IF.
- d. Set FREQUENCY, 300 MHz.
- e. Set SPAN, 20 MHz.
- f. Set AMPLITUDE, -10 dBm.
- g. Press **PEAK SEARCH**.
- h. Press CAL, REF LVL ADJ and use the $\uparrow \downarrow$ arrows to adjust the DAC value to a marker amplitude reading of -10 dBm. Press STORE REF LVL.
- i. Disconnect the BNC cable from between the CAL OUTPUT and INPUT 50 $\boldsymbol{\Omega}$
- 2. On the spectrum analyzer, press **Preset** and wait for the preset routine to finish.
- 3. Use the Type-N cable to connect the RF INPUT to the tracking generator RF OUT as shown in Figure 2-63. Do not connect the Type-N cable to the microwave analyzer yet. Connect the 10 MHz Reference from the output of the microwave spectrum analyzer to the 10 MHz Reference Input of the analyzer being tested.
- 4. Set up the spectrum analyzer by pressing the following keys:

FREQUENCY, 10 MHz SPAN, Zero Span BW/Avg, 10 kHz System, Alignments, Auto Align, Off Marker Source, Amplitude (On) Source, Tracking Peak (Wait for the Peaking message to appear.)

45. Tracking Generator Harmonic Spurious Outputs: HP E4402B, E4403B, E4404B, E4405B, E4407B, and E4408B, Option 1DN

Source, Amplitude (On), –2 dBm Single

5. Set up the microwave spectrum analyzer controls as follows:

FREQUENCY, 9 kHz FREQUENCY, CF STEP, 9 kHz SPAN, 10 kHz AMPLITUDE, 5 dBm BW, 1 kHz

6. Disconnect the Type-N cable from between the analyzer RF INPUT and the tracking generator RF OUT. Refer to Figure 2-63 to connect the Type-N cable from the analyzer RF OUT to the input of the microwave spectrum analyzer.

NOTE The following steps are for an HP 8563E microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.

Perform step 7 and step 8 for each measurement value in Table 2-89.

- 7. Set the spectrum analyzer center frequency to the next frequency listed in Table 2-89. Similarly, set the microwave spectrum analyzer frequency and step size to match the spectrum analyzer center frequency. Press **Single** on the spectrum analyzer.
- 8. On the microwave spectrum analyzer:
 - a. Press $MKR,\,SIG\,TRK\,(On).$ Wait for the signal to be displayed at center screen.
 - b. Press PEAK SEARCH, MKR, SIG TRK (Off), MARKER DELTA.
 - c. Press FREQUENCY and ↑ (step-up key) to tune to the second harmonic.
 - d. Press **PEAK SEARCH** and record the marker amplitude reading in Table 2-89 as the 2nd Harmonic Level for the appropriate Tracking Generator Output Frequency.
 - e. Perform this step only if the Tracking Generator Output Frequency is ≤ 900 MHz. Press FREQUENCY and \uparrow (step-up key) to tune to the third harmonic. Press PEAK SEARCH.

Record the marker amplitude reading in Table 2-89 as the 3rd Harmonic Level for the appropriate Tracking Generator Output Frequency.

f. Press MKR, MARKERS (Off).

Tracking Generator Harmonic Spurious Response Worksheet

1.5 GHz Tracking Generator Output Frequency	2 nd Harmonic Level (dBc)	3 rd Harmonic Level (dBc)
9 kHz		
25 kHz		· · ·
100 MHz		· · · · · · · · · · · · · · · · · · ·
300 MHz	· · · · · · · · · · · · · · · · · · ·	
900 MHz		
1500 MHz		N/A

9. From Table 2-89, enter the 2nd Harmonic Level at 9 kHz as Test Record Entry 1 and copy this value into the performance verification test record.

Test Record Entry 1: TG 2nd Harmonic Spurious Output _____ dB

10.From Table 2-89, locate the most positive 2nd Harmonic Level for tracking generator frequencies of 9 kHz to 750 MHz and record this value as Test Record Entry 2 and copy this value into the performance verification test record.

Test Record Entry 2: TG 2nd Harmonic Spurious Output _____ dB

11.From Table 2-89, enter the 3rd Harmonic Level at 9 kHz as Test Record Entry 3 and copy this value into the performance verification test record.

Test Record Entry 3:

TG 3rd Harmonic Spurious Output _____ dB

12.From Table 2-89, locate the most positive 3rd Harmonic Level for tracking generator frequencies of 25 kHz to 1500 MHz and record this value as Test Record Entry 4 and copy this value into the performance verification test record.

Test Record Entry 4: TG 3rd Harmonic Spurious Output _____ dB

13.Press System, Alignments, Auto Align, All.

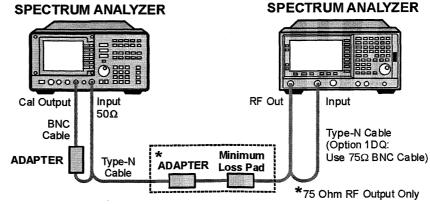
Table 2-89

46. Tracking Generator Non-Harmonic Spurious Outputs: HP E4401B and E4411B, Option 1DN or 1DQ

This procedure determines the maximum level of the non-harmonic spurious outputs of the tracking generator. The tracking generator output is set to several different output frequencies. For each output frequency, several sweeps are taken on the microwave spectrum analyzer over different frequency spans and the highest displayed spurious response is measured in each span. Responses at the fundamental frequency of the tracking generator output or their harmonics are ignored. The amplitude of the highest spurious response is recorded.

There are no related adjustments for this performance test.

Equipment Required


Microwave spectrum analyzer Cable, Type-N, 62 cm (24 in) Cable, BNC, 23 cm (9 in) Adapter, Type-N (m) to BNC (f)

Additional Equipment for 75 Ω Input

Pad, minimum loss Adapter, Type-N (f) to BNC (m), 75 Ω

Figure 2-64

Non-Harmonic Spurious Outputs Test Setup

w1717a

Procedure

NOTE

The following steps are for an HP 8563E microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.

1. Complete this step only if more than two hours have elapsed since performing a front-panel calibration of the microwave spectrum analyzer.

The microwave spectrum analyzer should be allowed to warm up for at least 30 minutes before proceeding.

Complete a front-panel calibration of the microwave spectrum analyzer by performing the following steps:

- a. **PRESET** the microwave spectrum analyzer.
- b. Connect a BNC cable between CAL OUTPUT and INPUT 50 $\boldsymbol{\Omega}$
- c. Press CAL, REALIGN LO & IF.
- d. Set FREQUENCY, 300 MHz.
- e. Set SPAN, 20 MHz.
- f. Set AMPLITUDE, -10 dBm.
- g. Press **PEAK SEARCH**.
- h. Press CAL, REF LVL ADJ and use the $\uparrow \downarrow$ arrows to adjust the DAC value to a marker amplitude reading of -10 dBm. Press STORE REF LVL.
- i. Disconnect the BNC cable from between the CAL OUTPUT and INPUT 50 Ω
- 2. Press **Preset** on the spectrum analyzer, then wait for the preset routine to finish. Set up the spectrum analyzer by pressing the following keys:

FREQUENCY, 50 MHz SPAN, Zero Span BW/Avg, 30 kHz Marker Source, Amplitude On, 0 dBm Source, Amplitude On, 42.76 dBmV (75 Ω Option only)

3. Set up the microwave spectrum analyzer by pressing the following keys:

SPAN, 100 kHz AMPLITUDE, 5 dBm AMPLITUDE, 0 dBm (75 Ω $Option\ only)$ AMPLITUDE, ATTEN, 20 dB

46. Tracking Generator Non-Harmonic Spurious Outputs: HP E4401B and E4411B, Option 1DN or 1DQ

AMPLITUDE, LOG dB/DIV, 10 dB

4. Disconnect the Type-N cable from between the spectrum analyzer RF INPUT and the tracking generator RF OUT. Refer to Figure 2-64 to connect the Type-N cable from the spectrum analyzer RF OUT to the microwave spectrum analyzer INPUT 50 Ω

Measuring Fundamental Amplitudes

Perform the following two steps for each fundamental frequency in Table 2-90.

- 1. Set the spectrum analyzer center frequency to the fundamental frequency listed in Table 1 and press **Single** to activate a single sweep. Set the microwave spectrum analyzer to the same frequency.
- 2. On the microwave spectrum analyzer, press **PEAK SEARCH**. Press **MKR** \rightarrow , **MARKER** \rightarrow **REF LVL**. Wait for another sweep to finish. Press **PEAK SEARCH**. Record the marker amplitude reading in Table 2-90 as the Fundamental Amplitude.

Table 2-90 Tracking Generator Fundamental Response Worksheet

Fundamental Frequency	Fundamental Amplitude (dBm)
10 MHz	
750 MHz	
1.5 GHz	

Measuring Non-Harmonic Responses

- 1. On the spectrum analyzer, set the center frequency to the initial value indicated in the first row of Table 2-90. Press **Single** on the ESA spectrum analyzer to trigger a single sweep.
- 2. Set the microwave spectrum analyzer Start Freq, Stop Freq, and Res BW as indicated in the first row of Table 2-91.

75 Ω outputs only: Measure only at start frequencies of 1 MHz and greater.

- 3. Press SGL SWP on the microwave spectrum analyzer to activate a single sweep and wait for the sweep to finish. Press PEAK SEARCH to locate the largest spurious response.
- 4. Verify that the marked signal is not the fundamental or a harmonic of the fundamental by performing the following steps:

NOTE The following steps are for an HP 8563E microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.

- a. Divide the marker frequency by the fundamental frequency (the spectrum analyzer center frequency setting). For example, if the marker frequency is 30.3 MHz and the fundamental frequency is 10 MHz, dividing 30.3 MHz by 10 MHz yields 3.03.
- b. Round the number calculated in step a to the nearest whole number. In the example above, 3.03 should be rounded to 3. Values less than 1 should be rounded up to 1.
- c. Multiply the fundamental frequency by the number calculated in step b. Following the example, multiplying 10 MHz by 3 yields 30 MHz.
- d. Calculate the difference between the marker frequency and the frequency calculated in step c above. Continuing the example, the difference would be 300 kHz.

e. Due to span accuracy uncertainties in the microwave spectrum analyzer, the marker frequency might not equal the actual frequency. Given the marker frequency, check if the difference calculated in step d is within the appropriate tolerance:

For marker frequencies <5 MHz, tolerance = ± 200 kHz For marker frequencies <55 MHz, tolerance = ± 750 kHz For marker frequencies >55 MHz, tolerance = ± 10 MHz

- f. If the difference in step d is within the indicated tolerance, the signal in question is the fundamental signal (if the number in step b = 1) or a harmonic of the fundamental (if the number in step b > 1). This response should be ignored.
- 5. Verify that the marked signal is a true response and not a random noise peak by pressing **SINGLE** to trigger a new sweep and press **PEAK SEARCH**. A true response will remain at the same frequency and amplitude on successive sweeps but a noise peak will not.

If the marked signal is not the fundamental or a harmonic of the fundamental and is a true response, proceed with step 7.

46. Tracking Generator Non-Harmonic Spurious Outputs: HP E4401B and E4411B, Option 1DN or 1DQ

6. If the marked signal is either the fundamental or a harmonic of the fundamental or a noise peak, move the marker on the microwave spectrum analyzer to the next highest signal by pressing **NEXT PEAK**. Repeat step 4 above.

Perform step 7 only if the marker signal is a true response and not a fundamental or harmonic of the fundamental. Otherwise, continue with step 8.

7. Calculate the difference between the amplitude of marked signal and the fundamental amplitude as listed in Table 2-90.

For example, if the fundamental amplitude for a fundamental frequency of 10 MHz is +1.2 dBm and the marker amplitude is -40.8 dBm, the difference is -42 dBc.

Record this difference as the non-harmonic response amplitude for the appropriate spectrum analyzer center frequency and microwave spectrum analyzer start and stop frequency settings in Table 2-91.

Non-harmonic Amplitude = Marker Amplitude – Fundamental Amplitude

- 8. If a true non-harmonic spurious response is not found, record "NOISE" as the Amplitude of Non-Harmonic Response in Table 2-91 for the appropriate spectrum analyzer center frequency and microwave spectrum analyzer start and stop frequency settings.
- 9. Repeat step 1 to step 8 for the remaining spectrum analyzer center frequency and microwave spectrum analyzer settings in Table 2-91.

Table 2-91	1.5 GHz Tracking Generator Non-Harmonic Spurious Response
	Worksheet

Spectrum Analyzer Center Frequency	Microwave Spectrum Analyzer Start Frequency	Microwave Spectrum Analyzer Stop Frequency	Microwave Spectrum Analyzer Resolution Bandwidth	Amplitude of Non-Harmonic Response (dBc)
10 MHz	9 kHz ^a	100 kHz ^a	300 Hz ^a	
10 MHz	100 kHz ^b	5 MHz	10 kHz	
10 MHz	5 MHz	55 MHz	100 kHz	
10 MHz	55 MHz	1240 MHz	1 MHz	
10 MHz	1240 MHz	1500 MHz	1 MHz	
750 MHz	9 kHz ^a	100 kHz ^a	300 Hz ^a	
750 MHz	100 kHz ^b	5 MHz	10 kHz	
750 MHz	5 MHz	55 MHz	100 kHz	
750 MHz	55 MHz	1240 MHz	1 MHz	

Spectrum Analyzer Center Frequency	Microwave Spectrum Analyzer Start Frequency	Microwave Spectrum Analyzer Stop Frequency	Microwave Spectrum Analyzer Resolution Bandwidth	Amplitude of Non-Harmonic Response (dBc)
750 MHz	1240 MHz	1500 MHz	1 MHz	
1.5 GHz	9 kHz ^a	100 kHz ^a	300 Hz ^a	
1.5 GHz	100 kHz ^b	5 MHz	10 kHz	
1.5 GHz	5 MHz	55 MHz	100 kHz	
1.5 GHz	55 MHz	1240 MHz	1 MHz	
1.5 GHz	1240 MHz	1500 MHz	1 MHz	

Table 2-911.5 GHz Tracking Generator Non-Harmonic Spurious ResponseWorksheet

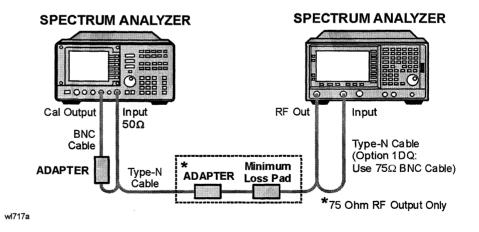
a. 75 Ω RF Outputs: Omit this frequency range.

b. 75 Ω RF Outputs: Set the start frequency to 1 MHz.

Determining the Highest Non-harmonic Spurious Response

1. In Table 2-91, locate the most positive non-harmonic response amplitude. Record this amplitude as the highest non-harmonic response amplitude in TR Entry 1 of the performance verification test record.

47. Tracking Generator Non-harmonic Spurious Outputs: HP E4402B, E4403B, E4404B, E4405B, E4407B and E4408B, Option 1DN


This procedure determines the maximum level of the non-harmonic spurious outputs of the tracking generator. The tracking generator output is set to several different output frequencies. For each output frequency, several sweeps are taken on the microwave spectrum analyzer over different frequency spans and the highest displayed spurious response is measured in each span. Responses at the fundamental frequency of the tracking generator output or their harmonics are ignored. The amplitude of the highest spurious response is recorded.

There are no related adjustments for this performance test.

Equipment Required

Microwave spectrum analyzer Cable, Type-N, 62 cm (24 in) Cable, BNC, 23 cm (9 in) Adapter, Type-N (m) to BNC (f)

Figure 2-65 Non-Harmonic Spurious Outputs Test Setup

Procedure

NOTE The following steps are for an HP 8563E microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.

1. Complete this step only if more than two hours have elapsed since performing a front-panel calibration of the microwave spectrum analyzer.

The microwave spectrum analyzer should be allowed to warm up for at least 30 minutes before proceeding.

Complete a front-panel calibration of the microwave spectrum analyzer by performing the following steps:

a. **Preset** the microwave spectrum analyzer.

b. Connect a BNC cable between CAL OUTPUT and INPUT 50 Ω

c. Press CAL, REALIGN LO & IF.

- d. Set FREQUENCY, 300 MHz.
- e. Set SPAN, 20 MHz.
- f. Set AMPLITUDE, -10 dBm.
- g. Press **PEAK SEARCH**.
- h. Press CAL, REF LVL ADJ and use the $\uparrow \downarrow$ arrows to adjust the DAC value to a marker amplitude reading of -10 dBm. Press STORE REF LVL.
- i. Disconnect the BNC cable from between the CAL OUTPUT and INPUT 50 Ω
- 2. Use the Type-N cable to connect the RF Input to the RF OUT of the tracking generator as shown in Figure 2-65. Do not connect to the RF Input of the microwave analyzer yet.
- 3. Press **Preset** on the spectrum analyzer, then wait for the preset routine to finish. Set up the analyzer by pressing the following keys:

FREQUENCY, 50 MHz SPAN, Zero Span BW/Avg, 30 kHz System, Alignments, Auto Align, Off Marker Source, Tracking Peak (*wait for the* Peaking *message to appear*) Source, Amplitude On, -2 dBm Single

4. Set up the microwave spectrum analyzer by pressing the following keys:

SPAN, 100 kHz AMPLITUDE, 5 dBm AMPLITUDE, Attenuation, 20 dB AMPLITUDE, LOG dB/DIV, 10 dB

47. Tracking Generator Non-harmonic Spurious Outputs: HP E4402B, E4403B, E4404B, E4405B, E4407B and E4408B, Option 1DN

5. Disconnect the Type-N cable from between the spectrum analyzer RF INPUT and the tracking generator RF OUT. Refer to Figure 2-65 to connect the Type-N cable from the spectrum analyzer RF OUT to the microwave spectrum analyzer INPUT 50 Ω .

Measuring Fundamental Amplitudes

Perform the following two steps for each measurement value in Table 2-92.

- 6. Set the spectrum analyzer center frequency to the Fundamental Frequency listed in Table 2-92 and press **Single** to activate a single sweep. Set the microwave spectrum analyzer to the same frequency.
- 7. On the microwave spectrum analyzer, press **PEAK SEARCH**. Press **MARKER** \rightarrow , **MKR** \rightarrow **REF LVL**. Wait for another sweep to finish. Press **PEAK SEARCH**. Record the marker amplitude reading in Table 2-92 as the fundamental amplitude.

Table 2-92 Tracking Generator Fundamental Response Worksheet

Fundamental Frequency	Fundamental Amplitude, dBm
10 MHz	
1.5 GHz	
3.0 GHz	

Measuring Non-Harmonic Responses

- 8. On the spectrum analyzer, set the center frequency to the initial value indicated in the first row of Table 2-92. Press **Single** on the ESA spectrum analyzer to trigger a single sweep.
- 9. Set the Start Freq, Stop Freq, and Res BW of the microwave spectrum analyzer as indicated in the first row of Table 2-93.
- 10.Press SGL SWP on the microwave spectrum analyzer to activate a single sweep and wait for the sweep to finish. Press PEAK SEARCH to locate the largest spurious response.
- 11.Verify that the marked signal is not the fundamental or a harmonic of the fundamental by performing the following steps:

NOTE The following steps are for an HP 8563E microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.

a. Divide the marker frequency by the fundamental frequency (the spectrum analyzer center frequency setting). For example, if the marker frequency is 30.3 MHz and the fundamental frequency is 10 MHz, dividing 30.3 MHz by 10 MHz yields 3.03.

47. Tracking Generator Non-harmonic Spurious Outputs: HP E4402B, E4403B, E4404B, E4405B, E4407B and E4408B, Option 1DN

- b. Round the number calculated in step a to the nearest whole number. In the example above, 3.03 should be rounded to 3. Values less than 1 should be rounded up to 1.
- c. Multiply the fundamental frequency by the number calculated in step b. Following the example, multiplying 10 MHz by 3 yields 30 MHz.
- d. Calculate the difference between the marker frequency and the frequency calculated in step c above. Continuing the example, the difference would be 300 kHz.
- e. Due to span accuracy uncertainties in the microwave spectrum analyzer, the marker frequency might not equal the actual frequency. Given the marker frequency, check if the difference calculated in step d is within the appropriate tolerance:

For marker frequencies <5 MHz, tolerance = ± 200 kHz For marker frequencies <55 MHz, tolerance = ± 750 kHz For marker frequencies >55 MHz, tolerance = ± 10 MHz

- f. If the difference in step d is within the indicated tolerance, the signal in question is the fundamental signal (if the number in step b = 1) or a harmonic of the fundamental (if the number in step b > 1). This response should be ignored.
- 12.Verify that the marked signal is a true response and not a random noise peak by pressing **SINGLE** to trigger a new sweep and press **PEAK SEARCH**. A true response will remain at the same frequency and amplitude on successive sweeps but a noise peak will not.

If the marked signal is not the fundamental or a harmonic of the fundamental and is a true response, proceed with step 14.

13.If the marked signal is either the fundamental or a harmonic of the fundamental or a noise peak, move the marker on the microwave spectrum analyzer to the next highest signal by pressing **NEXT PEAK**. Repeat step 11 above.

Perform step 14 only if the marker signal is a true response and not a fundamental or harmonic of the fundamental. Otherwise, continue with step 15.

14.Calculate the difference between the amplitude of marked signal and the fundamental amplitude as listed in Table 2-92.

For example, if the fundamental amplitude for a fundamental frequency of 10 MHz is +1.2 dBm and the marker amplitude is -40.8 dBm, the difference is -42 dBc.

Record this difference as the non-harmonic response amplitude for the appropriate spectrum analyzer center frequency and microwave spectrum analyzer start and stop frequency settings in Table 2-93.

Non-harmonic Amplitude = Marker Amplitude – Fundamental Amplitude

47. Tracking Generator Non-harmonic Spurious Outputs: HP E4402B, E4403B, E4404B, E4405B, E4407B and E4408B, Option 1DN

- 15.If a true non-harmonic spurious response is not found, record "NOISE" as the non-harmonic response Amplitude in Table 2-93 for the appropriate spectrum analyzer center frequency and microwave spectrum analyzer start and stop frequency settings.
- 16.Repeat step 8 to step 15 for the remaining spectrum analyzer center frequency and microwave spectrum analyzer settings in Table 2-93.
- 17.Press System, Alignments, Auto Align, All

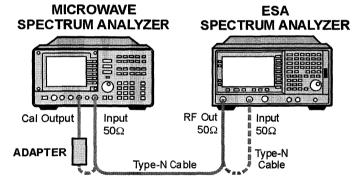
Table 2-933.0 GHz Tracking Generator Non-Harmonic Spurious Response
Worksheet

Spectrum Analyzer Center Frequency	Microwave Spectrum Analyzer Start Frequency	Microwave Spectrum Analyzer Stop Frequency	Microwave Spectrum Analyzer Resolution Bandwidth	Amplitude of Non-Harmonic Response, dBc
10 MHz	9 kHz	100 kHz	300 Hz	
10 MHz	100 kHz	5 MHz	10 kHz	
10 MHz	5 MHz	55 MHz	100 kHz	
10 MHz	55 MHz	1240 MHz	1 MHz	
10 MHz	1240 MHz	2000 MHz	1 MHz	
10 MHz	2000 MHz	3000 MHz	1 MHz	
1.5 GHz	9 kHz	100 kHz	300 Hz	
1.5 GHz	100 kHz	5 MHz	10 kHz	
1.5 GHz	5 MHz	55 MHz	100 kHz	
1.5 GHz	55 MHz	1240 MHz	1 MHz	
1.5 GHz	1240 MHz	2000 MHz	1 MHz	
1.5 GHz	2000 MHz	3000 MHz	1 MHz	
3.0 GHz	9 kHz	100 kHz	300 Hz	
3.0 GHz	100 kHz	5 MHz	10 kHz	
3.0 GHz	5 MHz	55 MHz	100 kHz	
3.0 GHz	55 MHz	1240 MHz	1 MHz	
3.0 GHz	1240 MHz	2000 MHz	1 MHz	
3.0 GHz	2000 MHz	3000 MHz	1 MHz	

Determining the Highest Non-harmonic Spurious Response

- In Table 2-93, locate the most positive non-harmonic response amplitude for microwave spectrum analyzer stop frequency settings ≤ 2000 MHz. Record this amplitude as the highest non-harmonic response amplitude in TR Entry 1 of the performance verification test record.
- In Table 2-93, locate the most positive non-harmonic response amplitude for microwave spectrum analyzer start frequency settings ≥ 2000 MHz. Record this amplitude as the highest non-harmonic response amplitude in TR Entry 2 of the performance verification test record.

48. Tracking Generator LO Feedthrough Amplitude: HP E4402B, E4403B, E4404B, E4405B, E4407B, and E4408B, Option 1DN


The tracking generator output is connected to the spectrum analyzer INPUT 50 Ω and the tracking is adjusted at 50 MHz for a maximum signal level. The tracking generator output is then connected to the input of a microwave spectrum analyzer. The tracking generator is turned to several different frequencies and the LO Feedthrough is measured at the frequency extremes of the LO.

The related adjustment for this procedure is "TG LO Leveling."

Equipment Required

Microwave spectrum analyzer Cable, Type-N, 62 cm (24 in) Cable, BNC, 23 cm (9 in) Adapter, Type-N (m) to BNC (f)

Figure 2-66 LO Feedthrough Amplitude Test Setup

wi718a

Procedure

NOTE Note that the following steps are for an HP 8563E microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.

1. Press **PRESET** on the microwave spectrum analyzer.

The microwave spectrum analyzer should be allowed to warm up for at least five minutes before proceeding. Complete step 2 only if more than 24 hours have elapsed since performing a front-panel calibration of the microwave spectrum analyzer.

2. Perform a front-panel calibration of the microwave spectrum analyzer by performing the following steps:

a. Connect a BNC cable between CAL OUTPUT and INPUT 50 Ω

- b. Press CAL, REALIGN LO & IF.
- c. Set FREQUENCY, 300 MHz.
- d. Set SPAN, 20 MHz.
- e. Set AMPLITUDE, –10 dBm.
- f. Press **PEAK SEARCH**.
- g. Press CAL, REF LVL ADJ and use the ↑↓ arrows to adjust the DAC value to a marker amplitude reading of -10 dBm. Press STORE REF LVL.
- h. Disconnect the BNC cable from between the CAL OUTPUT and INPUT 50 Ω
- 3. Press **Preset** on the spectrum analyzer.
- 4. Use the type-N cable to connect the RF Input to the tracking generator RF OUT on the spectrum analyzer as shown in Figure 2-66. Do not connect to the microwave analyzer RF Input yet.
- 5. Initialize the test equipment by pressing the following keys on the spectrum analyzer:

FREQUENCY, 50 MHz SPAN, Zero Span BW / Avg, 30 kHz System, Alignments, Auto Align, Off Marker Source, Amplitude On, -5 dBm Source, Tracking Peak (After pressing, wait for the PEAKING SIGNAL message to disappear.) FREQUENCY, 9 kHz Source, Amplitude On, -2 dBm Single

6. On the microwave spectrum analyzer, press the following keys:

FREQUENCY, 3.921409 GHz SPAN, 100 kHz AMPLITUDE, 0 dBm BW, 1 kHz

48. Tracking Generator LO Feedthrough Amplitude: HP E4402B, E4403B, E4404B, E4405B, E4407B, and E4408B, Option 1DN

- 7. Disconnect the type-N cable from between the spectrum analyzer RF INPUT and the Tracking Generator RF OUT. Refer to Figure 2-66 to connect the type-N cable from the spectrum analyzer RF OUT to the microwave spectrum analyzer INPUT 50 Ω
- 8. On the microwave spectrum analyzer, press:

PEAK SEARCH MKR, SIG TRK (On)

Wait for the signal to be displayed at center screen, then press SIG TRK (Off).

- 9. On the microwave spectrum analyzer, press AUX CTRL, INTERNAL MIXER, PRESEL AUTO PK then wait for the PEAKING message to disappear.
- 10.Record the microwave spectrum analyzer marker amplitude in Table 2-94 as the LO Feedthrough Amplitude for the Microwave Spectrum Analyzer CENTER FREQUENCY at 3.921409 GHz.
- 11.Repeat step 8 through step 10 for the remaining Spectrum Analyzer CENTER FREQUENCY and Microwave Spectrum Analyzer CENTER FREQUENCY settings listed in Table 2-94. Press **Single** on the spectrum analyzer to activate a single sweep each time the center frequency is changed.

12.Press System, Alignments, Auto Align, All.

- 13.In Table 2-94, for spectrum analyzer center frequencies of 9 kHz to 1.5 GHz, locate the highest LO Feedthrough Amplitude then record this amplitude as TR Entry 1 of the performance verification test record.
- 14.In Table 2-94, for the Spectrum Analyzer Center Frequency of 3.0 GHz, record this LO Feedthrough Amplitude as TR Entry 2 of the performance verification test record.

Table 2-94 Tracking Generator LO Feedthrough Amplitude Worksheet

Spectrum Analyzer CENTER FREQUENCY	Microwave Spectrum Analyzer CENTER FREQUENCY	LO Feedthrough Amplitude (dBm)
9 kHz	3.921409 GHz	
70 MHz	3.9914 GHz	
150 MHz	4.0714 GHz	
1.5 GHz	5.4214 GHz	
3.0 GHz	6.9214 GHz	

49. Gate Delay Accuracy and Gate Length Accuracy: HP E4401B, E4402B, E4404B, E4405B, and E4407B, Option 1D6

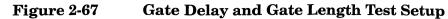
The method used for measuring the gate length times is determined by the length of the gate. Shorter gate-length times are measured with an oscilloscope, and longer gate-length times are measured with a counter.

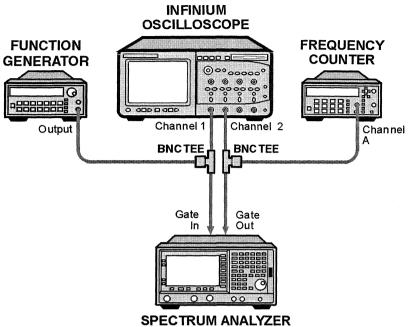
For shorter gate-length times, the output signal of a pulse generator is used to trigger the gate circuitry. To measure the gate delay, Δt markers are used. The oscilloscope pulse width measurement feature is used to measure the short gate-length.

For longer gate-length times, a universal counter is used to measure the time period from the rising edge of the gate output to its falling edge. Because the gate-length time is equivalent to the clock accuracy of the spectrum analyzer, the gate-length time is compared to the specification for clock accuracy.

There are no related adjustments for this procedure.

Equipment Required


Universal counter Function generator Oscilloscope (*This procedure is written for the HP 54820A.*) Cable, BNC, 120 cm (48 in) (*four required*) Adapter, BNC tee (m) (f) (f) (*two required*)


Procedure

- 1. Connect the equipment as shown in Figure 2-67. Connect the GATE OUT to Channel 2.
- 2. Press **Preset** on the analyzer and wait for the preset routine to finish. Set up the analyzer by pressing the following keys:

Span, Zero Span Sweep, Sweep Time, 20ms Sweep, Gate (On), Gate Setup, Edge Setup, Gate Delay, 1 μs Gate Length, 1 μs

49. Gate Delay Accuracy and Gate Length Accuracy: HP E4401B, E4402B, E4404B, E4405B, and E4407B, Option 1D6

wl739a

3. Set up the function generator as follows:

Waveform	Square
Frequency	$100~{ m Hz}$
Amplitude	$2.5~\mathrm{V}$
Offset	+1.25 V

4. Press **Default Setup** on the oscilloscope and set the controls as follows:

Timebase	500 ns/div
Trigger	Edge
66	
Trigger Source	2
Trigger Level	+2.0 V
Channel 1	
V/Div	1 V
Coupling	DC
Offset	+2.0 V
Channel 2	
V/Div	1 V
Coupling	DC
Offset	+3.0 V

- 5. On the oscilloscope, adjust the horizontal position to place the area between the rising edges of channel 1 and channel 2 at the center of the display. The horizontal position at the bottom of the grid should be between -500 ns and -650 ns.
- 6. Set the oscilloscope timebase to 200 ns/div. The rising edges of channel 1 and channel 2 should still be displayed. If not, adjust the horizontal position so the rising edges of channel 1 and channel 2 are displayed.
- 7. Use the mouse connected to the oscilloscope and click on the mouse icon in the upper right-hand corner of the display.
- 8. Set the oscilloscope statistics on.
 - Click on Measure and verify that "Show Statistics" is checked.
- 9. Define the conditions for a delta time measurement on the oscilloscope.
 - a. Click on Measure, Customize, Measurement Definitions.
 - b. Set Threshold Definition to "10%, 50%, 90%".
 - c. Set Top-Base Definition to "Standard".
 - d. Set From Edge # to 1, and set To Edge # to 2.
 - e. Set both Direction selections to "Rising".
 - f. Set both Threshold selections to "Middle Level".
 - g. Click Close.

10.Activate the delta time measurement.

- a. Click Measure, Time, Delta Time.
- b. Set Source 1 to "Channel 1".
- c. Set Source 2 to "Channel 2".
- d. Click **OK**.
- 11.Wait a few seconds for the minimum and maximum values displayed at the bottom of the oscilloscope grid to stabilize.
- 12.Refer to the measurement statistics at the bottom of the oscilloscope grid.

Record the Δ Time (1)-(2) min value as Minimum Gate Delay in Table 2-95.

Record the Δ Time (1)-(2) max value as the Maximum Gate Delay in Table 2-95.

13.Clear all current oscilloscope measurements. Click on Measure, Clear, and All Measurements.

49. Gate Delay Accuracy and Gate Length Accuracy: HP E4401B, E4402B, E4404B, E4405B, and E4407B, Option 1D6

- 14.Adjust the oscilloscope horizontal position to center the pulse on Channel 2 on the display.
- 15.Activate the pulse width measurement function for channel 2 of the oscilloscope.

Click on Measure, Time, and click on +width.

Set the Source to be channel 2 and click **OK**.

- 16. Record the +width (2) mean value in Table 2-95 as the 1 μs Gate Length.
- 17.On the analyzer, press

Sweep, Sweep Time, 150 ms Sweep, Gate Setup, Edge Setup, Gate Delay, 10 ms Sweep, Gate Setup, Edge Setup, Length, 65 ms

18.Set the universal counter controls as follows:

Function	Time Interval 1 - 2
Gate Time	0.1 s
Auto Trigger	On
Channel 1	
Coupling	DC
Impedance	$1 \text{ M}\Omega$
X10 Atten	Off
100 kHz Filter	Off
Common 1	On
Slope	Pos
Channel 2	
Coupling	DC
Impedance	$1 \text{ M}\Omega$
X10 Atten	Off
100 kHz Filter	Off
Common 1	On
Slope	Neg

19.Record the universal counter readout value as the 65ms Gate Length in Table 2-95. Performance Verification Tests 49. Gate Delay Accuracy and Gate Length Accuracy: HP E4401B, E4402B, E4404B, E4405B, and E4407B, Option 1D6

Gate Delay and Gate Length Accuracy Worksheet

Description	Value	TR Entry
Minimum Gate Delay	-	1
Maximum Gate Delay		2
1 µs Gate Length		3
65 ms Gate Length		4

Performance Verification Tests 50. Gate Mode Additional Amplitude Error: HP E4401B, E4402B, E4404B, E4405B and E4407B, Option 1D6

50. Gate Mode Additional Amplitude Error: HP E4401B, E4402B, E4404B, E4405B and E4407B, Option 1D6

This procedure measures the additional amplitude error while gate mode is turned on. An amplitude reference is established while gate mode is off. Gate mode is then turned on with a function generator providing the gate trigger input. The amplitude with gate mode on is then measured using the marker delta function.

There are no related adjustments for this procedure.

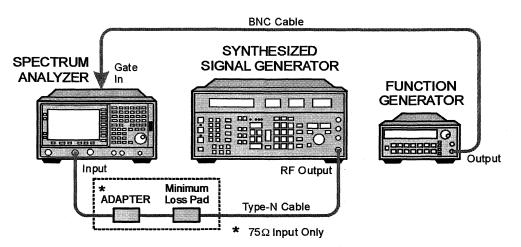
Equipment Required

Synthesized signal generator Function generator Cable, Type-N (f), 50 Ω Cable, BNC, 120 cm

Additional Equipment for Option 1DP

Adapter, Type-N (f) to BNC (m), 75 Ω Minimum loss pad

Additional Equipment for Option BAB


Adapter, Type-N (f) to APC 3.5 (f)

Procedure

- 1. Connect the equipment as shown in Figure 2-68.
- 2. On the analyzer, press **Preset** and wait for the preset routine to finish. Set the analyzer as follows:

FREQUENCY, 300 MHz SPAN, Zero Span AMPLITUDE, MORE, Y Axis Units (or Amptd Units), dBm AMPLITUDE, Ref Level, -20 dBm ($50 \ \Omega Inputs only$) AMPLITUDE, Ref Level, -10 dBm ($75 \ \Omega Inputs only$) Sweep, 20 ms

Figure 2-68 Gate Delay and Gate Length Accuracy Test Setup

wl757a

3. Set the function generator as follows:

Waveform	Square
Duty Cycle	50%
Frequency	100 Hz
Amplitude	2.5 V pk-pk
Offset	+2.5V

4. On the synthesized signal generator, press **Blue Key**, **Special**, **0**, **0**. Set the signal generator as follows:

FREQUENCY	300 MHz
AMPLITUDE	$-20 \text{ dBm} (50 \Omega \text{ Inputs only})$
AMPLITUDE	$-10 \text{ dBm} (75 \Omega \text{ Inputs only})$

- 5. On the analyzer, press **Single** and wait for the sweep to finish. Press **Peak Search (or Search)**.
- 6. On the analyzer, press Meas Tools, Delta.
- 7. Set the analyzer as follows:

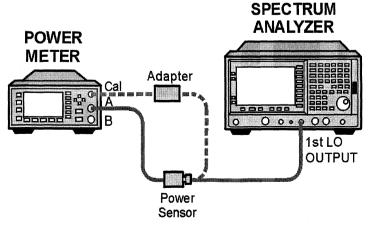
Trig, External Sweep, Gate (On) Gate Setup, Edge Setup, Gate Delay, 1 μs Gate Length, 1 μs Sweep, Gate Setup, Trig Type (Level)

- 8. On the analyzer, press Single and wait for the sweep to finish. Press Peak Search (or Search).
- 9. Record the Δ Mkr1 amplitude reading as TR Entry 1 in the performance test record.

51. First LO OUTPUT Amplitude Accuracy (Option AYZ only)

This test applies only to spectrum analyzers equipped with external mixing (Option AYZ).

This test verifies that spectrum analyzers with external mixing (Option AYZ) meet their specification for First LO (local oscillator) output level. The flatness of the First LO output determines the flatness of measurements made using external mixers. In this test, a calibrated power sensor is connected to the First LO output to measure the power level at frequencies between 2.9 GHz and 7.1 GHz.


The spectrum analyzer is put into external mixing mode using a harmonic number of -10. The tuned frequency of the spectrum will therefore be 321.4 MHz (the frequency of the Second IF) below the Tenth harmonic of the First LO. A 321.4 MHz frequency offset is used so that the center frequency will be exactly 10 times the First LO frequency. Setting the center frequency step size to 2 GHz allows the LO frequency to be stepped in 200 MHz increments.

The related adjustment for this performance test is "LO Power Adjustment."

Equipment Required

Power meter Microwave power sensor Adapter, type-N (m) to SMA (f)

Figure 2-69 First LO Output Amplitude Accuracy Test Setup

wl75b

Procedure

- 1. Zero and calibrate the power sensor and power meter combination at 50 MHz. Set the power meter for dBm output.
- 2. Enter the 3 GHz calibration factor of the power sensor into the power meter.
- 3. Remove the termination from the First LO OUTPUT connector of the spectrum analyzer.
- 4. Connect the power sensor to the First LO OUTPUT connector of the spectrum analyzer as shown in Figure 2-69.
- 5. Preset the spectrum analyzer and set as follows:

Input/Output, Input Mixer, Input Mixer (Ext) Mixer Config, Harmonic, -10 SPAN, Zero Span FREQUENCY, 30 GHz CF Step, 2 GHz Freq Offset, 321.4 MHz System, Alignments, Auto Align, Off

- 6. Press **FREQUENCY** on the analyzer.
- 7. Read the power displayed on the power meter and record it as TR Entry 1 in the Performance Verification Test Record.
- 8. Press the 1 key on the analyzer to select the next center frequency and First LO frequency.
- 9. Enter the appropriate power sensor calibration factor into the power meter as shown in Table 2-96.
- 10.Read the power displayed on the power meter and record it in the Performance Verification Test Record as indicated in the TR Entry column of Table 2-96.
- 11.Repeat step 8 through step 10 for the remaining center frequency and First LO frequencies listed in Table 2-96.

51. First LO OUTPUT Amplitude Accuracy (Option AYZ only)

	WULKSHEEL		
First LO Frequency (GHz)	Center Frequency (GHz)	Calibration Factor Frequency (GHz)	TR Entry
2.9	29	3.0	1
3.1	31	3.0	2
3.3	33	3.0	3
3.5	35	4.0	4
3.7	37	4.0	5
3.9	39	4.0	6
4.1	41	4.0	7
4.3	43	4.0	8
4.5	45	5.0	9
4.7	47	5.0	10
4.9	49	5.0	11
5.1	51	5.0	12
5.3	53	5.0	13
5.5	55	6.0	14
5.7	57	6.0	15
5.9	59	6.0	16
6.1	61	6.0	17
6.3	63	6.0	18
6.5	65	7.0	19
6.7	67	7.0	20
6.9	69	7.0	21
7.1	71	7.0	22

Table 2-96First LO Output Amplitude Accuracy
Worksheet

Post-Test Instrument Restoration

12.Disconnect the power sensor from the First LO OUTPUT connector.

13.Replace the 50 Ω termination on the First LO OUTPUT connector.

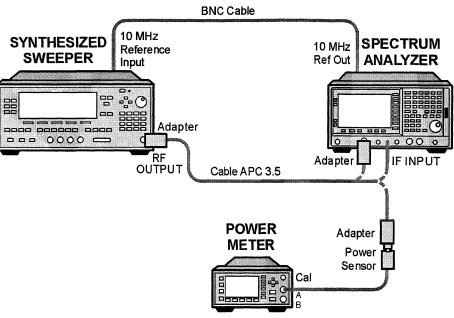
14.Preset the spectrum analyzer.

15.Press System, Alignments, Auto Align, All.

52. IF INPUT Accuracy (Option AYZ only)

This test only applies to spectrum analyzers equipped with external mixing (Option AYZ).

This test measures the accuracy of the IF INPUT. A nominal –30 dBm, 321.4 MHz signal is applied to a power sensor and the power level is recorded. The actual frequency must be offset slightly to compensate for the IF centering error of the 1 kHz resolution bandwidth. This frequency offset is measured using the 321.4 MHz signal applied to the INPUT 50 Ω connector. The signal is measured with frequency corrections on and off. The difference between these two measurements is the IF centering error. The 321.4 MHz signal is then offset by the IF centering error.


This signal is then applied to the IF INPUT of the spectrum analyzer which is set to external mixing mode in A band (26.5 GHz to 40 GHz). Amplitude corrections are set to 0 dB. The amplitude is measured by the spectrum analyzer and then recorded. The difference between the two measurements is the IF INPUT accuracy.

The related adjustment procedure for this performance test is "IF INPUT Correction."

Equipment Required

Synthesized sweeper Power meter Low-power power sensor 30 dB reference attenuator Cable, APC 3.5 Cable, BNC Adapter, type-N (m) to APC 3.5 (f) (not required for Option BAB) Adapter, APC 3.5 (f) to APC 3.5 (f) (two required for Option BAB) Adapter, type-N (f) to APC 3.5 (f) Performance Verification Tests 52. IF INPUT Accuracy (Option AYZ only)

wl76b

Procedure

Determining the IF Centering Error

1. Preset the synthesized sweeper and set the controls as follows:

CW	321.4 MHz
POWER LEVEL	–30 dBm
RF	On

- 2. Connect the synthesized sweeper output to the spectrum analyzer INPUT 50 Ω connector. The analyzer provides the frequency reference for the synthesized sweeper.
- 3. Preset the spectrum analyzer and set as follows:

System, Alignments, Auto Align, Off FREQUENCY, 321.4 MHz SPAN, 5 kHz AMPLITUDE, -30 dBm BW/Avg, Resolution BW, 1 kHz

- 4. On the analyzer, press Single and wait for the sweep to finish.
- 5. On the analyzer, press Peak Search (or Search), Marker, Delta.
- 6. On the analyzer, press System, Alignments, Freq Correct (Off).
- 7. On the analyzer, press Single and wait for the sweep to finish.
- 8. On the analyzer, press Peak Search (or Search).

- 9. Note the Δ Mkr1 frequency.
- 10.Calculate the new synthesized sweeper CW frequency by adding the Δ Mkr1 frequency to 321.4 MHz. Set the synthesized sweeper CW frequency to the new calculated frequency.

New CW Frequency = $321.4 \text{ MHz} + \Delta \text{Mkr1}$ Frequency

For example, if the Δ Mkr1 frequency is 725 Hz, the new CW frequency would be 321.400725 MHz.

11.On the analyzer, press System, Alignments, Freq Correct (On).

Setting the Synthesized Sweeper Power Level

- 12.Zero and calibrate the low-power sensor and power meter in dBm mode using the 30 dB reference attenuator. Enter the 300 MHz calibration factor of the power sensor into the power meter.
- 13.Connect the equipment as shown in Figure 2-70, with the output of the synthesized sweeper connected to the power sensor using an adapter between the cable and the power sensor.
- 14. Adjust the synthesized sweeper power level for a power meter reading of $-30~\mathrm{dBm}\pm0.1~\mathrm{dB}.$
- 15.Record the power meter reading as Input Power.

Input Power _____dBm

Measuring the IF INPUT Accuracy

- 16.Connect the APC 3.5 cable from the RF OUTPUT of the synthesized sweeper to the IF INPUT of the analyzer.
- 17.Preset the spectrum analyzer and set as follows:

System, Alignments, Auto Align, Off AMPLITUDE, More 1 of 2, Corrections, Corrections (Off) AMPLITUDE, -30 dBm Input/Output, Input Mixer, Input Mixer (Ext) Ext Mix Band, 26.5-40 GHz FREQUENCY, 30 GHz SPAN, Zero Span BW/Avg, Resolution Bandwidth, 1 kHz

18.Press **Peak Search** on the analyzer. Record the Mkr1 amplitude reading as the Measured Power.

Measured Power _____dBm

19.Subtract the Input Power (step 15) from the Measured Power (step 18) and record the difference as the IF INPUT Accuracy.

IF INPUT Accuracy = Measured Power – Input Power

Performance Verification Tests 52. IF INPUT Accuracy (Option AYZ only)

For example, if the Measured Power is -29.34 dBm and the Input Power is -30.08 dBm, the IF INPUT Accuracy would be 0.74 dB.

20.Record the IF INPUT Accuracy as TR Entry 1 in the Performance Verification Test Record.

Post-Test Instrument Restoration

21.Disconnect the cable from the IF INPUT connector.

- 22.Preset the spectrum analyzer.
- 23.On the analyzer, press System, Alignments, Auto Align, All.

Performance Verification Test Records

HP E4401B Performance Verification Test Record

Only the tests for HP E4401B are included in this test record, therefore not all test numbers are included.

Hewlett-Packard Company			
Address:		Report No	······
		Date	······································
Model HP E4401B			
Serial No.		Ambient temperature	°C
Options		Power mains line frequ (nominal)	lency Hz
Firmware Revision		Relative humidity	%
Customer		Tested by	
Test Equipment Used:			
Description	Model No.	Trace No.	Cal Due Date
Synthesized Signal Generator			
Synthesized Sweeper			
Function Generator			
Power Meter, Dual-Channel			
RF Power Sensor #1			
RF Power Sensor #2 (Non-Option 1DP only)			
Low-Power Power Sensor			
75 Ω Power Sensor (Option 1DP only)			
Digital Multimeter		·	
Universal Counter			
Frequency Standard	·		
Power Splitter			

50 Ω Termination	 	
Minimum Loss Pad (Option 1DP only)	 	
1 dB Step Attenuator	 	
10 dB Step Attenuator		
6 dB Fixed Attenuator	 	
20 dB Fixed Attenuator (Option 1DS only)	 	
Oscilloscope (Option 1D6 only)	 	
Microwave Spectrum Analyzer (Option 1DN or 1DQ only)	 	
Notes/comments:	 	

HP E4401B Performance Verification Test Record

Hewlett-Packard Company						
Mod	lel HP E4401B		Report No			
Seri	al No		Date			
Test DescriptionMinimumResults MeasuredM		Maximum	Measurement Uncertainty			
1.	10 MHz Reference Output Accuracy (Non-Option 1D5 only)					
	Settability	–5.0 Hz	(1)	+5.0 Hz	±293.3 µHz	
2.	10 MHz Precision Frequency Reference Output Accuracy (Option 1D5 only)					
	5 Minute Warm-Up Error	-0.1 ppm	(1)	+0.1 ppm	$\pm 0.000072 \text{ ppm}$	
	15 Minute Warm-Up Error	-0.01 ppm	(2)	+0.01 ppm	±0.000070 ppm	

Table 3-2

Hev	vlett-Packard Company				
Mod	lel HP E4401B		Report No Date		
Ser	ial No				
Test	t Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
3.	Frequency Readout Accuracy and Marker Count Accuracy				
	Frequency Readout Accuracy				
	Center Freq Span				
	1490 MHz 20 MHz	1489.784990 MHz	(1)	1490.215010 MHz	±0 Hz
	1490 MHz 10 MHz	1489.884990 MHz	(2)	1490.115010 MHz	±0 Hz
	1490 MHz 1 MHz	1489.988490 MHz	(3)	1490.011510 MHz	±0 Hz
	Marker Count Accuracy				
	Center Freq Span				
	1490 MHz 10 MHz	1489.9999999 MHz	(4)	1490.000001 MHz	±0 Hz
	1490 MHz 1 MHz	1489.999999 MHz	(5)	1490.000001 MHz	±0 Hz
5.	Frequency Span Readout Accuracy				
	Span Start Freq				
	1500 MHz 0 Hz	1185 MHz	(1)	1215 MHz	±3.06 MHz
	100 MHz 10 MHz	79 MHz	(2)	81 MHz	±204 kHz
	100 kHz 10 MHz	79 kHz	(3)	81 kHz	±204 Hz
	100 MHz 800 MHz	79 MHz	(4)	81 MHz	±204 kHz
	100 kHz 800 MHz	79 kHz	(5)	81 kHz	±204 Hz
	100 MHz 1400 MHz	79 MHz	(6)	81 MHz	±204 kHz
	100 kHz 1499 MHz	79 kHz	(7)	81 kHz	±204 Hz

Hew	lett-Packard Company				
Mod	el HP E4401B		Report No		
Seri	al No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
7.	Noise Sidebands				
	Offset from 1 GHz signal				
	10 kHz		(1)	–90 dBc/Hz	±1.154 dB
	20 kHz		(2)	–100 dBc/Hz	±1.154 dB
	30 kHz		(3)	–102 dBc/Hz	±1.154 dB
	100 kHz		(4)	–112 dBc/Hz	±1.154 dB
8.	System Related Sidebands				
	Offset from 500 MHz signal				
	30 kHz to 230 kHz		(1)	-65 dBc	±1.154 dB
	–30 kHz to –230 kHz		(2)	65 dBc	±1.154 dB
9.	Residual FM				
	1 kHz Res BW, (Non-Option 1D5)		(1)	150 Hz	±9.24 Hz
	1 kHz Res BW, (<i>Option 1D5</i>)		(1)	100 Hz	±9.24 Hz
	10 Hz Res BW (Options 1DR and 1D5 only)		(2)	2 Hz	±0.274 Hz
10.	Sweep Time Accuracy				
	Sweep Time				
	5 ms -1.0%		(1)	±1.0%	±0.28%
	20 ms	-1.0%	(2)	±1.0%	±0.28%
	100 ms	-1.0%	(3)	±1.0%	±0.28%
	1 s	-1.0%	(4)	±1.0%	±0.28%
	10 s	-1.0%	(5)	±1.0%	±0.28%
	1 ms (Option AYX only)	-1.0%	(6)	±1.0%	±0.28%

Hev	Hewlett-Packard Company						
Mod	lel HP E4401B		Report No				
Seri	al No		Date				
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty		
	500 μs (Option AYX only)	-1.0%	(7)	±1.0%	±0.28%		
	100 μs (<i>Option AYX only</i>)	-1.0%	(8)	±1.0%	±0.28%		
11.	Display Scale Fidelity						
	Cumulative Log Fidelity, Res BW ≥ 1 kHz						
	dB from Ref Level						
	-4	-0.34 dB	(1)	+0.34 dB	±0.064 dB		
	-8	0.38 dB	(2)	+0.38 dB	±0.064 dB		
	-12	–0.42 dB	(3)	+0.42 dB	±0.064 dB		
	-16	–0.46 dB	(4)	+0.46 dB	±0.064 dB		
	-20	–0.50 dB	(5)	+0.50 dB	±0.063 dB		
	-24	-0.54 dB ·	(6)	+0.54 dB	±0.064 dB		
	-28	–0.58 dB	(7)	+0.58 dB	±0.064 dB		
	-32	-0.62 dB	(8)	+0.62 dB	±0.064 dB		
	-36	-0.66 dB	(9)	+0.66 dB	±0.064 dB		
	-40	-0.70 dB	(10)	+0.70 dB	±0.063 dB		
	-44	–0.74 dB	(11)	+0.74 dB	±0.064 dB		
	-48	-0.78 dB	(12)	+0.78 dB	±0.064 dB		
	-52	-0.82 dB	(13)	+0.82 dB	±0.089 dB		
	-56	0.86 dB	(14)	+0.86 dB	±0.089 dB		
	-60	0.90 dB	(15)	+0.90 dB	±0.088 dB		
	-64	0.94 dB	(16)	+0.94 dB	±0.089 dB		
	-68	0.98 dB	(17)	+0.98 dB	±0.089 dB		
	-72	–1.02 dB	(18)	+1.02 dB	±0.089 dB		
	-76	–1.06 dB	(19)	+1.06 dB	±0.089 dB		
	-80	–1.10 dB	(20)	+1.10 dB	±0.088 dB		

Performance Verification Test Records HP E4401B Performance Verification Test Record

Hewlett-Packard Company					
Model HP E4401B	Model HP E4401B Report No				
Serial No	Date				
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
-84	-1.14 dB	(21)	+1.14 dB	±0.089 dB	
Incremental Log Fidelity, Res BW ≥ 1 kHz					
dB from Ref Level					
-4	-0.4 dB	(22)	+0.4 dB	±0.064 dB	
8	-0.4 dB	(23)	+0.4 dB	±0.064 dB	
-12	-0.4 dB	(24)	+0.4 dB	±0.064 dB	
-16	-0.4 dB	(25)	+0.4 dB	±0.064 dB	
-20	-0.4 dB	(26)	+0.4 dB	±0.063 dB	
-24	-0.4 dB	(27)	+0.4 dB	±0.064 dB	
-28	-0.4 dB	(28)	+0.4 dB	±0.064 dB	
-32	-0.4 dB	(29)	+0.4 dB	±0.064 dB	
-36	-0.4 dB	(30)	+0.4 dB	±0.064 dB	
40	-0.4 dB	(31)	+0.4 dB	±0.063 dB	
-44	-0.4 dB	(32)	+0.4 dB	±0.064 dB	
-48	-0.4 dB	(33)	+0.4 dB	±0.064 dB	
-52	-0.4 dB	(34)	+0.4 dB	±0.089 dB	
-56	-0.4 dB	(35)	+0.4 dB	±0.089 dB	
60	-0.4 dB	(36)	+0.4 dB	±0.088 dB	
-64	-0.4 dB	(37)	+0.4 dB	±0.089 dB	
68	-0.4 dB	(38)	+0.4 dB	±0.089 dB	
-72	-0.4 dB	(39)	+0.4 dB	±0.089 dB	
-76	-0.4 dB	(40)	+0.4 dB	±0.089 dB	
-80	-0.4 dB	(41)	+0.4 dB	±0.088 dB	

Hewlett-Packard Company					
Model HP E4401B		Report No			
Serial No		Date			
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
Cumulative Log Fidelity, Res BW ≤ 300 Hz (Option 1DR only)					
dB from Ref Level					
-4	-0.34 dB	(43)	+0.34 dB	±0.064 dB	
-8	-0.38 dB	(44)	+0.38 dB	±0.064 dB	
-12	-0.42 dB	(45)	+0.42 dB	±0.064 dB	
-16	-0.46 dB	(46)	+0.46 dB	±0.064 dB	
-20	–0.50 dB	(47)	+0.50 dB	±0.063 dB	
-24	–0.54 dB	(48)	+0.54 dB	±0.064 dB	
-28	–0.58 dB	(49)	+0.58 dB	±0.064 dB	
-32	-0.62 dB	(50)	+0.62 dB	±0.064 dB	
-36	-0.66 dB	(51)	+0.66 dB	±0.064 dB	
-40	–0.70 dB	(52)	+0.70 dB	±0.063 dB	
44	–0.74 dB	(53)	+0.74 dB	±0.064 dB	
-48	–0.78 dB	(54)	+0.78 dB	±0.064 dB	
-52	-0.82 dB	(55)	+0.82 dB	±0.089 dB	
-56	-0.86 dB	(56)	+0.86 dB	±0.089 dB	
60	-0.90 dB	(57)	+0.90 dB	±0.088 dB	
64	-0.94 dB	(58)	+0.94 dB	±0.089 dB	
68	0.98 dB	(59)	+0.98 dB	±0.089 dB	
-72	–1.02 dB	(60)	+1.02 dB	±0.089 dB	
-76	–1.06 dB	(61)	+1.06 dB	±0.089 dB	
-80	–1.10 dB	(62)	+1.10 dB	±0.088 dB	
-84	–1.14 dB	(63)	+1.14 dB	±0.089 dB	
-88	–1.18 dB	(64)	+1.18 dB	±0.089 dB	

Performance Verification Test Records HP E4401B Performance Verification Test Record

Model HP E4401B		Report No		
Serial No		Date	-	
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
-92	-1.22 dB	(65)	+1.22 dB	±0.089 dB
-96	–1.26 dB	(66)	+1.26 dB	±0.088 dB
98	–1.28 dB	(67)	+1.28 dB	±0.089 dB
Incremental Log Fidelity, Res BW ≤ 300 Hz (<i>Option 1DR only</i>) dB from Ref Level				
-4	-0.4 dB	(68)	+0.4 dB	±0.064 dB
-8	-0.4 dB	(69)	+0.4 dB	±0.064 dB
-12	-0.4 dB	(70)	+0.4 dB	±0.064 dB
-16	-0.4 dB	(71)	+0.4 dB	±0.064 dB
-20	–0.4 dB	(72)	+0.4 dB	±0.063 dB
-24	-0.4 dB	(73)	+0.4 dB	±0.064 dB
-28	0.4 dB	(74)	+0.4 dB	±0.064 dB
-32	-0.4 dB	(75)	+0.4 dB	±0.064 dB
-36	–0.4 dB	(76)	+0.4 dB	±0.064 dB
-40	-0.4 dB	(77)	+0.4 dB	±0.063 dB
-44	-0.4 dB	(78)	+0.4 dB	±0.064 dB
-48	0.4 dB	(79)	+0.4 dB	±0.064 dB
-52	-0.4 dB	(80)	+0.4 dB	±0.089 dB
-56	-0.4 dB	(81)	+0.4 dB	±0.089 dB
60	-0.4 dB	(82)	+0.4 dB	±0.088 dB
64	-0.4 dB	(83)	+0.4 dB	±0.089 dB
-68	-0.4 dB	(84)	+0.4 dB	±0.089 dB
-72	0.4 dB	(85)	+0.4 dB	±0.089 dB
76	-0.4 dB	(86)	+0.4 dB	±0.089 dB

Hewlett-Packard Company				
Model HP E4401B		Report No		
Serial No		Date		
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
80	-0.4 dB	(87)	+0.4 dB	±0.088 dB
Linear Fidelity, Res BW ≥ 1 kHz				
dB from Ref Level				
-4	-2.0%	(89)	+2.0%	±0.064 %
-8	-2.0%	(90)	+2.0%	±0.064 %
-12	-2.0%	(91)	+2.0%	±0.064 %
-16	-2.0%	(92)	+2.0%	±0.064 %
-20	-2.0%	(93)	+2.0%	±0.063 %
Linear Fidelity, Res BW ≤ 300 Hz (<i>Option 1DR only</i>)				
dB from Ref Level				
-4	-2.0%	(94)	+2.0%	±0.064 %
-8	-2.0%	(95)	+2.0%	±0.064 %
-12	-2.0%	(96)	+2.0%	±0.064 %
-16	-2.0%	(97)	+2.0%	±0.064 %
-20	-2.0%	(98)	+2.0%	±0.063 %
Zero Span, Res BW≤ 300 Hz (Option 1DR only)				
dB from Ref Level				
-4	-0.36 dB	(99)	+0.36 dB	±0.064 dB
8	-0.42 dB	(100)	+0.42 dB	±0.064 dB
-12	-0.48 dB	(101)	+0.48 dB	±0.064 dB
-16	-0.54 dB	(102)	+0.54 dB	±0.064 dB
-20	-0.60 dB	(103)	+0.60 dB	±0.063 dB
-24	0.66 dB	(104)	+0.66 dB	±0.064 dB

Performance Verification Test Records HP E4401B Performance Verification Test Record

Mod	lel HP E4401B		Report No		
			-		
	Description	Minimum	Date Results Measured	Maximum	Measurement Uncertainty
	-28	-0.72 dB	(105)	+0.72 dB	±0.064 dB
	-32	–0.78 dB	(106)	+0.78 dB	±0.064 dB
	-36	–0.84 dB	(107)	+0.84 dB	±0.064 dB
	-40	-0.90 dB	(108)	+0.90 dB	±0.063 dB
	44	–0.96 dB	(109)	+0.96 dB	±0.064 dB
	-48	–1.02 dB	(110)	+1.02 dB	±0.064 dB
	-52	–1.08 dB	(111)	+1.08 dB	±0.089 dB
	-56	–1.14 dB	(112)	+1.14 dB	±0.089 dB
	-60	–1.20 dB	(113)	+1.20 dB	±0.088 dB
	64	–1.5 dB	(114)	+1.5 dB	±0.089 dB
	68	–1.5 dB	(115)	+1.5 dB	±0.089 dB
	-70	–1.5 dB	(116)	+1.5 dB	±0.089 dB
12.	Input Attenuation Switching Uncertainty				
	Input Attenuation Setting				
	0 dB	-0.3 dB	(1)	+0.3 dB	±0.108 dB
	5 dB	–0.3 dB	(2)	+0.3 dB	±0.107 dB
	15 dB	–0.3 dB	(3)	+0.3 dB	±0.107 dB
	20 dB	–0.3 dB	(4)	+0.3 dB	±0.089 dB
	25 dB	–0.35 dB	(5)	+0.35 dB	±0.089 dB
	30 dB	–0.40 dB	(6)	+0.40 dB	±0.089 dB
	35 dB	-0.45 dB	(7)	+0.45 dB	±0.089 dB
	40 dB	-0.50 dB	(8)	+0.50 dB	±0.089 dB
	45 dB	–0.55 dB	(9)	+0.55 dB	±0.089 dB
	50 dB	-0.60 dB	(10)	+0.60 dB	±0.089 dB
	55 dB	-0.65 dB	(11)	+0.65 dB	±0.089 dB

Table 3-2

Г

HP E4401B Performance Verification Test Record

Hewlett-Packard Company							
Mod	lel HP E4401I	B		Report No			
Seri	ial No			Date			
Test	Description		Minimum	Results Measured	Maximum	Measurement Uncertainty	
	60 dB		-0.70 dB	(12)	+0.70 dB	±0.089 dB	
13.	Reference I Accuracy	Level					
	Log, Res BW	$\geq 1 \text{ kHz}$					
	Reference	Level					
	$50 \Omega (dBm)$	$75 \Omega (dBmV)$					
	-15	+33.75	–0.3 dB	(1)	+0.3 dB	±0.144 dB	
	-5	+43.75	–0.3 dB	(2)	+0.3 dB	±0.144 dB	
	35	+13.75	–0.3 dB	(3)	+0.3 dB	±0.144 dB	
	-45	+3.75	–0.3 dB	(4)	+0.3 dB	±0.144 dB	
	-55	-6.25	–0.5 dB	(5)	+0.5 dB	±0.156 dB	
	-65	-16.25	-0.5 dB	(6)	+0.5 dB	±0.156 dB	
	-75	-26.25	-0.7 dB	(7)	+0.7 dB	±0.156 dB	
	Linear, Res I	3W ≤ 300 Hz					
	Reference	Level					
	$50 \ \Omega \ (dBm)$	$75 \ \Omega \ (dBmV)$					
	-15	+33.75	-0.3 dB	(8)	+0.3 dB	±0.144 dB	
	-5	+43.75	–0.3 dB	(9)	+0.3 dB	±0.144 dB	
	-35	+13.75	0.3 dB	(10)	+0.3 dB	±0.144 dB	
	-45	+3.75	0.3 dB	(11)	+0.3 dB	±0.144 dB	
	-55	-6.25	0.5 dB	(12)	+0.5 dB	±0.156 dB	
	65	-16.25	-0.5 dB	(13)	+0.5 dB	±0.156 dB	
	-75	-26.25	-0.7 dB	(14)	+0.7 dB	±0.156 dB	

Hewlett-Packard	Company				
Model HP E4401	В		Report No		
Serial No			Date		
Test Description		Minimum	Results Measured	Maximum	Measurement Uncertainty
Log, Res BW (Option 1DR					
Reference	Level				
$50 \Omega (dBm)$	75 Ω (dBmV)				
-15	+33.75	0.3 dB	(15)	+0.3 dB	±0.144 dB
-5	+43.75	–0.3 dB	(16)	+0.3 dB	±0.144 dB
-35	+13.75	0.3 dB	(17)	+0.3 dB	±0.144 dB
-45	+3.75	–0.3 dB	(18)	+0.3 dB	±0.144 dB
-55	-6.25	-0.5 dB	(19)	+0.5 dB	±0.156 dB
65	-16.25	–0.5 dB	(20)	+0.5 dB	±0.156 dB
-75	-26.25	–0.7 dB	(21)	+0.7 dB	±0.156 dB
Linear, Res I (Option 1DR					
Reference	Level				
$50 \Omega (dBm)$	$75 \ \Omega \ (dBmV)$				
-15	+33.75	-0.3 dB	(22)	+0.3 dB	±0.144 dB
5	+43.75	–0.3 dB	(23)	+0.3 dB	±0.144 dB
-35	+13.75	-0.3 dB	(24)	+0.3 dB	±0.144 dB
-45	+3.75	–0.3 dB	(25)	+0.3 dB	±0.144 dB
-55	-6.25	–0.5 dB	(26)	+0.5 dB	±0.156 dB
65	-16.25	–0.5 dB	(27)	+0.5 dB	$\pm 0.156 \text{ dB}$
-75	-26.25	-0.7 dB	(28)	+0.7 dB	±0.156 dB

Hewlett-Packard Company						
Mod	el HP E4401B		Report No			
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
15.	Resolution Bandwidth Switching Uncertainty					
	Resolution Bandwidth					
	3 kHz	–0.3 dB	(1)	+0.3 dB	±0.064 dB	
	9 kHz	-0.3 dB	(2)	+0.3 dB	±0.064 dB	
	10 kHz	–0.3 dB	(3)	+0.3 dB	±0.064 dB	
	30 kHz	–0.3 dB	(4)	+0.3 dB	±0.064 dB	
	100 kHz	–0.3 dB	(5)	+0.3 dB	±0.064 dB	
	120 kHz	–0.3 dB	(6)	+0.3 dB	±0.064 dB	
	300 kHz	–0.3 dB	(7)	+0.3 dB	±0.064 dB	
	1 MHz	-0.3 dB	(8)	+0.3 dB	±0.064 dB	
	3 MHz	–0.3 dB	(9)	+0.3 dB	±0.064 dB	
	$5 \mathrm{~MHz}$	–0.6 dB	(10)	+0.6 dB	±0.083 dB	
	300 Hz (Option 1DR only)	–0.3 dB	(11)	+0.3 dB	±0.064 dB	
	200 Hz (Option 1DR only)	-0.3 dB	(12)	+0.3 dB	±0.064 dB	
	100 Hz (Option 1DR only)	-0.3 dB	(13)	+0.3 dB	±0.064 dB	
	30 Hz (Option 1DR only)	-0.3 dB	(14)	+0.3 dB	±0.064 dB	
	10 Hz (Option 1DR only)	-0.3 dB	(15)	+0.3 dB	±0.064 dB	
16.	Absolute Amplitude Accuracy (Reference Settings)					
	Log, Preamp Off	–0.34 dB	(1)	+0.34 dB	±0.148 dB	
	Lin, Preamp Off	-0.34 dB	(2)	+0.34 dB	±0.148 dB	
	Log, Preamp On	0.5 dB	(3)	+0.5 dB	±0.148 dB	
	Lin, Preamp On	–0.5 dB	(4)	+0.5 dB	±0.148 dB	

Performance Verification Test Records HP E4401B Performance Verification Test Record

Hew	lett-Packard Company				
Mod	el HP E4401B		Report No		
Seri	al No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
18.	Overall Absolute Amplitude Accuracy				
	0 dBm Reference Level				
	0 dBm input	–0.54 dB	(1)	+0.54 dB	±0.08 dB
	–10 dBm input	–0.54 dB	(2)	+0.54 dB	±0.081 dB
	–20 dBm input	-0.54 dB	(3)	+0.54 dB	$\pm 0.082 \text{ dB}$
	–30 dBm input	-0.54 dB	(4)	+0.54 dB	±0.083 dB
	-40 dBm input	-0.54 dB	(5)	+0.54 dB	±0.084 dB
	–50 dBm input	-0.54 dB	(6)	+0.54 dB	±0.086 dB
	–20 dBm Reference Level				
	–20 dBm input	-0.54 dB	(7)	+0.54 dB	±0.082 dB
	–30 dBm input	–0.54 dB	(8)	+0.54 dB	±0.083 dB
	-40 dBm input	-0.54 dB	(9)	+0.54 dB	±0.084 dB
	–50 dBm input	0.54 dB	(10)	+0.54 dB	±0.086 dB
	-40 dBm Reference Level				
	–40 dBm input	–0.54 dB	(11)	+0.54 dB	±0.084 dB
	–50 dBm input	–0.54 dB	(12)	+0.54 dB	±0.086 dB
	-50 dBm Reference Level				
	–50 dBm input	-0.54 dB	(13)	+0.54 dB	$\pm 0.086 \text{ dB}$
20.	Resolution Bandwidth Accuracy				
	Resolution Bandwidth				
	5 MHz	3.5 MHz	(1)	6.5 MHz	±38.2 kHz
	3 MHz	2.55 MHz	(2)	3.45 MHz	±22.9 kHz
	1 MHz	0.85 MHz	(3)	1.15 MHz	±7.64 kHz
	300 kHz	255 kHz	(4)	345 kHz	±2.29 kHz

Hew	lett-Packard Company				
Mod	el HP E4401B		Report No Date		
Seri	al No				
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	100 kHz	85 kHz	(5)	115 kHz	±764 Hz
	30 kHz	25.5 kHz	(6)	34.5 kHz	±229 Hz
	10 kHz	8.5 kHz	(7)	11.5 kHz	±76.4 Hz
	3 kHz	2.55 kHz	(8)	3.45 kHz	±22.9 Hz
	1 kHz	850 Hz	(9)	1.15 kHz	±7.64 Hz
	120 kHz	102 kHz	(10)	138 kHz	±154 Hz
	9 kHz	7.65 kHz	(11)	10.35kHz	±11.5 Hz
21.	Frequency Response	input impedar	ata in the appropria ace of the analyzer a was performed.		
	50 Ω, 20 to 30 °C:				
	Maximum Response		(1)	+0.5 dB	±0.245 dB
	Minimum Response	0.5 dB	(2)		$\pm 0.245~\mathrm{dB}$
	Peak-to-Peak Response		(3)	1.0 dB	$\pm 0.245~\mathrm{dB}$
	50 Ω, 0 to 55 °C:				
	Maximum Response		(1)	+1.0 dB	$\pm 0.245~\mathrm{dB}$
	Minimum Response	–1.0 dB	(2)		±0.245 dB
	Peak-to-Peak Response		(3)	2.0 dB	±0.245 dB
	75 Ω, 20 to 30 °C:				
	Maximum Response		(1)	+0.5 dB	±0.189 dB
	Minimum Response	-0.5 dB	(2)		±0.189 dB
	Peak-to-Peak Response		(3)	1.0 dB	±0.189 dB
	75 Ω, 0 to 55 °C:				
	Maximum Response		(1)	+1.0 dB	±0.189 dB
	Minimum Response	–1.0 dB	(2)		±0.189 dB
	Peak-to-Peak Response		(3)	2.0 dB	±0.189 dB

Hev	vlett-Packard Company				
Mod	lel HP E4401B		Report No		
Seri	ial No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
24.	Frequency Response (Preamp On) (Option 1DS only)	input impedan	ta in the appropriate ce of the analyzer a was performed.		
	50 Ω, 20 to 30 °C:				
	Maximum Response		(1)	+1.0 dB	±0.358 dB
	Minimum Response	–1.0 dB	(2)		$\pm 0.358 \text{ dB}$
	Peak-to-Peak Response		(3)	2.0 dB	$\pm 0.358 \text{ dB}$
	50 Ω, 0 to 55 °C:				
	Maximum Response		(1)	+1.5 dB	±0.358 dB
	Minimum Response	–1.5 dB	(2)		±0.358 dB
	Peak-to-Peak Response		(3)	3.0 dB	±0.358 dB
	75 Ω, 20 to 30 °C:				
	Maximum Response		(1)	+1.5 dB	±0.337 dB
	Minimum Response	–1.5 dB	(2)		±0.337 dB
	Peak-to-Peak Response		(3)	3.0 dB	±0.337 dB
	75 Ω, 0 to 55 °C:				
	Maximum Response		(1)	+2.0 dB	±0.337 dB
	Minimum Response	–2.0 dB	(2)		±0.337 dB
	Peak-to-Peak Response		(3)	4.0 dB	±0.337 dB
27.	Other Input Related Spurious Responses				
	Input Frequency				
	542.8 MHz		(1)	-65 dBc	±1.08 dB
	510.7 MHz		(2)	-65 dBc	±1.08 dB
	1310.7 MHz		(3)	-45 dBc	±1.08 dB

Hew	lett-Packard Company				
Mod	el HP E4401B		Report No.		
Seria	al No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
29.	Spurious Responses		e results in the appro ce of the analyzer.	opriate lines belo	ow based upon the
	50 MHz TOI, 1 kHz RBW, 50 Ω	+10 dBm	(1)		±0.489 dB
	50 MHz TOI, 1 kHz RBW, 75 Ω	+58.75 dBmV	(1)		±0.481 dB
	50 MHz TOI, 30 Hz RBW, 50 Ω (Option 1DR only)	+10 dBm	(2)		±0.489 dB
	50 MHz TOI, 30 Hz RBW, 75 Ω (Option 1DR only)	+58.75 dBmV	(2)		±0.481 dB
	40 MHz SHI, 50 Ω	+35 dBm	(3)		$\pm 1.11 \text{ dB}$
	40 MHz SHI, 75 Ω	+83.75 dBmV	(3)		±1.11 dB
32.	Gain Compression				
	Test Frequency				
	53 MHz		(1)	1.0 dB	±0.127 dB
	50.004 MHz (Option 1DR only)		(2)	1.0 dB	±0.127 dB
	1403 MHz		(3)	1.0 dB	±0.127 dB
34.	Displayed Average Noise Level		sults in the appropri ce of the analyzer.	ate section below	v based upon the
	50 Ω, 1 kHz RBW, Preamp Off:				
	400 kHz		(1)	–115 dBm	±1.82 dB
	1 MHz to 10 MHz		(2)	–115 dBm	±1.82 dB
	10 MHz to 500 MHz		(3)	–119 dBm	$\pm 1.82 \text{ dB}$
	500 MHz to 1 GHz		(4)	–117 dBm	±1.82 dB
	1 GHz to 1.5 GHz		(5)	–113 dBm	±1.82 dB

Performance Verification Test Records HP E4401B Performance Verification Test Record

Model HP E4401B		Report No		
Serial No		Date		
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
50 Ω, 1 kHz RBW, Preamp On:				
400 kHz		(6)	–131 dBm	±1.82 dB
1 MHz to 10 MHz		(7)	–131 dBm	±1.82 dB
10 MHz to 500 MHz		(8)	–135 dBm	±1.82 dB
500 MHz to 1 GHz		(9)	–133 dBm	±1.82 dB
1 GHz to 1.5 GHz		(10)	-129 dBm	±1.82 dB
50 Ω, 10 Hz RBW, Preamp Off:				
400 kHz		(11)	-134 dBm	±1.82 dB
1 MHz to 10 MHz		(12)	–134 dBm	±1.82 dB
10 MHz to 500 MHz		(13)	-138 dBm	±1.82 dB
500 MHz to 1 GHz		(14)	-136 dBm	±1.82 dB
1 GHz to 1.5 GHz		(15)	–132 dBm	±1.82 dB
50 Ω, 10 Hz RBW, Preamp On:				
400 kHz		(16)	-149 dBm	±1.82 dB
1 MHz to 10 MHz		(17)	-149 dBm	±1.82 dB
10 MHz to 500 MHz		(18)	–153 dBm	±1.82 dB
500 MHz to 1 GHz		(19)	–151 dBm	±1.82 dB
1 GHz to 1.5 GHz		(20)	–147 dBm	±1.82 dB
75 Ω, 1 kHz RBW, Preamp Off:				
1 MHz to 10 MHz		(21)	-63 dBmV	±1.82 dB
10 MHz to 500 MHz		(22)	-65 dBmV	±1.82 dB
500 MHz to 1 GHz		(23)	-60 dBmV	±1.82 dB
1 GHz to 1.5 GHz		(24)	-53 dBmV	±1.82 dB

Hewlett-Packard Company			· · · · · · · · · · · · · · · · · · ·	
Model HP E4401B		Report No		
Serial No		Date		
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
75 Ω, 1 kHz RBW, Pream On:	р			
1 MHz to 10 MHz		(25)	-80 dBmV	±1.82 dB
10 MHz to 500 MHz		(26)	-81 dBmV	±1.82 dB
500 MHz to 1 GHz		(27)	–76 dBmV	±1.82 dB
1 GHz to 1.5 GHz		(28)	-69 dBmV	±1.82 dB
75 Ω, 10 Hz RBW, Pream Off:	p			
1 MHz to 10 MHz		(29)	–82 dBmV	±1.82 dB
10 MHz to 500 MHz		(30)	-84 dBmV	±1.82 dB
500 MHz to 1 GHz		(31)	–79 dBmV	±1.82 dB
1 GHz to 1.5 GHz		(32)	–72 dBmV	±1.82 dB
75 Ω, 10 Hz RBW, Pream On:	ıp			
1 MHz to 10 MHz		(33)	–98 dBmV	±1.82 dB
10 MHz to 500 MHz		(34)	–99 dBmV	±1.82 dB
500 MHz to 1 GHz		(35)	–94 dBmV	±1.82 dB
1 GHz to 1.5 GHz		(36)	–87 dBmV	±1.82 dB
38. Residual Responses	Note: Enter res input impedan	sults in the appropri ce of the analyzer.	iate section below	v based upon the
50 Ω, 150 kHz to 1.5 GHz	5	(1)	-90 dBm	±0.90 dB
75 Ω, 1 MHz to 1.5 GHz		(1)	–36 dBmV	±0.90 dB
39. Fast Time Domain Amplitude Accuracy <i>(Option AYX only)</i>				
Amplitude Error	-0.3 %	(1)	+0.3 %	±0.029 %

Hew	lett-Packard Company						
Mod	el HP E4401B		Report No				
Seri	al No		Date				
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty		
40.	Tracking Generator Absolute Amplitude and Vernier Accuracy		Note: Enter results in the appropriate section below based upon the input impedance of the analyzer.				
	50 Ω (Option 1DN)						
	Absolute Amplitude Accuracy	-0.5 dB	(1)	+0.5 dB	±0.14 dB		
	Positive Vernier Accuracy		(2)	+0.75 dB	±0.19 dB		
	Negative Vernier Accuracy	-0.75 dB	(3)		±0.19 dB		
	Power Sweep Accuracy		(4)	1.5 dB	±0.19 dB		
	$75 \ \Omega \ (Option \ 1DQ)$						
	Absolute Amplitude Accuracy	–1.5 dB	(1)	+1.5 dB	±0.14 dB		
	Positive Vernier Accuracy		(2)	+0.9 dB	±0.19 dB		
	Negative Vernier Accuracy	-0.9 dB	(3)		±0.19 dB		
	Power Sweep Accuracy		(4)	1.8 dB	±0.19 dB		
42.	Tracking Generator Level Flatness		sults in the appropri ce of the analyzer.	ate section below	v based upon the		
	50 Ω (Option 1DN)						
	Positive Level Flatness, <1 MHz		(1)	+2.0 dB	±0.588 dB		
	Negative Level Flatness, <1 MHz	–2.0 dB	(2)		±0.588 dB		
	Positive Level Flatness, 1 MHz to 10 MHz		(3)	+2.0 dB	±0.281 dB		
	Negative Level Flatness, 1 MHz to 10 MHz	–2.0 dB	(4)		±0.281 dB		
	Positive Level Flatness, >10 MHz		(5)	+1.5 dB	±0.202 dB		

Hew	lett-Packard Company				
Mod	el HP E4401B		Report No		
Seria	al No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	Negative Level Flatness, >10 MHz	-1.5 dB	(6)		±0.202 dB
	75 Ω (Option 1DQ)				
	Positive Level Flatness, 1 MHz to 10 MHz		(3)	+2.5 dB	±0.314 dB
	Negative Level Flatness, 1 MHz to 10 MHz	-2.5 dB	(4)		±0.314 dB
	Positive Level Flatness, >10 MHz		(5)	+2.0 dB	±0.314 dB
	Negative Level Flatness, >10 MHz	-2.0 dB	(6)		±0.314 dB
44.	Tracking Generator Harmonic Spurious Outputs (Option 1DN or Option 1DQ only)				
	2 nd Harmonic, <20 MHz		(1)	–20 dBc	±2.6 dB
	2^{nd} Harmonic, ≥ 20 MHz		(2)	–25 dBc	±2.6 dB
	3 rd Harmonic, <20 MHz		(3)	-20 dBc	±2.6 dB
	3 rd Harmonic, ≥20 MHz		(4)	–25 dBc	±2.6 dB
46.	Tracking Generator Non-Harmonic Spurious Outputs (Option 1DN or Option 1DQ only)				
	Highest Non-Harmonic Spurious Output Amplitude		(1)	–35 dBc	±2.67 dB

Performance Verification Test Records HP E4401B Performance Verification Test Record

Hewlett-Packard Company						
Mod	el HP E4401B		Report No			
Seri	al No		Date			
Test Description Mini		Minimum	Results Measured	Maximum	Measurement Uncertainty	
49.	Gate Delay Accuracy and Gate Length Accuracy (Option 1D6 only)					
	Minimum Gate Delay	499.9 ns	(1)	1.5001 µs	±475 ps	
	Maximum Gate Delay	499.9 ns	(2)	1.5001 µs	±475 ps	
	1 μs Gate Length	499.9 ns	(3)	1.5001 µs	±450 ps	
	65 ms Gate Length	64.993 ms	(4)	65.007 ms	±561 ns	
50.	Gate Mode Amplitude Error (Option 1D6 only)					
	Amplitude Error	–0.2 dB	(1)	+0.2 dB	±0.023 dB	

HP E4402B Performance Verification Test Record

Only the tests for HP E4402B are included in this test record, therefore not all test numbers are included.

Hewlett-Packard Company				
Address:		Report No		
	i	Date		
Model HP E4402B				
Serial No		Ambient temperature _	°C	
Options		Power mains line freque (nominal)	ency Hz	
Firmware Revision		Relative humidity	%	
Customer		Tested by		
Test Equipment Used:				
Description	Model No.	Trace No.	Cal Due Date	
Synthesized Signal Generator				
Synthesized Sweeper				
Function Generator				
Power Meter, Dual-Channel				
RF Power Sensor #1				
RF Power Sensor #2				
Low-Power Power Sensor				
Digital Multimeter				
Universal Counter				
Frequency Standard				
Power Splitter		· · · · · ·		
50 Ω Termination				
1 dB Step Attenuator				
10 dB Step Attenuator				

Table 3-3HP E4402B Performance Verification Test Record

6 dB Fixed Attenuator	 	
20 dB Fixed Attenuator (Option 1DS only)		
Oscilloscope (Option 1D6 only)	 	
Microwave Spectrum Analyzer (Option 1DN only)	 	
Notes/comments:		

Hew	vlett-Packard Company					
Model HP E4402B			Report No			
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
1.	10 MHz Reference Output Accuracy (Non-Option 1D5 only)					
	Settability	–5.0 Hz	(1)	+5.0 Hz	±293.3 μHz	
2.	10 MHz Precision Frequency Reference Output Accuracy (<i>Option 1D5 only</i>)					
	5 Minute Warm-Up Error	-0.1 ppm	(1)	+0.1 ppm	±0.000072 ppm	
	15 Minute Warm-Up Error	-0.01 ppm	(2)	+0.01 ppm	±0.000070 ppm	
3.	Frequency Readout Accuracy and Marker Count Accuracy					
	Frequency Readout Accuracy					
	Center Freq Span					
	1500 MHz 20 MHz	1499.784990 MHz	(1)	1500.215010 MHz	0 Hz	
	1500 MHz 10 MHz	1499.884990 MHz	(2)	1500.115010 MHz	0 Hz	

Hewlett-Packard Company				
Model HP E4402B		Report No		
Serial No		Date		
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
1500 MHz 1 MHz	1499.988490 MHz	(3)	1500.011510 MHz	±0 Hz
Marker Count Accuracy				
Center Freq Span				
1500 MHz 10 MHz	1499.999999 MHz	(4)	1500.000001 MHz	±0 Hz
1500 MHz 1 MHz	1499.9999999 MHz	(5)	1500.000001 MHz	±0 Hz
6. Frequency Span Readout Accuracy				
Span Start Freq				
3000 MHz 0 Hz	2370 MHz	(1)	2430 MHz	±6.12 MHz
100 MHz 10 MHz	79 MHz	(2)	81 MHz	±204 kHz
100 kHz 10 MHz	79 kHz	(3)	81 kHz	±204 Hz
100 MHz 800 MHz	79 MHz	(4)	81 MHz	±204 kHz
100 kHz 800 MHz	79 kHz	(5)	81 kHz	±204 Hz
100 MHz 1400 MHz	79 MHz	(6)	81 MHz	±204 kHz
100 kHz 1499 MHz	79 kHz	(7)	81 kHz	±204 Hz
7. Noise Sidebands				
Offset from 1 GHz signal				
10 kHz		(1)	-90 dBc/Hz	±1.154 dB
20 kHz		(2)	-98 dBc/Hz	±1.154 dB
30 kHz		(3)	-100 dBc/Hz	±1.154 dB
100 kHz		(4)	–112 dBc/Hz	±1.154 dB

Hev	vlett-Packard Company				
Mod	lel HP E4402B		Report No		
Seri	al No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
8.	System Related Sidebands				
	Offset from 500 MHz signal				
	30 kHz to 230 kHz		(1)	65 dBc	±1.154 dB
	–30 kHz to –230 kHz		(2)	-65 dBc	±1.154 dB
9.	Residual FM				
	1 kHz Res BW, (Non-Option 1D5)		(1)	150 Hz	±9.24 Hz
	1 kHz Res BW, (<i>Option 1D5</i>)		(1)	100 Hz	±9.24 Hz
	10 Hz Res BW (Options 1DR and 1D5 only)		(2)	2 Hz	±0.274 Hz
10.	Sweep Time Accuracy				
	Sweep Time				
	$5 \mathrm{ms}$	-1.0%	(1)	+1.0%	±0.28%
	20 ms	-1.0%	(2)	+1.0%	±0.28%
	100 ms	-1.0%	(3)	+1.0%	±0.28%
	1 s	-1.0%	(4)	+1.0%	±0.28%
	10 s	-1.0%	(5)	+1.0%	±0.28%
	1 ms (Option AYX only)	-1.0%	(6)	+1.0%	±0.28%
	500 μs (Option AYX only)	-1.0%	(7)	+1.0%	±0.28%
	100 μs (Option AYX only)	-1.0%	(8)	+1.0%	±0.28%

Performance Verification Test Records HP E4402B Performance Verification Test Record

Hewlett-Packard Company					
Mod	el HP E4402B		Report No		
Seri	al No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
11.	Display Scale Fidelity				
	Cumulative Log Fidelity, Res BW≥1 kHz				
	dB from Ref Level				
	-4	-0.34 dB	(1)	+0.34 dB	±0.064 dB
	8	-0.38 dB	(2)	+0.38 dB	±0.064 dB
	-12	-0.42 dB	(3)	+0.42 dB	±0.064 dB
	-16	-0.46 dB	(4)	+0.46 dB	±0.064 dB
	-20	-0.50 dB	(5)	+0.50 dB	±0.063 dB
	-24	-0.54 dB	(6)	+0.54 dB	±0.064 dB
	-28	-0.58 dB	(7)	+0.58 dB	±0.064 dB
	-32	-0.62 dB	(8)	+0.62 dB	±0.064 dB
	-36	-0.66 dB	(9)	+0.66 dB	±0.064 dB
	-40	-0.70 dB	(10)	+0.70 dB	±0.063 dB
	-44	-0.74 dB	(11)	+0.74 dB	±0.064 dB
	-48	-0.78 dB	(12)	+0.78 dB	±0.064 dB
	-52	–0.82 dB	(13)	+0.82 dB	±0.089 dB
	-56	-0.86 dB	(14)	+0.86 dB	±0.089 dB
	-60	-0.90 dB	(15)	+0.90 dB	±0.088 dB
	64	–0.94 dB	(16)	+0.94 dB	±0.089 dB
	68	-0.98 dB	(17)	+0.98 dB	±0.089 dB
	-72	-1.02 dB	(18)	+1.02 dB	±0.089 dB
	-76	-1.06 dB	(19)	+1.06 dB	±0.089 dB
	80	-1.10 dB	(20)	+1.10 dB	±0.088 dB
	84	-1.14 dB	(21)	+1.14 dB	±0.089 dB

Performance Verification Test Records HP E4402B Performance Verification Test Record

Hewlett-Packard Company					
Model HP E4402B		Report No			
Serial No		Date			
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
Incremental Log Fidelity, Res BW ≥ 1 kHz					
dB from Ref Level					
_4	–0.4 dB	(22)	+0.4 dB	±0.064 dB	
-8	–0.4 dB	(23)	+0.4 dB	±0.064 dB	
-12	–0.4 dB	(24)	+0.4 dB	±0.064 dB	
-16	–0.4 dB	(25)	+0.4 dB	±0.064 dB	
-20	–0.4 dB	(26)	+0.4 dB	±0.063 dB	
-24	–0.4 dB	(27)	+0.4 dB	±0.064 dB	
-28	–0.4 dB	(28)	+0.4 dB	±0.064 dB	
-32	–0.4 dB	(29)	+0.4 dB	±0.064 dB	
-36	–0.4 dB	(30)	+0.4 dB	±0.064 dB	
-40	–0.4 dB	(31)	+0.4 dB	±0.063 dB	
-44	–0.4 dB	(32)	+0.4 dB	±0.064 dB	
-48	-0.4 dB	(33)	+0.4 dB	±0.064 dB	
-52	-0.4 dB	(34)	+0.4 dB	±0.089 dB	
-56	-0.4 dB	(35)	+0.4 dB	±0.089 dB	
-60	-0.4 dB	(36)	+0.4 dB	±0.088 dB	
64	-0.4 dB	(37)	+0.4 dB	±0.089 dB	
-68	-0.4 dB	(38)	+0.4 dB	±0.089 dB	
-72	-0.4 dB	(39)	+0.4 dB	±0.089 dB	
-76	-0.4 dB	(40)	+0.4 dB	±0.089 dB	
-80	–0.4 dB	(41)	+0.4 dB	±0.088 dB	

Hewlett-Packard Company					
Model HP E4402B		Report No			
Serial No		Date			
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
Cumulative Log Fidelity, Res BW \leq 300 Hz (Option 1DR only)					
dB from Ref Level					
-4	-0.34 dB	(43)	+0.34 dB	±0.064 dB	
-8	-0.38 dB	(44)	+0.38 dB	±0.064 dB	
-12	–0.42 dB	(45)	+0.42 dB	±0.064 dB	
-16	-0.46 dB	(46)	+0.46 dB	±0.064 dB	
-20	-0.50 dB	(47)	+0.50 dB	±0.063 dB	
-24	–0.54 dB	(48)	+0.54 dB	±0.064 dB	
-28	–0.58 dB	(49)	+0.58 dB	±0.064 dB	
-32	–0.62 dB	(50)	+0.62 dB	±0.064 dB	
-36	–0.66 dB	(51)	+0.66 dB	±0.064 dB	
-40	–0.70 dB	(52)	+0.70 dB	±0.063 dB	
-44	–0.74 dB	(53)	+0.74 dB	±0.064 dB	
-48	–0.78 dB	(54)	+0.78 dB	±0.064 dB	
-52	-0.82 dB	(55)	+0.82 dB	±0.089 dB	
-56	–0.86 dB	(56)	+0.86 dB	±0.089 dB	
-60	–0.90 dB	(57)	+0.90 dB	±0.088 dB	
-64	–0.94 dB	(58)	+0.94 dB	±0.089 dB	
-68	-0.98 dB	(59)	+0.98 dB	±0.089 dB	
-72	–1.02 dB	(60)	+1.02 dB	±0.089 dB	
-76	–1.06 dB	(61)	+1.06 dB	±0.089 dB	
-80	-1.10 dB	(62)	+1.10 dB	±0.088 dB	
-84	–1.14 dB	(63)	+1.14 dB	±0.089 dB	
	–1.18 dB	(64)	+1.18 dB	±0.089 dB	

Performance Verification Test Records HP E4402B Performance Verification Test Record

Model HP E4402B		Report No		
Serial No		Date	_	
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
92	-1.22 dB	(65)	+1.22 dB	±0.089 dB
-96	–1.26 dB	(66)	+1.26 dB	±0.088 dB
-98	–1.28 dB	(67)	+1.28 dB	±0.089 dB
Incremental Log Fidelity, Res BW \leq 300 Hz (Option 1DR only)				
dB from Ref Level	0.4.10		0.4.10	
-4	-0.4 dB	(68)	+0.4 dB	±0.064 dB
-8	-0.4 dB	(69)	+0.4 dB	±0.064 dB
-12	-0.4 dB	(70)	+0.4 dB	±0.064 dB
-16	-0.4 dB	(71)	+0.4 dB	±0.064 dB
-20	-0.4 dB	(72)	+0.4 dB	±0.063 dB
-24	-0.4 dB	(73)	+0.4 dB	±0.064 dB
-28	–0.4 dB	(74)	+0.4 dB	±0.064 dB
-32	-0.4 dB	(75)	+0.4 dB	±0.064 dB
-36	-0.4 dB	(76)	+0.4 dB	±0.064 dB
-40	-0.4 dB	(77)	+0.4 dB	±0.063 dB
44	-0.4 dB	(78)	+0.4 dB	±0.064 dB
-48	-0.4 dB	(79)	+0.4 dB	±0.064 dB
-52	-0.4 dB	(80)	+0.4 dB	±0.089 dB
-56	-0.4 dB	(81)	+0.4 dB	±0.089 dB
-60	-0.4 dB	(82)	+0.4 dB	±0.088 dB
64	-0.4 dB	(83)	+0.4 dB	±0.089 dB
-68	-0.4 dB	(84)	+0.4 dB	±0.089 dB
-72	-0.4 dB	(85)	+0.4 dB	±0.089 dB
-76	-0.4 dB	(86)	+0.4 dB	±0.089 dB

Model HP E4402B		Report No		
Serial No		Date		
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
-80	-0.4 dB	(87)	+0.4 dB	±0.088 dB
Linear Fidelity, Res BW ≥1 kHz				
dB from Ref Level				
-4	-2.0%	(89)	+2.0%	±0.064 %
-8	-2.0%	(90)	+2.0%	±0.064 %
-12	-2.0%	(91)	+2.0%	±0.064 %
-16	-2.0%	(92)	+2.0%	±0.064 %
-20	-2.0%	(93)	+2.0%	±0.063 %
Linear Fidelity, Res BW ≤ 300 Hz (Option 1DR only)				
dB from Ref Level				
-4	-2.0%	(94)	+2.0%	±0.064 %
8	-2.0%	(95)	+2.0%	±0.064 %
-12	-2.0%	(96)	+2.0%	±0.064 %
-16	-2.0%	(97)	+2.0%	±0.064 %
-20	-2.0%	(98)	+2.0%	±0.063 %
Zero Span, Res BW≤ 300 Hz (Option 1DR only)				
dB from Ref Level				
-4	-0.36 dB	(99)	+0.36 dB	±0.064 dB
-8	-0.42 dB	(100)	+0.42 dB	±0.064 dB
-12	-0.48 dB	(101)	+0.48 dB	±0.064 dB
-16	-0.54 dB	(102)	+0.54 dB	±0.064 dB
-20	-0.60 dB	(103)	+0.60 dB	±0.063 dB
24	-0.66 dB	(104)	+0.66 dB	±0.064 dB

Performance Verification Test Records HP E4402B Performance Verification Test Record

Hew	vlett-Packard Company				
Mod	lel HP E4402B		Report No		
Seri	al No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	-28	-0.72 dB	(105)	+0.72 dB	±0.064 dB
	-32	–0.78 dB	(106)	+0.78 dB	±0.064 dB
	-36	-0.84 dB	(107)	+0.84 dB	±0.064 dB
	-40	-0.90 dB	(108)	+0.90 dB	±0.063 dB
	44	–0.96 dB	(109)	+0.96 dB	±0.064 dB
	-48	–1.02 dB	(110)	+1.02 dB	±0.064 dB
	-52	–1.08 dB	(111)	+1.08 dB	±0.089 dB
	-56	–1.14 dB	(112)	+1.14 dB	±0.089 dB
	-60	–1.20 dB	(113)	+1.20 dB	±0.088 dB
	-64	–1.5 dB	(114)	+1.5 dB	±0.089 dB
	-68	–1.5 dB	(115)	+1.5 dB	±0.089 dB
	-70	–1.5 dB	(116)	+1.5 dB	±0.089 dB
12.	Input Attenuation Switching Uncertainty				
	Input Attenuation Setting				
	0 dB	–0.3 dB	(1)	+0.3 dB	±0.108 dB
	5 dB	–0.3 dB	(2)	+0.3 dB	±0.107 dB
	15 dB	–0.3 dB	(3)	+0.3 dB	±0.107 dB
	20 dB	–0.3 dB	(4)	+0.3 dB	±0.089 dB
	25 dB	–0.35 dB	(5)	+0.35 dB	±0.089 dB
	30 dB	-0.40 dB	(6)	+0.40 dB	±0.089 dB
	35 dB	–0.45 dB	(7)	+0.45 dB	±0.089 dB
	40 dB	-0.50 dB	(8)	+0.50 dB	±0.089 dB
	45 dB	–0.55 dB	(9)	+0.55 dB	±0.089 dB
	50 dB	-0.60 dB	(10)	+0.60 dB	±0.089 dB
	$55 \mathrm{dB}$	–0.65 dB	(11)	+0.65 dB	±0.089 dB

Hew	lett-Packard Company				
Mod	el HP E4402B		Report No		
Seri	al No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	60 dB	-0.70 dB	(12)	+0.70 dB	±0.089 dB
	65 dB	–0.75 dB	(13)	+0.75 dB	±0.089 dB
14.	Reference Level Accuracy				
	Log, Res BW ≥ 1 kHz				
	Reference Level				
	-10	-0.3 dB	(1)	+0.3 dB	±0.144 dB
	0	–0.3 dB	(2)	+0.3 dB	±0.144 dB
	-30	–0.3 dB	(3)	+0.3 dB	±0.144 dB
	-40	–0.3 dB	(4)	+0.3 dB	±0.144 dB
	-50	–0.5 dB	(5)	+0.5 dB	±0.156 dB
	60	–0.5 dB	(6)	+0.5 dB	±0.156 dB
	-70	–0.5 dB	(7)	+0.5 dB	±0.156 dB
	-80	-0.7 dB	(8)	+0.7 dB	±0.156 dB
	Linear, Res BW≥1 kHz Reference Level				
	-10	–0.3 dB	(9)	+0.3 dB	±0.144 dB
	0	–0.3 dB	(10)	+0.3 dB	±0.144 dB
	-30	-0.3 dB	(11)	+0.3 dB	±0.144 dB
	-40	-0.3 dB	(12)	+0.3 dB	±0.144 dB
	-50	-0.5 dB	(13)	+0.5 dB	±0.156 dB
	-60	–0.5 dB	(14)	+0.5 dB	±0.156 dB
	-70	-0.5 dB	(15)	+0.5 dB	±0.156 dB
	-80	-0.7 dB	(16)	+0.7 dB	±0.156 dB

Hewlett-Packard Company				
Model HP E4402B		Report No		
Serial No		Date		
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
Log, Res BW ≤ 300 Hz (Option 1DR only)				
Re ference Level				
-10	–0.3 dB	(17)	+0.3 dB	±0.144 dB
0	–0.3 dB	(18)	+0.3 dB	±0.144 dB
30	0.3 dB	(19)	+0.3 dB	±0.144 dB
40	–0.3 dB	(20)	+0.3 dB	±0.144 dB
50	–0.5 dB	(21)	+0.5 dB	±0.156 dB
60	–0.5 dB	(22)	+0.5 dB	±0.156 dB
-70	–0.5 dB	(23)	+0.5 dB	±0.156 dB
	–0.7 dB	(24)	+0.7 dB	±0.156 dB
Linear, Res BW ≤ 300 Hz (Option 1DR only)				
Reference Level				
-10	-0.3 dB	(25)	+0.3 dB	±0.144 dB
0	-0.3 dB	(26)	+0.3 dB	±0.144 dB
30	–0.3 dB	(27)	+0.3 dB	±0.144 dB
-40	–0.3 dB	(28)	+0.3 dB	±0.144 dB
-50	-0.5 dB	(29)	+0.5 dB	±0.156 dB
60	-0.5 dB	(30)	+0.5 dB	±0.156 dB
-70	-0.5 dB	(31)	+0.5 dB	±0.156 dB
-80	-0.7 dB	(32)	+0.7 dB	±0.156 dB

Hewlett-Packard Company								
Model HP E4402B			Report No					
Serial No			Date					
Test Description		Minimum	Results Measured	Maximum	Measurement Uncertainty			
15.	Resolution Bandwidth Switching Uncertainty							
	Resolution Bandwidth							
	3 kHz	–0.3 dB	(1)	+0.3 dB	±0.064 dB			
	9 kHz	–0.3 dB	(2)	+0.3 dB	±0.064 dB			
	10 kHz	–0.3 dB	(3)	+0.3 dB	±0.064 dB			
	30 kHz	–0.3 dB	(4)	+0.3 dB	±0.064 dB			
	100 kHz	–0.3 dB	(5)	+0.3 dB	±0.064 dB			
	120 kHz	–0.3 dB	(6)	+0.3 dB	±0.064 dB			
	300 kHz	–0.3 dB	(7)	+0.3 dB	±0.064 dB			
	1 MHz	–0.3 dB	(8)	+0.3 dB	±0.064 dB			
	3 MHz	–0.3 dB	(9)	+0.3 dB	±0.064 dB			
	$5 \mathrm{~MHz}$	–0.6 dB	(10)	+0.6 dB	±0.083 dB			
	300 Hz (Option 1DR only)	–0.3 dB	(11)	+0.3 dB	±0.064 dB			
	200 Hz (Option 1DR only)	–0.3 dB	(12)	+0.3 dB	±0.064 dB			
	100 Hz (Option 1DR only)	–0.3 dB	(13)	+0.3 dB	±0.064 dB			
	30 Hz (Option 1DR only)	–0.3 dB	(14)	+0.3 dB	±0.064 dB			
	10 Hz (Option 1DR only)	–0.3 dB	(15)	+0.3 dB	±0.064 dB			
17.	Absolute Amplitude Accuracy (Reference Settings)							
	Log, Preamp Off	-0.34 dB	(1)	+0.34 dB	±0.148 dB			
	Lin, Preamp Off	-0.34 dB	(2)	+0.34 dB	±0.148 dB			
	Log, Preamp On	–0.5 dB	(3)	+0.5 dB	±0.148 dB			
	Lin, Preamp On	–0.5 dB	(4)	+0.5 dB	±0.148 dB			

Hewlett-Packard Company								
Model HP E4402B			Report No					
Serial No			Date					
Test Description		Minimum	Results Measured	Maximum	Measurement Uncertainty			
19.	Overall Absolute Amplitude Accuracy							
	0 dBm Reference Level							
	0 dBm input	-0.54 dB	(1)	+0.54 dB	±0.08 dB			
	–10 dBm input	0.54 dB	(2)	+0.54 dB	±0.081 dB			
	–20 dBm input	-0.54 dB	(3)	+0.54 dB	±0.082 dB			
	–30 dBm input	–0.54 dB	(4)	+0.54 dB	±0.083 dB			
	-40 dBm input	-0.54 dB	(5)	+0.54 dB	±0.084 dB			
	–50 dBm input	-0.54 dB	(6)	+0.54 dB	±0.086 dB			
	-20 dBm Reference Level							
	–20 dBm input	–0.54 dB	(7)	+0.54 dB	±0.082 dB			
	–30 dBm input	–0.54 dB	(8)	+0.54 dB	±0.083 dB			
	–40 dBm input	–0.54 dB	(9)	+0.54 dB	±0.084 dB			
	–50 dBm input	–0.54 dB	(10)	+0.54 dB	±0.086 dB			
	-40 dBm Reference Level							
	-40 dBm input	–0.54 dB	(11)	+0.54 dB	±0.084 dB			
	–50 dBm input	–0.54 dB	(12)	+0.54 dB	±0.086 dB			
	–50 dBm Reference Level							
	–50 dBm input	–0.54 dB	(13)	+0.54 dB	±0.086 dB			
20.	Resolution Bandwidth Accuracy							
	Resolution Bandwidth							
	5 MHz	3.5 MHz	(1)	$6.5 \mathrm{MHz}$	±38.2 kHz			
	3 MHz	2.55 MHz	(2)	3.45 MHz	±22.9 kHz			
	1 MHz	0.85 MHz	(3)	1.15 M Hz	±7.64 kHz			
	300 kHz	255 kHz	(4)	345 kHz	±2.29 kHz			

Hew	lett-Packard Company				
Mod	el HP E4402B		Report No		
Seri	al No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	100 kHz	85 kHz	(5)	115 kHz	±764 Hz
	30 kHz	25.5 kHz	(6)	34.5 kHz	±229 Hz
	10 kHz	8.5 kHz	(7)	11.5 kHz	±76.4 Hz
	3 kHz	2.55 kHz	(8)	3.45 kHz	±22.9 Hz
	1 kHz	850 Hz	(9)	1.15 kHz	±7.64 Hz
	120 kHz	102 kHz	(10)	138 kHz	±154 Hz
	9 kHz	7.65 kHz	(11)	10.35kHz	±11.5 Hz
22.	Frequency Response		ata in the appropriate mperature at which		
	20 to 30 °C:				
	Maximum Response		(1)	+0.5 dB	±0.245 dB
	Minimum Response	–0.5 dB	(2)		±0.245 dB
	Peak-to-Peak Response		(3)	1.0 dB	±0.245 dB
	0 to 55 °C:				
	Maximum Response		(1)	+1.0 dB	±0.245 dB
	Minimum Response	–1.0 dB	(2)		±0.245 dB
	Peak-to-Peak Response		(3)	2.0 dB	±0.245 dB
26.	Frequency Response (Preamp On) (Option 1DS only)				
	Maximum Response		(1)	+2.0 dB	±0.343 dB
	Minimum Response	–2.0 dB	(2)		±0.343 dB
	Peak-to-Peak Response		(3)	4.0 dB	±0.343 dB

Hewlett-Packard Company						
Model HP E4402B			Report No			
Serial No Date			Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
28.	Other Input Related Spurious Responses					
	Input Frequency					
	2042.8 MHz		(1)	-65 dBc	±1.14 dB	
	2642.8 MHz		(2)	-65 dBc	±1.14 dB	
	1820.8 MHz		(3)	65 dBc	±1.14 dB	
	278.5 MHz		(4)	-65 dBc	±1.14 dB	
30.	Spurious Responses					
	300 MHz TOI, 1 kHz RBW	+11 dBm	(1)		±0.49 dB	
	300 MHz TOI, 30 Hz RBW (<i>Option 1DR only</i>)	+11 dBm	(2)		±0.49 dB	
	300 MHz SHI	+35 dBm	(3)		±0.90 dB	
	900 MHz SHI	+45 dBm	(4)		±0.90 dB	
33.	Gain Compression					
	Test Frequency					
	53 MHz		(1)	1.0 dB	±0.127 dB	
	50.004 MHz (Option 1DR only)		(2)	1.0 dB	±0.127 dB	
	1403 MHz		(3)	1.0 dB	±0.127 dB	
	2503 MHz		(4)	1.0 dB	±0.144 dB	
35.	Displayed Average Noise Level	Note: Enter re upon the ambi	sults with preamp o ent temperature wh	n in the appropr en the test was j	iate section based performed.	
	1 kHz RBW, Preamp Off:					
	10 MHz to 1 GHz		(1)	–117 dBm	±1.82 dB	
	1 GHz to 2 GHz		(2)	–116 dBm	±1.82 dB	
	2 GHz to 3 GHz		(3)	–114 dBm	±1.82 dB	

Hewlett-Packard Company				
Model HP E4402B		Report No		
Serial No		Date		
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
1kHz RBW, Preamp On, 0 to 55 °C:				
10 MHz to 1 GHz		(4)	-132 dBm	±1.82 dB
1 GHz to 2 GHz		(5)	–131 dBm	±1.82 dB
2 GHz to 3 GHz		(6)	-129 dBm	±1.82 dB
10 Hz RBW, Preamp Off:				
10 MHz to 1 GHz		(7)	-136 dBm	±1.82 dB
1 GHz to 2 GHz		(8)	-135 dBm	±1.82 dB
2 GHz to 3 GHz		(9)	–133 dBm	±1.82 dB
10 Hz RBW, Preamp On, 0 to 55 °C:				
10 MHz to 1 GHz		(10)	–150 dBm	±1.82 dB
1 GHz to 2 GHz		(11)	-149 dBm	±1.82 dB
2 GHz to 3 GHz		(12)	–147 dBm	±1.82 dB
1kHz RBW, Preamp On, 20 to 30 °C:				
10 MHz to 1 GHz		(13)	–133 dBm	±1.82 dB
1 GHz to 2 GHz		(14)	–133 dBm	±1.82 dB
2 GHz to 3 GHz		(15)	-132 dBm	±1.82 dB
10 Hz RBW, Preamp On, 20–30 °C:				
10 MHz to 1 GHz		(16)	–151 dBm	±1.82 dB
1 GHz to 2 GHz		(17)	–151 dBm	±1.82 dB
2 GHz to 3 GHz		(18)	-150 dBm	±1.82 dB

Hew	elett-Packard Company					
Mod	el HP E4402B		Report No			
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
38.	Residual Responses					
	150 kHz to 3.0 GHz		(1)	–90 dBm	±0.93 dB	
39.	Fast Time Domain Amplitude Accuracy (Option AYX only)					
	Amplitude Error	-0.3 %	(1)	+0.3 %	±0.029 %	
41.	Tracking Generator Absolute Amplitude and Vernier Accuracy					
	Absolute Amplitude Accuracy	–0.75 dB	(1)	+0.75 dB	±0.087 dB	
	Vernier Accuracy, –2 dB	-0.4 dB	(2)	+0.4 dB	±0.11 dB	
	Vernier Accuracy, –3 dB	–0.5 dB	(3)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –5 dB	–0.5 dB	(4)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –6 dB	–0.5 dB	(5)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –7 dB	–0.5 dB	(6)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –8 dB	-0.5 dB	(7)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –9 dB	–0.5 dB	(8)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –10 dB	–0.5 dB	(9)	+0.5 dB	±0.16 dB	
43.	Tracking Generator Level Flatness					
	Positive Level Flatness, <1 MHz		(1)	+3.0 dB	±0.255 dB	
	Negative Level Flatness, <1 MHz	–3.0 dB	(2)		±0.255 dB	
	Positive Level Flatness, 1 MHz to 10 MHz		(3)	+3.0 dB	±0.145 dB	
	Negative Level Flatness, 1 MHz to 10 MHz	–3.0 dB	(4)		±0.145 dB	

Hewlett	Hewlett-Packard Company						
Model H	P E4402B		Report No				
Serial N	0		Date				
Test Des	scription	Minimum	Results Measured	Maximum	Measurement Uncertainty		
	Positive Level Flatness, 10 MHz to 1.5 GHz		(5)	+2.0 dB	±0.122 dB		
	legative Level Flatness, 10 MHz to 1.5 GHz	-2.0 dB	(6)		±0.122 dB		
	Positive Level Flatness, 1.5 GHz		(7)	+2.0 dB	±0.172 dB		
	legative Level Flatness, 1.5 GHz	-2.0 dB	(8)		±0.172 dB		
Ha Ou	acking Generator armonic Spurious atputs otion 1DN only)						
2 nd	^l Harmonic, <20 kHz		(1)	–15 dBc	±2.6 dB		
2 nd	^l Harmonic, ≥ 20 kHz		(2)	–25 dBc	±2.6 dB		
3 rd	Harmonic, <20 kHz		(3)	–15 dBc	±2.6 dB		
3 rd	Harmonic, ≥ 20 kHz		(4)	–25 dBc	±2.6 dB		
No Sp	acking Generator on-Harmonic ourious Outputs option 1DN only)						
S] A	ighest Non-Harmonic purious Output mplitude, 9 kHz to GHz		(1)	–27 dBc	±2.67 dB		
S] A	lighest Non-Harmonic purious Output mplitude, 2 GHz to GHz		(2)	–23 dBc	±3.12 dB		

Hew	Hewlett-Packard Company					
Mod	lel HP E4402B		Report No			
Seri	al No		Date			
Test Description Minimu		Minimum	Results Measured	Maximum		
48.	Tracking Generator LO Feedthrough Amplitude (Option 1DN only)					
	9 kHz to 2.9 GHz		(1)	-16 dBm	±1.94 dB	
	2.9 GHz to 3.0 GHz		(2)	–16 dBm	±2.49 dB	
49.	Gate Delay Accuracy and Gate Length Accuracy (Option 1D6 only)					
	Minimum Gate Delay	499.9 ns	(1)	1.5001 µs	±475 ps	
	Maximum Gate Delay	499.9 ns	(2)	1.5001 µs	±475 ps	
	1 µs Gate Length	499.9 ns	(3)	1.5001 µs	±450 ps	
	65 ms Gate Length	64.993 ms	(4)	65.007 ms	±561 ns	
50.	Gate Mode Amplitude Error (Option 1D6 only)					
	Amplitude Error	–0.2 dB	(1)	+0.2 dB	±0.023 dB	

HP E4403B Performance Verification Test Record

Only the tests for HP E4403B are included in this test record, therefore not all test numbers are included.

Hewlett-Packard Company			
Address:		Report No	
		Date	
			
Model HP E4403B			
Serial No		Ambient temperature	°C
Options		Power mains line frequ (nominal)	iency Hz
Firmware Revision	-	Relative humidity	%
Customer		Tested by	
Test Equipment Used:			
Description	Model No.	Trace No.	Cal Due Date
Synthesized Signal Generator			
Synthesized Sweeper			
Function Generator			
Power Meter, Dual-Channel			
RF Power Sensor #1			
RF Power Sensor #2			
Low-Power Power Sensor			
Digital Multimeter			
Universal Counter	·		
Frequency Standard			
Power Splitter			
50 Ω Termination			
1 dB Step Attenuator	·		

Table 3-5HP E4403B Performance Verification Test Record

10 dB Step Attenuator	 	
6 dB Fixed Attenuator	 	
Microwave Spectrum Analyzer (Option 1DN only)		
Notes/comments:		

Hewlett-Packard Company						
Mod	lel HP E4403B			Report No		
Ser	ial No			Date		
Test	t Description		Minimum	Results Measured	Maximum	Measurement Uncertainty
1.	10 MHz Refer Output Accu					
	Settability		–5.0 Hz	(1)	+5.0 Hz	±293.3 µHz
3.	Frequency R Accuracy and Count Accura	d Marker				
	Frequency Rea Accuracy	adout				
	Center Freq	Span				
	1500 MHz	20 MHz	1499.784990 MHz	(1)	1500.215010 MHz	±0 Hz
	$1500 \ \mathrm{MHz}$	10 MHz	1499.884990 MHz	(2)	1500.115010 MHz	±0 Hz
	1500 MHz	1 MHz	1499.988490 MHz	(3)	1500.011510 MHz	±0 Hz
	Marker Count	Accuracy				
	Center Freq	Span				
	1500 MHz	10 MHz	1499.999999 MHz	(4)	1500.000001 MHz	±0 Hz
	1500 MHz	1 MHz	1499.999999 MHz	(5)	1500.000001 MHz	±0 Hz

Hev	Hewlett-Packard Company				
Model HP E4403B			Report No		
Seri	ial No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
6.	Frequency Span Readout Accuracy				
	Span Start Freq				
	3000 MHz 0 Hz	2370 MHz	(1)	2430 MHz	±6.12 MHz
	100 MHz 10 MHz	79 MHz	(2)	81 MHz	±204 kHz
	100 kHz 10 MHz	79 kHz	(3)	81 kHz	±204 Hz
	100 MHz 800 MHz	79 MHz	(4)	81 MHz	±204 kHz
	100 kHz 800 MHz	79 kHz	(5)	81 kHz	±204 Hz
	100 MHz 1400 MHz	79 MHz	(6)	81 MHz	±204 kHz
	100 kHz 1499 MHz	79 kHz	(7)	81 kHz	±204 Hz
7.	Noise Sidebands				
	Offset from 1 GHz signal				
	10 kHz		(1)	-90 dBc/Hz	±1.154 dB
	20 kHz		(2)	–98 dBc/Hz	±1.154 dB
	30 kHz		(3)	-100 dBc/Hz	±1.154 dB
	100 kHz		(4)	-112 dBc/Hz	±1.154 dB
8.	System Related Sidebands				
	Offset from 500 MHz signal				
	30 kHz to 230 kHz		(1)	-65 dBc	±1.154 dB
	–30 kHz to –230 kHz		(2)	-65 dBc	±1.154 dB
9.	Residual FM				
	1 kHz Res BW		(1)	150 Hz	±9.24 Hz

Hewlett-Packard Company						
Mod	el HP E4403B		Report No			
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
10.	Sweep Time Accuracy					
	Sweep Time					
	$5 \mathrm{ms}$	-1.0%	(1)	+1.0%	±0.28%	
	20 ms	-1.0%	(2)	+1.0%	±0.28%	
	$100 \mathrm{ms}$	-1.0%	(3)	+1.0%	±0.28%	
	1 s	-1.0%	(4)	+1.0%	±0.28%	
	10 s	-1.0%	(5)	+1.0%	±0.28%	
	10 s	-1.0%	(5)	+1.0%	±0.28%	
11.	Display Scale Fidelity					
	Cumulative Log Fidelity, Res BW $\geq 1 \text{ kHz}$					
	dB from Ref Level					
	-4	–0.34 dB	(1)	+0.34 dB	±0.064 dB	
	8	–0.38 dB	(2)	+0.38 dB	±0.064 dB	
	-12	–0.42 dB	(3)	+0.42 dB	$\pm 0.064 \text{ dB}$	
	-16	–0.46 dB	(4)	+0.46 dB	±0.064 dB	
	-20	–0.50 dB	(5)	+0.50 dB	±0.063 dB	
	-24	–0.54 dB	(6)	+0.54 dB	±0.064 dB	
	-28	–0.58 dB	(7)	+0.58 dB	±0.064 dB	
	-32	–0.62 dB	(8)	+0.62 dB	±0.064 dB	
	36	–0.66 dB	(9)	+0.66 dB	±0.064 dB	
	40	–0.70 dB	(10)	+0.70 dB	±0.063 dB	
	-44	–0.74 dB	(11)	+0.74 dB	±0.064 dB	
	48	–0.78 dB	(12)	+0.78 dB	±0.064 dB	
	-52	–0.82 dB	(13)	+0.82 dB	±0.089 dB	
	56	–0.86 dB	(14)	+0.86 dB	±0.089 dB	

Hewlett-Packard Company			· · · · · · · · · · · · · · · · · · ·	
Model HP E4403B		Report No		
Serial No		Date	•	
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
60	-0.90 dB	(15)	+0.90 dB	±0.088 dB
-64	-0.94 dB	(16)	+0.94 dB	±0.089 dB
68	-0.98 dB	(17)	+0.98 dB	±0.089 dB
-72	–1.02 dB	(18)	+1.02 dB	±0.089 dB
-76	-1.06 dB	(19)	+1.06 dB	±0.089 dB
80	-1.10 dB	(20)	+1.10 dB	±0.088 dB
84	-1.14 dB	(21)	+1.14 dB	±0.089 dB
Incremental Log Fidelity, Res BW ≥ 1 kHz				4.00
dB from Ref Level				
-4	0.4 dB	(22)	+0.4 dB	±0.064 dB
8	0.4 dB	(23)	+0.4 dB	±0.064 dB
-12	0.4 dB	(24)	+0.4 dB	±0.064 dB
-16	-0.4 dB	(25)	+0.4 dB	±0.064 dB
-20	0.4 dB	(26)	+0.4 dB	±0.063 dB
24	0.4 dB	(27)	+0.4 dB	±0.064 dB
28	-0.4 dB	(28)	+0.4 dB	±0.064 dB
32	-0.4 dB	(29)	+0.4 dB	±0.064 dB
-36	0.4 dB	(30)	+0.4 dB	±0.064 dB
40	0.4 dB	(31)	+0.4 dB	±0.063 dB
44	-0.4 dB	(32)	+0.4 dB	±0.064 dB
-48	-0.4 dB	(33)	+0.4 dB	±0.064 dB
52	-0.4 dB	(34)	+0.4 dB	±0.089 dB
56	0.4 dB	(35)	+0.4 dB	±0.089 dB
60	-0.4 dB	(36)	+0.4 dB	±0.088 dB
64	-0.4 dB	(37)	+0.4 dB	±0.089 dB

Mod	lel HP E4403B		Report No		
Seri	al No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	-68	-0.4 dB	(38)	+0.4 dB	±0.089 dB
	-72	–0.4 dB	(39)	+0.4 dB	±0.089 dB
	-76	–0.4 dB	(40)	+0.4 dB	±0.089 dB
	-80	-0.4 dB	(41)	+0.4 dB	±0.088 dB
	Linear Fidelity, Res BW≥ 1 kHz				
	dB from Ref Level				
	-4	-2.0%	(89)	+2.0%	±0.064 %
	-8	-2.0%	(90)	+2.0%	±0.064 %
	-12	-2.0%	(91)	+2.0%	±0.064 %
	-16	-2.0%	(92)	+2.0%	±0.064 %
	-20	-2.0%	(93)	+2.0%	±0.063 %
12.	Input Attenuation Switching Uncertainty				
	Input Attenuation Setting				
	0 dB	–0.3 dB	(1)	+0.3 dB	±0.108 dB
	5 dB	–0.3 dB	(2)	+0.3 dB	$\pm 0.107 \text{ dB}$
	15 dB	0.3 dB	(3)	+0.3 dB	±0.107 dB
	20 dB	–0.3 dB	(4)	+0.3 dB	±0.089 dB
	25 dB	–0.35 dB	(5)	+0.35 dB	±0.089 dB
	30 dB	-0.40 dB	(6)	+0.40 dB	±0.089 dB
	35 dB	–0.45 dB	(7)	+0.45 dB	±0.089 dB
	40 dB	–0.50 dB	(8)	+0.50 dB	±0.089 dB
	45 dB	–0.55 dB	(9)	+0.55 dB	±0.089 dB
	50 dB	-0.60 dB	(10)	+0.60 dB	±0.089 dB
	55 dB	–0.65 dB	(11)	+0.65 dB	±0.089 dB

Hewlett-Packard Company						
Mod	el HP E4403B		Report No	Report No.		
Serial No			Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
	60 dB	-0.70 dB	(12)	+0.70 dB	±0.089 dB	
	65 dB	-0.75 dB	(13)	+0.75 dB	±0.089 dB	
13.	Reference Level Accuracy					
	Log					
	Reference Level					
	-10	–0.3 dB	(1)	+0.3 dB	±0.144 dB	
	0	-0.3 dB	(2)	+0.3 dB	±0.144 dB	
	-30	–0.3 dB	(3)	+0.3 dB	±0.144 dB	
	-40	-0.3 dB	(4)	+0.3 dB	±0.144 dB	
	-50	-0.5 dB	(5)	+0.5 dB	±0.156 dB	
	-60	–0.5 dB	(6)	+0.5 dB	±0.156 dB	
	-70	–0.5 dB	(7)	+0.5 dB	±0.156 dB	
	-80	-0.7 dB	(8)	+0.7 dB	±0.156 dB	
	Linear					
	Reference Level					
	-10	–0.3 dB	(9)	+0.3 dB	±0.144 dB	
	0	-0.3 dB	(10)	+0.3 dB	±0.144 dB	
	-30	–0.3 dB	(11)	+0.3 dB	±0.144 dB	
	-40	–0.3 dB	(12)	+0.3 dB	±0.144 dB	
	-50	-0.5 dB	(13)	+0.5 dB	±0.156 dB	
	-60	-0.5 dB	(14)	+0.5 dB	±0.156 dB	
	-70	-0.5 dB	(15)	+0.5 dB	±0.156 dB	
	-80	-0.7 dB	(16)	+0.7 dB	±0.156 dB	

Hew	ett-Packard Company				
Mod	el HP E4403B		Report No		
Seri	erial No Date				
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
15.	Resolution Bandwidth Switching Uncertainty				
	Resolution Bandwidth				
	3 kHz	–0.3 dB	(1)	+0.3 dB	±0.064 dB
	9 kHz	-0.3 dB	(2)	+0.3 dB	±0.064 dB
	10 kHz	-0.3 dB	(3)	+0.3 dB	±0.064 dB
1	30 kHz	–0.3 dB	(4)	+0.3 dB	±0.064 dB
	100 kHz	-0.3 dB	(5)	+0.3 dB	±0.064 dB
	120 kHz	–0.3 dB	(6)	+0.3 dB	±0.064 dB
	300 kHz	–0.3 dB	(7)	+0.3 dB	±0.064 dB
	1 MHz	–0.3 dB	(8)	+0.3 dB	±0.064 dB
	3 MHz	–0.3 dB	(9)	+0.3 dB	±0.064 dB
	5 MHz	-0.6 dB	(10)	+0.6 dB	±0.083 dB
17.	Absolute Amplitude Accuracy (Reference Settings)				
	Log, Preamp Off	-0.4 dB	(1)	+0.4 dB	±0.148 dB
	Lin, Preamp Off	-0.4 dB	(2)	+0.4 dB	±±0.148 dB
19.	Overall Absolute Amplitude Accuracy				
	0 dBm Reference Level				
	0 dBm input	-0.6 dB	(1)	+0.6 dB	±0.08 dB
	–10 dBm input	-0.6 dB	(2)	+0.6 dB	±0.081 dB
	–20 dBm input	-0.6 dB	(3)	+0.6 dB	±0.082 dB
	–30 dBm input	-0.6 dB	(4)	+0.6 dB	±0.083 dB
	–40 dBm input	-0.6 dB	(5)	+0.6 dB	±0.084 dB
	–50 dBm input	-0.6 dB	(6)	+0.6 dB	±0.086 dB

Hewlett-Packard Company					
Mod	el HP E4403B		Report No		
Seri	al No		Date	_	
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	-20 dBm Reference Level			· · · · · · · · · · · · · · · · · · ·	
	–20 dBm input	-0.6 dB	(7)	+0.6 dB	±0.082 dB
	–30 dBm input	–0.6 dB	(8)	+0.6 dB	±0.083 dB
	–40 dBm input	-0.6 dB	(9)	+0.6 dB	±0.084 dB
	–50 dBm input	-0.6 dB	(10)	+0.6 dB	±0.086 dB
	-40 dBm Reference Level				
	–40 dBm input	-0.6 dB	(11)	+0.6 dB	±0.084 dB
	–50 dBm input	-0.6 dB	(12)	+0.6 dB	±0.086 dB
	–50 dBm Reference Level				
	–50 dBm input	-0.6 dB	(13)	+0.6 dB	±0.086 dB
20.	Resolution Bandwidth Accuracy				
	Resolution Bandwidth				
	5 MHz	3.5 MHz	(1)	6.5 MHz	±38.2 kHz
	3 MHz	2.55 MHz	(2)	3.45 MHz	±22.9 kHz
	1 MHz	0.85 MHz	(3)	1.15 MHz	±7.64 kHz
	300 kHz	255 kHz	(4)	345 kHz	±2.29 kHz
	100 kHz	85 kHz	(5)	115 kHz	±764 Hz
	30 kHz	25.5 kHz	(6)	34.5 kHz	±229 Hz
	10 kHz	8.5 kHz	(7)	11.5 kHz	±76.4 Hz
	3 kHz	2.55 kHz	(8)	3.45 kHz	±22.9 Hz
	1 kHz	850 Hz	(9)	1.15 kHz	±7.64 Hz
	120 kHz	102 kHz	(10)	138 kHz	±154 Hz
	9 kHz	7.65 kHz	(11)	10.35kHz	±11.5 Hz

Hew	lett-Packard Company						
Mod	el HP E4403B		Report No				
Serial No Date			Date				
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty		
22.	Frequency Response		Note: Enter data in the appropriate section below depending upon the ambient temperature at which the test was performed.				
	20 to 30 °C:						
	Maximum Response		(1)	+0.5 dB	±0.245 dB		
	Minimum Response	–0.5 dB	(2)		±0.245 dB		
	Peak-to-Peak Response		(3)	1.0 dB	±0.245 dB		
	0 to 55 °C:						
	Maximum Response		(1)	+1.0 dB	±0.245 dB		
	Minimum Response	–1.0 dB	(2)		±0.245 dB		
	Peak-to-Peak Response		(3)	2.0 dB	±0.245 dB		
28.	Other Input Related Spurious Responses						
	Input Frequency						
	2042.8 MHz		(1)	-65 dBc	±1.14 dB		
	2642.8 MHz		(2)	-65 dBc	±1.14 dB		
	1820.8 MHz		(3)	65 dBc	±1.14 dB		
	278.5 MHz		(4)	65 dBc	±1.14 dB		
31.	Spurious Responses						
	300 MHz TOI	+7.5 dBm	(1)		±0.49 dB		
	300 MHz SHI	+30 dBm	(3)		±0.90 dB		
	900 MHz SHI	+40 dBm	(4)		±0.90 dB		
33.	Gain Compression						
	Test Frequency						
	53 MHz		(1)	1.0 dB	±0.127 dB		
	1403 MHz		(3)	1.0 dB	±0.127 dB		
	2503 MHz		(4)	1.0 dB	±0.144 dB		

Hew	Hewlett-Packard Company						
Mod	Model HP E4403B Report No						
Seri	al No		Date				
Test Description Minimu		Minimum	Results Measured Maximum		Measurement Uncertainty		
35.	Displayed Average Noise Level						
	10 MHz to 1 GHz		(1)	–117 dBm	±1.82 dB		
-	1 GHz to 2 GHz		(2)	-116 dBm	±1.82 dB		
	2 GHz to 3 GHz		(3)	–114 dBm	±1.82 dB		
38.	Residual Responses						
	150 kHz to 3.0 GHz		(1)	–90 dBm	±0.93 dB		
39.	Fast Time Domain Amplitude Accuracy (Option AYX only)						
	Amplitude Error	-0.3 %	(1)	+0.3 %	±0.029 %		
41.	Tracking Generator Absolute Amplitude and Vernier Accuracy						
	Absolute Amplitude Accuracy	–0.75 dB	(1)	+0.75 dB	±0.087 dB		
	Vernier Accuracy, –2 dB	-0.4 dB	(2)	+0.4 dB	±0.11 dB		
	Vernier Accuracy, –3 dB	–0.5 dB	(3)	+0.5 dB	±0.16 dB		
	Vernier Accuracy, –5 dB	-0.5 dB	(4)	+0.5 dB	±0.16 dB		
	Vernier Accuracy, –6 dB	-0.5 dB	(5)	+0.5 dB	±0.16 dB		
	Vernier Accuracy, –7 dB	–0.5 dB	(6)	+0.5 dB	±0.16 dB		
	Vernier Accuracy, –8 dB	-0.5 dB	(7)	+0.5 dB	±0.16 dB		
	Vernier Accuracy, –9 dB	-0.5 dB	(8)	+0.5 dB	±0.16 dB		
	Vernier Accuracy, –10 dB	-0.5 dB	(9)	+0.5 dB	±0.16 dB		

Hew	lett-Packard Company				
Mod	lel HP E4403B		Report No		
Seri	al No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
43.	Tracking Generator Level Flatness				
	Positive Level Flatness, <1 MHz		(1)	+3.0 dB	±0.255 dB
	Negative Level Flatness, <1 MHz	-3.0 dB	(2)		±0.255 dB
	Positive Level Flatness, 1 MHz to 10 MHz		(3)	+3.0 dB	±0.145 dB
	Negative Level Flatness, 1 MHz to 10 MHz	-3.0 dB	(4)		±0.145 dB
	Positive Level Flatness, >10 MHz to 1.5 GHz		(5)	+2.0 dB	±0.122 dB
	Negative Level Flatness, >10 MHz to 1.5 GHz	–2.0 dB	(6)		±0.122 dB
	Positive Level Flatness, >1.5 GHz		(7)	+2.0 dB	±0.172 dB
	Negative Level Flatness, >1.5 GHz	–2.0 dB	(8)		±0.172 dB
47.	Tracking Generator Harmonic Spurious Outputs (Option 1DN only)				
	2 nd Harmonic, <20 kHz		(1)	–15 dBc	±2.6 dB
	2 nd Harmonic, ≥ 20 kHz		(2)	-25 dBc	±2.6 dB
	3 rd Harmonic, <20 kHz		(3)	–15 dBc	±2.6 dB
	3 rd Harmonic, ≥ 20 kHz		(4)	–25 dBc	±2.6 dB

Hew	Hewlett-Packard Company					
Mod	Model HP E4403B Report No					
Seri	al No	Date				
Test	Description	Minimum	Results Measured Maximun		Measurement Uncertainty	
49.	Tracking Generator Non-Harmonic Spurious Outputs (Option 1DN only)					
	Highest Non-Harmonic Spurious Output Amplitude, 9 kHz to 2 GHz		(1)	27 dBc	±2.67 dB	
	Highest Non-Harmonic Spurious Output Amplitude, 2 GHz to 3 GHz		(2)	–23 dBc	±3.12 dB	
50.	Tracking Generator LO Feedthrough Amplitude (Option 1DN only)					
	9 kHz to 2.9 GHz		(1)	–16 dBm	±1.94 dB	
	2.9 GHz to 3.0 GHz		(2)	–16 dBm	±2.49 dB	

Performance Verification Test Records

HP E4404B Performance Verification Test Record

Only the tests for HP E4404B are included in this test record, therefore not all test numbers are included.

Hewlett-Packard Company			
Address:		Report No	
		Date	
· · · · · · · · · · · · · · · · · · ·			
Model HP E4404B			
Serial No		Ambient temperature	°C
Options		Power mains line freq (nominal)	uency Hz
Firmware Revision		Relative humidity	%
Customer		Tested by	
Test Equipment Used:			
Description	Model No.	Trace No.	Cal Due Date
Synthesized Signal Generator	·		
Synthesized Sweeper #1		· · · · · · · · · · · · · · · · · · ·	
Synthesized Sweeper #2			
Function Generator	· · · · · · · · · · · · · · · · · · ·		
Power Meter, Dual-Channel			
RF Power Sensor #1	. * 		·
RF Power Sensor #2			
Microwave Power Sensor			
Low-Power Power Sensor			
Digital Multimeter			
Universal Counter			
Frequency Standard			
Power Splitter			

Table 3-7HP E4404B Performance Verification Test Record

50 Ω Termination	 	
1 dB Step Attenuator	 	······
10 dB Step Attenuator	 	
6 dB Fixed Attenuator	 	
20 dB Fixed Attenuator (Option 1DS only)	 	
Oscilloscope (Option 1D6 only)	 	·
Microwave Spectrum Analyzer (Option 1DN only)	 	
Notes/comments:	 	

Table 3-8

HP E4404B Performance Verification Test Record

Hew	lett-Packard Company				
Mod	Model HP E4404B Report No				
Seri	rial No Date				
Test Description		Minimum	Minimum Results Measured Maximu		Measurement Uncertainty
1.	10 MHz Reference Accuracy (Non-Option 1D5 only)				
	Settability	–5.0 Hz	(1)	+5.0 Hz	±293.3 µHz
2.	10 MHz Precision Frequency Reference Output Accuracy (Option 1D5 only)				
	5 Minute Warm-Up Error	-0.1 ppm	(1)	+0.1 ppm	±0.000072 ppm
	15 Minute Warm-Up Error	-0.01 ppm	(2)	+0.01 ppm	±0.000070 ppm
4.	Frequency Readout Accuracy and Marker Count Accuracy				
	Frequency Readout Accuracy				
	Center Freq Span				

Model HP E4404B			Report No		
Serial No	-		Date		
Test Description		Minimum	Results Measured	Maximum	Measurement Uncertainty
1500 MHz	20 MHz	1499.784990 MHz	(1)	1500.215010 MHz	±0 Hz
1500 MHz	10 MHz	1499.884990 MHz	(2)	1500.115010 MHz	±0 Hz
1500 MHz	1 MHz	1499.988490 MHz	(3)	1500.011510 MHz	±0 Hz
4000 MHz	20 MHz	3999.784990 MHz	(4)	4000.215010 MHz	±0 Hz
4000 MHz	10 MHz	3999.884990 MHz	(5)	4000.115010 MHz	±0 Hz
4000 MHz	1 MHz	3999.988490 MHz	(6)	4000.011510 MHz	±0 Hz
Marker Count	Accuracy				
Center Freq	Span				
1500 MHz	10 MHz	1499.999999 MHz	(16)	1500.000001 MHz	±0 Hz
1500 MHz	1 MHz	1499.999999 MHz	(17)	1500.000001 MHz	±0 Hz
4000 MHz	10 MHz	3999.999999 MHz	(18)	4000.000001 MHz	±0 Hz
4000 MHz	1 MHz	3999.999999 MHz	(19)	4000.000001 MHz	±0 Hz
6. Frequency Sp Readout Accu					
Span Star	t Freq				
3000 MHz 0	Hz	2370 MHz	(1)	2430 MHz	±6.12 MHz
100 MHz 10	MHz	79 MHz	(2)	81 MHz	±204 kHz
100 kHz 10	MHz	79 kHz	(3)	81 kHz	±204 Hz
100 MHz 80	0 MHz	79 MHz	(4)	81 MHz	±204 kHz
100 kHz 800) MHz	79 kHz	(5)	81 kHz	±204 Hz

Hew	Hewlett-Packard Company					
Mod	el HP E4404B		Report No	and the second		
Serial No			Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
	100 MHz 1400 MHz	79 MHz	(6)	81 MHz	±204 kHz	
	100 kHz 1499 MHz	79 kHz	(7)	81 kHz	±204 Hz	
7.	Noise Sidebands					
	Offset from 1 GHz signal					
	10 kHz		(1)	–90 dBc/Hz	±1.154 dB	
	20 kHz		(2)	-98 dBc/Hz	±1.154 dB	
	30 kHz		(3)	–100 dBc/Hz	±1.154 dB	
	100 kHz		(4)	–112 dBc/Hz	±1.154 dB	
8.	System Related Sidebands					
	Offset from 500 MHz signal					
	30 kHz to 230 kHz		(1)	65 dBc	±1.154 dB	
	–30 kHz to –230 kHz		(2)	65 dBc	±1.154 dB	
9.	Residual FM					
	1 kHz Res BW, (Non-Option 1D5)		(1)	150 Hz	±9.24 Hz	
	1 kHz Res BW, (<i>Option 1D5</i>)		(1)	$100 \mathrm{Hz}$	±9.24 Hz	
	10 Hz Res BW (Options 1DR and 1D5 only)		(2)	2 Hz	±0.274 Hz	
10.	Sweep Time Accuracy					
	Sweep Time					
	$5 \mathrm{ms}$	-1.0%	(1)	+1.0%	±0.28%	
	$20 \mathrm{ms}$	-1.0%	(2)	+1.0%	±0.28%	
	$100 \mathrm{ms}$	-1.0%	(3)	+1.0%	±0.28%	
	1 s	-1.0%	(4)	+1.0%	±0.28%	

Hew	lett-Packard Company					
Mod	lel HP E4404B		Report No	Townshield and the second s		
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
	10 s	-1.0%	(5)	+1.0%	±0.28%	
	1 ms (Option AYX only)	-1.0%	(6)	+1.0%	±0.28%	
	500 us (<i>Option AYX only</i>)	-1.0%	(7)	+1.0%	±0.28%	
	100 us (<i>Option AYX only</i>)	-1.0%	(8)	+1.0%	±0.28%	
11.	Display Scale Fidelity					
	Cumulative Log Fidelity, Res BW ≥ 1 kHz					
	dB from Ref Level					
	-4	–0.34 dB	(1)	+0.34 dB	±0.064 dB	
	-8	-0.38 dB	(2)	+0.38 dB	±0.064 dB	
	-12	–0.42 dB	(3)	+0.42 dB	±0.064 dB	
	-16	-0.46 dB	(4)	+0.46 dB	±0.064 dB	
	-20	-0.50 dB	(5)	+0.50 dB	±0.063 dB	
	-24	–0.54 dB	(6)	+0.54 dB	±0.064 dB	
	-28	-0.58 dB	(7)	+0.58 dB	±0.064 dB	
	-32	-0.62 dB	(8)	+0.62 dB	±0.064 dB	
	-36	-0.66 dB	(9)	+0.66 dB	±0.064 dB	
	-40	–0.70 dB	(10)	+0.70 dB	±0.063 dB	
	-44	–0.74 dB	(11)	+0.74 dB	±0.064 dB	
	-48	-0.78 dB	(12)	+0.78 dB	±0.064 dB	
	-52	–0.82 dB	(13)	+0.82 dB	±0.089 dB	
	-56	–0.86 dB	(14)	+0.86 dB	±0.089 dB	
	60	-0.90 dB	(15)	+0.90 dB	±0.088 dB	
	-64	–0.94 dB	(16)	+0.94 dB	±0.089 dB	
	-68	–0.98 dB	(17)	+0.98 dB	±0.089 dB	
	-72	–1.02 dB	(18)	+1.02 dB	±0.089 dB	

Model HP E4404B		Report No	and the second second second second	
Serial No	Date			
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
-76	-1.06 dB	(19)	+1.06 dB	±0.089 dB
-80	–1.10 dB	(20)	+1.10 dB	±0.088 dB
84	–1.14 dB	(21)	+1.14 dB	±0.089 dB
Incremental Log Fidelity, Res BW ≥ 1 kHz				
dB from Ref Level				
-4	–0.4 dB	(22)	+0.4 dB	±0.064 dB
-8	-0.4 dB	(23)	+0.4 dB	±0.064 dB
-12	–0.4 dB	(24)	+0.4 dB	±0.064 dB
-16	–0.4 dB	(25)	+0.4 dB	±0.064 dB
-20	–0.4 dB	(26)	+0.4 dB	±0.063 dB
-24	–0.4 dB	(27)	+0.4 dB	±0.064 dB
-28	–0.4 dB	(28)	+0.4 dB	±0.064 dB
-32	–0.4 dB	(29)	+0.4 dB	±0.064 dB
-36	–0.4 dB	(30)	+0.4 dB	±0.064 dB
40	–0.4 dB	(31)	+0.4 dB	$\pm 0.063 \text{ dB}$
-44	–0.4 dB	(32)	+0.4 dB	±0.064 dB
-48	–0.4 dB	(33)	+0.4 dB	±0.064 dB
-52	-0.4 dB	(34)	+0.4 dB	±0.089 dB
-56	–0.4 dB	(35)	+0.4 dB	±0.089 dB
-60	–0.4 dB	(36)	+0.4 dB	±0.088 dB
-64	-0.4 dB	(37)	+0.4 dB	±0.089 dB
-68	–0.4 dB	(38)	+0.4 dB	±0.089 dB
-72	-0.4 dB	(39)	+0.4 dB	±0.089 dB
-76	–0.4 dB	(40)	+0.4 dB	±0.089 dB
80	–0.4 dB	(41)	+0.4 dB	±0.088 dB

Hewlett-Packard Company						
Model HP E4404B		Report No	· · · · · · · · · · · · · · · · · · ·			
Serial No		Date				
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty		
Cumulative Log Fidelity, Res BW \leq 300 Hz (Option 1DR only)						
dB from Ref Level						
-4	-0.34 dB	(43)	+0.34 dB	±0.064 dB		
-8	-0.38 dB	(44)	+0.38 dB	±0.064 dB		
-12	-0.42 dB	(45)	+0.42 dB	±0.064 dB		
-16	-0.46 dB	(46)	+0.46 dB	±0.064 dB		
-20	–0.50 dB	(47)	+0.50 dB	±0.063 dB		
-24	–0.54 dB	(48)	+0.54 dB	±0.064 dB		
-28	–0.58 dB	(49)	+0.58 dB	±0.064 dB		
-32	-0.62 dB	(50)	+0.62 dB	±0.064 dB		
-36	-0.66 dB	(51)	+0.66 dB	±0.064 dB		
-40	-0.70 dB	(52)	+0.70 dB	±0.063 dB		
-44	-0.74 dB	(53)	+0.74 dB	±0.064 dB		
-48	-0.78 dB	(54)	+0.78 dB	±0.064 dB		
-52	-0.82 dB	(55)	+0.82 dB	±0.089 dB		
-56	-0.86 dB	(56)	+0.86 dB	±0.089 dB		
-60	-0.90 dB	(57)	+0.90 dB	±0.088 dB		
-64	0.94 dB	(58)	+0.94 dB	±0.089 dB		
-68	-0.98 dB	(59)	+0.98 dB	±0.089 dB		
-72	-1.02 dB	(60)	+1.02 dB	±0.089 dB		
76	-1.06 dB	(61)	+1.06 dB	±0.089 dB		
80	-1.10 dB	(62)	+1.10 dB	±0.088 dB		
84	-1.14 dB	(63)	+1.14 dB	±0.089 dB		
-88	-1.18 dB	(64)	+1.18 dB	±0.089 dB		

Model HP E4404B		Report No		
Serial No		Date	-	
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
-92	–1.22 dB	(65)	+1.22 dB	±0.089 dB
-96	–1.26 dB	(66)	+1.26 dB	±0.088 dB
-98	–1.28 dB	(67)	+1.28 dB	±0.089 dB
Incremental Log Fidelity, Res BW ≤ 300 Hz (<i>Option 1DR only</i>) dB from Ref Level				
-4	-0.4 dB	(68)	+0.4 dB	±0.064 dB
8	-0.4 dB	(69)	+0.4 dB	±0.064 dB
-12	-0.4 dB	(70)	+0.4 dB	±0.064 dB
16	–0.4 dB	(71)	+0.4 dB	±0.064 dB
-20	–0.4 dB	(72)	+0.4 dB	±0.063 dB
-24	–0.4 dB	(73)	+0.4 dB	±0.064 dB
	-0.4 dB	(74)	+0.4 dB	±0.064 dB
-32	-0.4 dB	(75)	+0.4 dB	±0.064 dB
36	-0.4 dB	(76)	+0.4 dB	±0.064 dB
40	-0.4 dB	(77)	+0.4 dB	±0.063 dB
-44	-0.4 dB	(78)	+0.4 dB	±0.064 dB
48	-0.4 dB	(79)	+0.4 dB	±0.064 dB
-52	-0.4 dB	(80)	+0.4 dB	±0.089 dB
56	-0.4 dB	(81)	+0.4 dB	±0.089 dB
60	–0.4 dB	(82)	+0.4 dB	±0.088 dB
64	0.4 dB	(83)	+0.4 dB	±0.089 dB
68	-0.4 dB	(84)	+0.4 dB	±0.089 dB
-72	-0.4 dB	(85)	+0.4 dB	±0.089 dB
-76	-0.4 dB	(86)	+0.4 dB	±0.089 dB

Hewlett-Packard Company						
Model HP E4404B		Report No				
Serial No	Date					
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty		
-80	-0.4 dB	(87)	+0.4 dB	±0.088 dB		
Linear Fidelity, Res BW ≥ 1 kHz						
dB from Ref Level						
-4	-2.0%	(89)	+2.0%	±0.064 %		
-8	-2.0%	(90)	+2.0%	±0.064 %		
-12	-2.0%	(91)	+2.0%	±0.064 %		
-16	-2.0%	(92)	+2.0%	±0.064 %		
-20	-2.0%	(93)	+2.0%	±0.063 %		
Linear Fidelity, Res BW ≤ 300 Hz (Option 1DR only) dB from Ref Level						
	-2.0%	(94)	+2.0%	±0.064 %		
-4	-2.0%	(94)	+2.0%	±0.064 %		
-8			+2.0%	±0.064 %		
-12		(96) (97)	+2.0%	±0.064 %		
-16		(97)	+2.0%	±0.063 %		
–20 Zero Span, Res BW≤ 300 Hz (Option 1DR only)	-2.0%	(96)	+2.0%	10.000 %		
dB from Ref Level						
-4	-0.36 dB	(99)	+0.36 dB	±0.064 dB		
-8	-0.42 dB	(100)	+0.42 dB	±0.064 dB		
-12	-0.48 dB	(101)	+0.48 dB	±0.064 dB		
-16	-0.54 dB	(102)	+0.54 dB	±0.064 dB		
-20	-0.60 dB	(103)	+0.60 dB	±0.063 dB		
-24	-0.66 dB	(104)	+0.66 dB	±0.064 dB		

Mod	lel HP E4404B		Report No		
Seri	ial No		Date		
Test	t Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	-28	-0.72 dB	(105)	+0.72 dB	±0.064 dB
	-32	-0.78 dB	(106)	+0.78 dB	±0.064 dB
	-36	-0.84 dB	(107)	+0.84 dB	±0.064 dB
	-40	-0.90 dB	(108)	+0.90 dB	±0.063 dB
	-44	-0.96 dB	(109)	+0.96 dB	±0.064 dB
	-48	–1.02 dB	(110)	+1.02 dB	±0.064 dB
	-52	–1.08 dB	(111)	+1.08 dB	±0.089 dB
	-56	–1.14 dB	(112)	+1.14 dB	±0.089 dB
	60	−1.20 dB	(113)	+1.20 dB	±0.088 dB
	-64	–1.5 dB	(114)	+1.5 dB	±0.089 dB
	68	–1.5 dB	(115)	+1.5 dB	±0.089 dB
	70	–1.5 dB	(116)	+1.5 dB	±0.089 dB
12.	Input Attenuation Switching Uncertainty				
	Input Attenuation Setting				
	0 dB	-0.3 dB	(1)	+0.3 dB	±0.108 dB
	5 dB	–0.3 dB	(2)	+0.3 dB	±0.107 dB
	15 dB	–0.3 dB	(3)	+0.3 dB	±0.107 dB
	20 dB	–0.3 dB	(4)	+0.3 dB	±0.089 dB
	25 dB	–0.35 dB	(5)	+0.35 dB	±0.089 dB
	30 dB	-0.40 dB	(6)	+0.40 dB	±0.089 dB
	35 dB	–0.45 dB	(7)	+0.45 dB	±0.089 dB
	40 dB	-0.50 dB	(8)	+0.50 dB	±0.089 dB
	45 dB	–0.55 dB	(9)	+0.55 dB	±0.089 dB
	50 dB	-0.60 dB	(10)	+0.60 dB	±0.089 dB
	55 dB	–0.65 dB	(11)	+0.65 dB	±0.089 dB

Hewlett-Packard Company						
Mod	el HP E4404B		Report No			
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
	60 dB	-0.70 dB	(12)	+0.70 dB	±0.089 dB	
	65 dB	–0.75 dB	(13)	+0.75 dB	±0.089 dB	
14.	Reference Level Accuracy					
	Log, Res BW ≥ 1 kHz					
	Reference Level					
	-10	-0.3 dB	(1)	+0.3 dB	±0.144 dB	
	0	–0.3 dB	(2)	+0.3 dB	±0.144 dB	
	-30	–0.3 dB	(3)	+0.3 dB	±0.144 dB	
	-40	-0.3 dB	(4)	+0.3 dB	±0.144 dB	
	-50	–0.5 dB	(5)	+0.5 dB	±0.156 dB	
	-60	–0.5 dB	(6)	+0.5 dB	±0.156 dB	
	-70	–0.5 dB	(7)	+0.5 dB	±0.156 dB	
	-80	–0.7 dB	(8)	+0.7 dB	±0.156 dB	
	Linear, Res BW≥1 kHz Reference Level					
	-10	–0.3 dB	(9)	+0.3 dB	±0.144 dB	
	0	–0.3 dB	(10)	+0.3 dB	±0.144 dB	
	-30	–0.3 dB	(11)	+0.3 dB	±0.144 dB	
	-40	–0.3 dB	(12)	+0.3 dB	±0.144 dB	
	-50	–0.5 dB	(13)	+0.5 dB	±0.156 dB	
	-60	–0.5 dB	(14)	+0.5 dB	±0.156 dB	
	-70	–0.5 dB	(15)	+0.5 dB	±0.156 dB	
		–0.7 dB	(16)	+0.7 dB	±0.156 dB	

Hewlett-Packard Company					
Model HP E4404B		Report No			
Serial No		Date			
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
Log, Res BW ≤ 300 Hz (Option 1DR only)					
Reference Level					
-10	–0.3 dB	(17)	+0.3 dB	±0.144 dB	
0	–0.3 dB	(18)	+0.3 dB	±0.144 dB	
-30	–0.3 dB	(19)	+0.3 dB	±0.144 dB	
-40	–0.3 dB	(20)	+0.3 dB	±0.144 dB	
-50	–0.5 dB	(21)	+0.5 dB	±0.156 dB	
-60	–0.5 dB	(22)	+0.5 dB	±0.156 dB	
-70	–0.5 dB	(23)	+0.5 dB	±0.156 dB	
-80	–0.7 dB	(24)	+0.7 dB	±0.156 dB	
Linear, Res BW \leq 300 Hz (Option 1DR only)					
Reference Level					
-10	-0.3 dB	(25)	+0.3 dB	±0.144 dB	
0	-0.3 dB	(26)	+0.3 dB	±0.144 dB	
-30	–0.3 dB	(27)	+0.3 dB	±0.144 dB	
-40	–0.3 dB	(28)	+0.3 dB	±0.144 dB	
-50	–0.5 dB	(29)	+0.5 dB	±0.156 dB	
-60	–0.5 dB	(30)	+0.5 dB	±0.156 dB	
-70	-0.5 dB	(31)	+0.5 dB	±0.156 dB	
80	-0.7 dB	(32)	+0.7 dB	±0.156 dB	

Hew	Hewlett-Packard Company						
Mod	lel HP E4404B		Report No				
Seri	al No		Date				
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty		
15.	Resolution Bandwidth Switching Uncertainty						
	Resolution Bandwidth						
	3 kHz	-0.3 dB	(1)	+0.3 dB	±0.064 dB		
	9 kHz	-0.3 dB	(2)	+0.3 dB	±0.064 dB		
	10 kHz	–0.3 dB	(3)	+0.3 dB	±0.064 dB		
	30 kHz	–0.3 dB	(4)	+0.3 dB	±0.064 dB		
	100 kHz	-0.3 dB	(5)	+0.3 dB	±0.064 dB		
	120 kHz	-0.3 dB	(6)	+0.3 dB	±0.064 dB		
	300 kHz	–0.3 dB	(7)	+0.3 dB	±0.064 dB		
	1 MHz	-0.3 dB	(8)	+0.3 dB	±0.064 dB		
	3 MHz	-0.3 dB	(9)	+0.3 dB	±0.064 dB		
	5 MHz	-0.6 dB	(10)	+0.6 dB	±0.083 dB		
	300 Hz (Option 1DR only)	-0.3 dB	(11)	+0.3 dB	±0.064 dB		
	200 Hz (Option 1DR only)	-0.3 dB	(12)	+0.3 dB	±0.064 dB		
	100 Hz (Option 1DR only)	-0.3 dB	(13)	+0.3 dB	±0.064 dB		
	30 Hz (Option 1DR only)	-0.3 dB	(14)	+0.3 dB	±0.064 dB		
	10 Hz (Option 1DR only)	–0.3 dB	(15)	+0.3 dB	±0.064 dB		
17.	Absolute Amplitude Accuracy (Reference Settings)						
	Log, Preamp Off	-0.34 dB	(1)	+0.34 dB	±0.148 dB		
	Lin, Preamp Off	-0.34 dB	(2)	+0.34 dB	±0.148 dB		
	Log, Preamp On	-0.5 dB	(3)	+0.5 dB	±0.148 dB		
	Lin, Preamp On	0.5 dB	(4)	+0.5 dB	±0.148 dB		

Hew	Hewlett-Packard Company						
Mod	el HP E4404B		Report No				
Serial No			Date				
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty		
19.	Overall Absolute Amplitude Accuracy						
	0 dBm Reference Level						
	0 dBm input	–0.54 dB	(1)	+0.54 dB	±0.08 dB		
	–10 dBm input	–0.54 dB	(2)	+0.54 dB	±0.081 dB		
	–20 dBm input	–0.54 dB	(3)	+0.54 dB	±0.082 dB		
	–30 dBm input	–0.54 dB	(4)	+0.54 dB	±0.083 dB		
	-40 dBm input	–0.54 dB	(5)	+0.54 dB	±0.084 dB		
	–50 dBm input	–0.54 dB	(6)	+0.54 dB	±0.086 dB		
	-20 dBm Reference Level						
	–20 dBm input	–0.54 dB	(7)	+0.54 dB	±0.082 dB		
	–30 dBm input	–0.54 dB	(8)	+0.54 dB	±0.083 dB		
	–40 dBm input	–0.54 dB	a(9)	+0.54 dB	±0.084 dB		
	–50 dBm input	–0.54 dB	(10)	+0.54 dB	±0.086 dB		
	-40 dBm Reference Level						
	–40 dBm input	–0.54 dB	(11)	+0.54 dB	±0.084 dB		
	–50 dBm input	–0.54 dB	(12)	+0.54 dB	±0.086 dB		
	-50 dBm Reference Level						
	–50 dBm input	-0.54 dB	(13)	+0.54 dB	±0.086 dB		
20.	Resolution Bandwidth Accuracy						
	Resolution Bandwidth						
	5 MHz	3.5 MHz	(1)	6.5 MHz	±38.2 kHz		
	3 MHz	2.55 MHz	(2)	3.45 MHz	±22.9 kHz		
	1 MHz	0.85 MHz	(3)	1.15 MHz	±7.64 kHz		
	300 kHz	255 kHz	(4)	345 kHz	±2.29 kHz		

Hew	vlett-Packard Company					
Mod	lel HP E4404B		Report No			
Serial No Date						
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
	100 kHz	85 kHz	(5)	115 kHz	±764 Hz	
	30 kHz	25.5 kHz	(6)	34.5 kHz	±229 Hz	
	10 kHz	8.5 kHz	(7)	11.5 kHz	±76.4 Hz	
	3 kHz	2.55 kHz	(8)	3.45 kHz	±22.9 Hz	
	1 kHz	850 Hz	(9)	1.15 kHz	±7.64 Hz	
	120 kHz	102 kHz	(10)	138 kHz	±154 Hz	
	9 kHz	7.65 kHz	(11)	10.35kHz	±11.5 Hz	
23.	Frequency Response	Note: Enter data in the appropriate section below depending upon the ambient temperature at which the test was performed.				
	20 to 30 °C:					
	Band 0, 9 kHz to 3 GHz					
	Maximum Response		(1)	+0.5 dB	±0.245 dB	
	Minimum Response	–0.5 dB	(2)		±0.245 dB	
	Peak-to-Peak Response		(3)	1.0 dB	±0.245 dB	
	Band 1, 3 GHz to 6.7 GHz					
	Maximum Response		(4)	+1.5 dB	±0.355 dB	
	Minimum Response	–1.5 dB	(5)		±0.355 dB	
	Peak-to-Peak Response		(6)	2.6 dB	±0.355 dB	
	0 to 55 °C:					
	Band 0, 9 kHz to 3 GHz					
	Maximum Response		(1)	+1.0 dB	±0.245 dB	
	Minimum Response	–1.0 dB	(2)		±0.245 dB	
	Peak-to-Peak Response		(3)	2.0 dB	±0.245 dB	
	Band 1, 3 GHz to 6.7 GHz					
	Maximum Response		(4)	+2.5 dB	±0.355 dB	
	Minimum Response	–2.5 dB	(5)		±0.355 dB	

Hewlett-Packard Company					
Model HP E4404B			Report No		
Serial No			Date		
Test Description		Minimum	Results Measured	Maximum	Measurement Uncertainty
	Peak-to-Peak Response		(6)	3.0 dB	±0.355 dB
26.	Frequency Response (Preamp On) (<i>Option 1DS only</i>)				
	Maximum Response		(1)	+2.0 dB	±0.343 dB
	Minimum Response	–2.0 dB	(2)		±0.343 dB
	Peak-to-Peak Response		(3)	4.0 dB	±0.343 dB
28.	Other Input Related Spurious Responses				
	Center Freq Input Freq				
	2.0 GHz 2042.8 MHz		(1)	65 dBc	±1.14 dB
	2.0 GHz 2642.8 MHz		(2)	65 dBc	±1.14 dB
	2.0 GHz 1820.8 MHz		(3)	65 dBc	±1.14 dB
	2.0 GHz 278.5 MHz		(4)	65 dBc	±1.14 dB
	2.0 GHz 5600.0 MHz		(5)	80 dBc	±1.14 dB
	2.0 GHz 6242.8 MHz		(6)	-80 dBc	±1.14 dB
	4.0 GHz 4042.8 MHz		(7)	65 dBc	±1.14 dB
	4.0 GHz 4642.8 MHz		(8)	65 dBc	±1.14 dB
	4.0 GHz 3742.9 MHz		(9)	–65 dBc	±1.14 dB
	4.0 GHz 2242.8 MHz		(10)	–80 dBc	±1.14 dB
31.	Spurious Responses			-	
	300 MHz TOI, 1 kHz RBW	+11 dBm	(1)		±0.49 dB
	300 MHz TOI, 30 Hz RBW (Option 1DR only)	+11 dBm	(2)		±0.49 dB
	5 GHz TOI	+11 dBm	(3)		±0.589 dB
	8 GHz TOI	+7.5 dBm	(4)		±0.589 dB
	300 MHz SHI	+35 dBm	(5)		±0.90 dB

Model HP E4404B			Report No		
Seri	al No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	900 MHz SHI	+45 dBm	(6)		±0.90 dB
	1.55 GHz SHI	+75 dBm	(7)		±0.90 dB
	3.1 GHz SHI	+90 dBm	(8)		±0.90 dB
33.	Gain Compression				
	Test Frequency				
	53 MHz		(1)	1.0 dB	±0.127 dB
	50.004 MHz (Option 1DR only)		(2)	1.0 dB	±0.127 dB
	1403 MHz		(3)	1.0 dB	±0.127 dB
	2503 MHz		(4)	1.0 dB	±0.144 dB
	4403 MHz		(5)	1.0 dB	±0.201 dB
36.	Displayed Average Noise Level			o on in the appropriate when the test was	
	1 kHz RBW, Preamp Off:				
	10 MHz to 1 GHz		(1)	-116 dBm	±1.82 dB
	1 GHz to 2 GHz		(2)	–115 dBm	±1.82 dB
	2 GHz to 3 GHz		(3)	-112 dBm	±1.82 dB
	3 GHz to 6 GHz		(4)	-112 dBm	±1.82 dB
	6 GHz to 6.7 GHz		(5)	-110 dBm	±1.82 dB
	1kHz RBW, Preamp On, 0 to 55 °C:				
	10 MHz to 1 GHz		(6)	–131 dBm	±1.82 dB
	1 GHz to 2 GHz		(7)	-129 dBm	±1.82 dB
	2 GHz to 3 GHz		(8)	–127 dBm	±1.82 dB
	10 Hz RBW, Preamp Off:				
	10 MHz to 1 GHz		(9)	–135 dBm	±1.82 dB

Performance Verification Test Records HP E4404B Performance Verification Test Record

Hewlett-Packard Company				
Model HP E4404B		Report No		
Serial No		Date	-	
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
1 GHz to 2 GHz		(10)	-134 dBm	±1.82 dB
2 GHz to 3 GHz		(11)	–131 dBm	±1.82 dB
3 GHz to 6 GHz		(12)	–131 dBm	$\pm 1.82 \text{ dB}$
6 GHz to 6.7 GHz		(13)	–129 dBm	±1.82 dB
10 Hz RBW, Preamp On, 0 to 55 °C:				
10 MHz to 1 GHz		(14)	–149 dBm	±1.82 dB
1 GHz to 2 GHz		(15)	–147 dBm	±1.82 dB
2 GHz to 3 GHz		(16)	–145 dBm	±1.82 dB
1 kHz RBW, Preamp On, 20 to 30 °C:				
10 MHz to 1 GHz		(17)	–132 dBm	±1.82 dB
1 GHz to 2 GHz		(18)	–131 dBm	±1.82 dB
2 GHz to 3 GHz		(19)	–130 dBm	±1.82 dB
10 Hz RBW, Preamp On, 20 to 30 °C:				
10 MHz to 1 GHz		(20)	–150 dBm	±1.82 dB
1 GHz to 2 GHz		(21)	–149 dBm	±1.82 dB
2 GHz to 3 GHz		(22)	–148 dBm	±1.82 dB
38. Residual Responses				
150 kHz to 6.7 GHz		(1)	-90 dBm	±0.93 dB

Hew	elett-Packard Company					
Model HP E4404B			Report No			
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
39.	Fast Time Domain Amplitude Accuracy (Option AYX only)					
	Amplitude Error	-0.3 %	(1)	+0.3 %	±0.029 %	
41.	Tracking Generator Absolute Amplitude and Vernier Accuracy					
	Absolute Amplitude Accuracy	–0.75 dB	(1)	+0.75 dB	±0.087 dB	
	Vernier Accuracy, –2 dB	-0.4 dB	(2)	+0.4 dB	±0.11 dB	
	Vernier Accuracy, –3 dB	–0.5 dB	(3)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –5 dB	-0.5 dB	(4)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –6 dB	-0.5 dB	(5)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –7 dB	-0.5 dB	(6)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –8 dB	-0.5 dB	(7)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –9 dB	–0.5 dB	(8)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –10 dB	-0.5 dB	(9)	+0.5 dB	±0.16 dB	
43.	Tracking Generator Level Flatness					
	Positive Level Flatness, <1 MHz		(1)	+3.0 dB	±0.255 dB	
	Negative Level Flatness, <1 MHz	–3.0 dB	(2)		±0.255 dB	
	Positive Level Flatness, 1 MHz to 10 MHz		(3)	+3.0 dB	±0.145 dB	
	Negative Level Flatness, 1 MHz to 10 MHz	–3.0 dB	(4)		±0.145 dB	
	Positive Level Flatness, >10 MHz to 1.5 GHz		(5)	+2.0 dB	±0.122 dB	

Performance Verification Test Records HP E4404B Performance Verification Test Record

Hewlett-Packard Company						
Mod	lel HP E4404B		Report No			
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
	Negative Level Flatness, >10 MHz to 1.5 GHz	-2.0 dB	(6)		±0.122 dB	
	Positive Level Flatness, >1.5 GHz		(7)	+2.0 dB	±0.172 dB	
	Negative Level Flatness, >1.5 GHz	-2.0 dB	(8)		±0.172 dB	
45.	Tracking Generator Harmonic Spurious Outputs (Option 1DN only)					
	2 nd Harmonic, <20 kHz		(1)	-15 dBc	±2.6 dB	
	2 nd Harmonic, ≥ 20 kHz		(2)	-25 dBc	±2.6 dB	
	3 rd Harmonic, <20 kHz		(3)	–15 dBc	±2.6 dB	
	3 rd Harmonic, ≥ 20 kHz		(4)	–25 dBc	±2.6 dB	
47.	Tracking Generator Non-Harmonic Spurious Outputs (Option 1DN only)					
	Highest Non-Harmonic Spurious Output Amplitude, 9 kHz to 2 GHz		(1)	-27 dBc	±2.67 dB	
	Highest Non-Harmonic Spurious Output Amplitude, 2 GHz to 3 GHz		(2)	–23 dBc	±3.12 dB	
48.	Tracking Generator LO Feedthrough Amplitude (Option 1DN only)					
	9 kHz to 2.9 GHz		(1)	–16 dBm	±1.94 dB	
	2.9 GHz to 3.0 GHz		(2)	-16 dBm	±2.49 dB	

Hewlett-Packard Company							
Model HP E4404B			Report No				
Seri	al No	Date					
Test Description Minimum		Results Measured	Maximum	Measurement Uncertainty			
49.	Gate Delay Accuracy and Gate Length Accuracy (Option 1D6 only)						
	Minimum Gate Delay	499.9 ns	(1)	$1.5001\mu s$	±475 ps		
	Maximum Gate Delay	499.9 ns	(2)	1.5001 µs	±475 ps		
	1 us Gate Length	499.9 ns	(3)	1.5001 µs	±450 ps		
	65 ms Gate Length	64.993 ms	(4)	65.007 ms	±561 ns		
50.	Gate Mode Amplitude Error (Option 1D6 only)						
	Amplitude Error	-0.2 dB	(1)	+0.2 dB	±0.023 dB		

Performance Verification Test Records

HP E4405B Performance Verification Test Record

Only the tests for HP E4405B are included in this test record, therefore not all test numbers are included.

Hewlett-Packard Company			
Address:	·····	Report No	·····
		Date	
Model HP E4405B			
Serial No		Ambient temperature _	•C
Options		Power mains line freque (nominal)	ency Hz
Firmware Revision		Relative humidity	%
Customer		Tested by	
Test Equipment Used:			
Description	Model No.	Trace No.	Cal Due Date
Synthesized Signal Generator			
Synthesized Sweeper #1			
Synthesized Sweeper #2			
Function Generator			
Power Meter, Dual-Channel			·····
RF Power Sensor #1			
RF Power Sensor #2			
Microwave Power Sensor	······		
Low-Power Power Sensor			· · · · · · · · · · · · · · · · · · ·
Digital Multimeter			
Universal Counter			
Frequency Standard			
Power Splitter			

50 Ω Termination	 	
1 dB Step Attenuator	 	
10 dB Step Attenuator	 	
6 dB Fixed Attenuator	 	
20 dB Fixed Attenuator (Option 1DS only)	 	
Oscilloscope (Option 1D6 only)	 	
Microwave Spectrum Analyzer (Option 1DN only)	 	
Notes/comments:	 	
		-

Table 3-10

Неч	Hewlett-Packard Company						
Mod	el HP E4405B		Report No				
Serial No			Date				
Test Description		Minimum	Results Measured	Maximum	Measurement Uncertainty		
1.	10 MHz Reference Output Accuracy (Non-Option 1D5 only)						
	Settability	–5.0 Hz	(1)	+5.0 Hz	±293.3 µHz		
2.	10 MHz Precision Frequency Reference Accuracy (<i>Option 1D5 only</i>)						
	5 Minute Warm-Up Error	-0.1 ppm	(1)	+0.1 ppm	$\pm 0.000072 \text{ ppm}$		
	15 Minute Warm-Up Error	-0.01 ppm	(2)	+0.01 ppm	±0.000070 ppm		

Hew	lett-Packard (Company					
Mod	el HP E4405B			Report No			
Seria	al No			Date			
Test	Description		Minimum	Results Measured	Maximum	Measurement Uncertainty	
4.	Frequency R Accuracy and Count Accura	d Marker	Note: TR Entries 10 through 15 do not apply to the HP E4405B.				
	Frequency Rea Accuracy	adout					
	Center Freq	Span					
	$1500 \mathrm{~MHz}$	20 MHz	1499.784990 MHz	(1)	1500.215010 MHz	0 Hz	
	$1500 \mathrm{~MHz}$	10 MHz	1499.884990 MHz	(2)	1500.115010 MHz	0 Hz	
	$1500 \mathrm{~MHz}$	1 MHz	1499.988490 MHz	(3)	1500.011510 MHz	0 Hz	
	$4000 \mathrm{~MHz}$	20 MHz	3999.784990 MHz	(4)	4000.215010 MHz	0 Hz	
	$4000 \mathrm{~MHz}$	10 MHz	3999.884990 MHz	(5)	4000.115010 MHz	0 Hz	
	4000 MHz	1 MHz	3999.988490 MHz	(6)	4000.011510 MHz	0 Hz	
	9000 MHz	20 MHz	8999.784990 MHz	(7)	9000.215010 MHz	0 Hz	
	$9000 \mathrm{~MHz}$	10 MHz	8999.884990 MHz	(8)	9000.115010 MHz	0 Hz	
	9000 MHz	1 MHz	8999.988490 MHz	(9)	9000.011510 MHz	0 Hz	
			Note: Enter results in the appropriate section below based upon the firmware revision of the analyzer.				
	Firmware Rev to A.03.00	ision Prior					
	Center Freq	Span					
	$1500 \mathrm{~MHz}$	10 MHz	1499.999998 MHz	(16)	1500.000002 MHz	±0 Hz	

Hewlett-Packard (Company				
Model HP E4405B			Report No		
Serial No			Date		
Test Description		Minimum	Results Measured	Maximum	Measurement Uncertainty
1500 MHz	1 MHz	1499.999998 MHz	(17)	1500.000002 MHz	±0 Hz
$4000 \ \mathrm{MHz}$	10 MHz	3999.999998 MHz	(18)	4000.000002 MHz	±0 Hz
4000 MHz	1 MHz	3999.999998 MHz	(19)	4000.000002 MHz	±0 Hz
9000 MHz	10 MHz	8999.999997 MHz	(20)	9000.000003 MHz	±0 Hz
9000 MHz	1 MHz	8999.999997 MHz	(21)	9000.000003 MHz	±0 Hz
Marker Count	Accuracy				
Firmware Rev A.03.00 or late					
Center Freq	Span				
$1500 \ \mathrm{MHz}$	10 MHz	1499.999999 MHz	(16)	1500.000001 MHz	±0 Hz
$1500 \ \mathrm{MHz}$	$1 \mathrm{MHz}$	1499.999999 MHz	(17)	1500.000001 MHz	±0 Hz
4000 MHz	10 MHz	3999.999999 MHz	(18)	4000.000001 MHz	±0 Hz
4000 MHz	$1 \mathrm{~MHz}$	3999.999999 MHz	(19)	4000.000001 MHz	±0 Hz
9000 MHz	10 MHz	8999.999999 MHz	(20)	9000.000001 MHz	±0 Hz
$9000 \ \mathrm{MHz}$	1 MHz	8999.999999 MHz	(21)	9000.000001 MHz	±0 Hz

Hewlett-Packard Company						
Model HP E4405B			Report No			
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
6.	Frequency Span Readout Accuracy					
	Span Start Freq					
	3000 MHz 0 Hz	2370 MHz	(1)	2430 MHz	±6.12 MHz	
	100 MHz 10 MHz	79 MHz	(2)	81 MHz	±204 kHz	
	100 kHz 10 MHz	79 kHz	(3)	81 kHz	±204 Hz	
	100 MHz 800 MHz	79 MHz	(4)	81 MHz	±204 kHz	
	100 kHz 800 MHz	79 kHz	(5)	81 kHz	±204 Hz	
	100 MHz 1400 MHz	79 MHz	(6)	81 MHz	±204 kHz	
	100 kHz 1499 MHz	79 kHz	(7)	81 kHz	±204 Hz	
7.	Noise Sidebands					
	Offset from 1 GHz signal					
	10 kHz		(1)	–90 dBc/Hz	±1.154 dB	
	20 kHz		(2)	–98 dBc/Hz	±1.154 dB	
	30 kHz		(3)	–100 dBc/Hz	±1.154 dB	
	100 kHz		(4)	–112 dBc/Hz	±1.154 dB	
8.	System Related Sidebands					
	Offset from 500 MHz signal					
	30 kHz to 230 kHz		(1)	65 dBc	±1.154 dB	
	–30 kHz to –230 kHz		(2)	65 dBc	±1.154 dB	

Hewlett-Packard Company						
Model HP E4405B		Report No				
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
9.	Residual FM					
	1 kHz Res BW (Non-Option 1D5)		(1)	150 Hz	±9.24 Hz	
	1 kHz Res BW (<i>Option 1D5</i>)		(1)	100 Hz	±9.24 Hz	
	10 Hz Res BW (Options 1DR and 1D5 only)		(2)	2 Hz	±0.274 Hz	
10.	Sweep Time Accuracy					
	Sweep Time					
	$5 \mathrm{ms}$	-1.0%	(1)	+1.0%	±0.28%	
	20 ms	-1.0%	(2)	+1.0%	±0.28%	
	100 ms	-1.0%	(3)	+1.0%	±0.28%	
	1 s	-1.0%	(4)	+1.0%	±0.28%	
	10 s	-1.0%	(5)	+1.0%	±0.28%	
	1 ms (Option AYX only)	-1.0%	(6)	+1.0%	±0.28%	
	500 µs (Option AYX only)	-1.0%	(7)	+1.0%	±0.28%	
	100 µs (Option AYX only)	-1.0%	(8)	+1.0%	±0.28%	
11.	Display Scale Fidelity					
	Cumulative Log Fidelity, Res BW ≥ 1 kHz					
	dB from Ref Level					
	-4	–0.34 dB	(1)	+0.34 dB	±0.064 dB	
	8	–0.38 dB	(2)	+0.38 dB	±0.064 dB	
	-12	0.42 dB	(3)	+0.42 dB	±0.064 dB	
	-16	–0.46 dB	(4)	+0.46 dB	±0.064 dB	
	-20	–0.50 dB	(5)	+0.50 dB	±0.063 dB	

Hewlett-Packard Company Model HP E4405B Report No. _____ Serial No. Date _____ Results Measurement **Test Description** Minimum Maximum Measured **Uncertaintv** -24-0.54 dB ±0.064 dB (6) +0.54 dB -28-0.58 dB (7)_____ +0.58 dB ±0.064 dB -32-0.62 dB (8) +0.62 dB ±0.064 dB -36 (9)_____ +0.66 dB -0.66 dB ±0.064 dB -40 (10) -0.70 dB +0.70 dB ±0.063 dB -44 -0.74 dB (11)_____ +0.74 dB ±0.064 dB -48 -0.78 dB (12)_____ +0.78 dB ±0.064 dB +0.82 dB -52±0.089 dB -0.82 dB (13)_____ -56 -0.86 dB (14)_____ +0.86 dB ±0.089 dB --60 -0.90 dB (15)_____ +0.90 dB ±0.088 dB -64 -0.94 dB +0.94 dB ±0.089 dB (16)_____ (17)_____ --68 -0.98 dB +0.98 dB $\pm 0.089 \text{ dB}$ -72-1.02 dB (18)_____ +1.02 dB ±0.089 dB -76(19)_____ ±0.089 dB -1.06 dB +1.06 dB---80 $-1.10 \ dB$ (20)_____ +1.10 dB ±0.088 dB -84 ±0.089 dB -1.14 dB (21)_____ +1.14 dB **Incremental Log Fidelity**, Res BW $\geq 1 \text{ kHz}$ dB from Ref Level -4 -0.4 dB (22)_____ +0.4 dB ±0.064 dB (23)____ -8 ±0.064 dB -0.4 dB+0.4 dB (24)_____ -12-0.4 dB ±0.064 dB +0.4 dB -16 -0.4 dB (25)_____ +0.4 dB ±0.064 dB -20(26)_____ ±0.063 dB -0.4 dB +0.4 dB -24-0.4 dB (27)_____ +0.4 dB ±0.064 dB -28±0.064 dB -0.4 dB (28)_____ +0.4 dB

Performance Verification Test Records HP E4405B Performance Verification Test Record

Hewlett-Packard Company				
Model HP E4405B		Report No		
Serial No		Date		
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
-32	-0.4 dB	(29)	+0.4 dB	±0.064 dB
-36	-0.4 dB	(30)	+0.4 dB	±0.064 dB
-40	–0.4 dB	(31)	+0.4 dB	±0.063 dB
-44	-0.4 dB	(32)	+0.4 dB	±0.064 dB
-48	-0.4 dB	(33)	+0.4 dB	±0.064 dB
-52	–0.4 dB	(34)	+0.4 dB	±0.089 dB
56	-0.4 dB	(35)	+0.4 dB	±0.089 dB
-60	–0.4 dB	(36)	+0.4 dB	±0.088 dB
64	–0.4 dB	(37)	+0.4 dB	±0.089 dB
-68	-0.4 dB	(38)	+0.4 dB	±0.089 dB
-72	–0.4 dB	(39)	+0.4 dB	±0.089 dB
-76	–0.4 dB	(40)	+0.4 dB	±0.089 dB
-80	–0.4 dB	(41)	+0.4 dB	±0.088 dB
Cumulative Log Fidelity, Res BW ≤ 300 Hz (Option 1DR only)				
dB from Ref Level				
-4	–0.34 dB	(43)	+0.34 dB	±0.064 dB
-8	–0.38 dB	(44)	+0.38 dB	±0.064 dB
-12	–0.42 dB	(45)	+0.42 dB	±0.064 dB
-16	–0.46 dB	(46)	+0.46 dB	±0.064 dB
-20	–0.50 dB	(47)	+0.50 dB	±0.063 dB
-24	–0.54 dB	(48)	+0.54 dB	±0.064 dB
-28	–0.58 dB	(49)	+0.58 dB	±0.064 dB
-32	–0.62 dB	(50)	+0.62 dB	±0.064 dB
36	–0.66 dB	(51)	+0.66 dB	±0.064 dB

Hewlett-Packard Company				· · · · · · · · · · · · · · · · · · ·
Model HP E4405B		Report No		
Serial No		Date		
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
-40	-0.70 dB	(52)	+0.70 dB	±0.063 dB
-44	–0.74 dB	(53)	+0.74 dB	±0.064 dB
-48	–0.78 dB	(54)	+0.78 dB	±0.064 dB
-52	–0.82 dB	(55)	+0.82 dB	±0.089 dB
-56	–0.86 dB	(56)	+0.86 dB	±0.089 dB
-60	-0.90 dB	(57)	+0.90 dB	±0.088 dB
-64	–0.94 dB	(58)	+0.94 dB	±0.089 dB
-68	–0.98 dB	(59)	+0.98 dB	±0.089 dB
-72	–1.02 dB	(60)	+1.02 dB	±0.089 dB
-76	–1.06 dB	(61)	+1.06 dB	±0.089 dB
-80	–1.10 dB	(62)	+1.10 dB	±0.088 dB
-84	–1.14 dB	(63)	+1.14 dB	±0.089 dB
-88	–1.18 dB	(64)	+1.18 dB	±0.089 dB
-92	–1.22 dB	(65)	+1.22 dB	±0.089 dB
-96	–1.26 dB	(66)	+1.26 dB	±0.088 dB
-98	–1.28 dB	(67)	+1.28 dB	±0.089 dB
Incremental Log Fidelity, Res BW ≤ 300 Hz (Option 1DR only)				
dB from Ref Level				
-4	-0.4 dB	(68)	+0.4 dB	±0.064 dB
-8	-0.4 dB	(69)	+0.4 dB	±0.064 dB
-12	0.4 dB	(70)	+0.4 dB	±0.064 dB
-16	-0.4 dB	(71)	+0.4 dB	±0.064 dB
-20	-0.4 dB	(72)	+0.4 dB	±0.063 dB
-24	-0.4 dB	(73)	+0.4 dB	±0.064 dB

Performance Verification Test Records HP E4405B Performance Verification Test Record

Hewlett-Packard Company				
Model HP E4405B		Report No		
Serial No		Date	_	
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
-28	-0.4 dB	(74)	+0.4 dB	±0.064 dB
-32	-0.4 dB	(75)	+0.4 dB	±0.064 dB
-36	-0.4 dB	(76)	+0.4 dB	±0.064 dB
-40	-0.4 dB	(77)	+0.4 dB	±0.063 dB
-44	-0.4 dB	(78)	+0.4 dB	±0.064 dB
-48	-0.4 dB	(79)	+0.4 dB	±0.064 dB
-52	-0.4 dB	(80)	+0.4 dB	±0.089 dB
-56	-0.4 dB	(81)	+0.4 dB	±0.089 dB
-60	-0.4 dB	(82)	+0.4 dB	±0.088 dB
64	-0.4 dB	(83)	+0.4 dB	±0.089 dB
68	-0.4 dB	(84)	+0.4 dB	±0.089 dB
-72	-0.4 dB	(85)	+0.4 dB	±0.089 dB
-76	-0.4 dB	(86)	+0.4 dB	±0.089 dB
80	-0.4 dB	(87)	+0.4 dB	±0.088 dB
Linear Fidelity, Res BW ≥ 1 kHz				
dB from Ref Level				
-4	-2.0%	(89)	+2.0%	±0.064 %
8	-2.0%	(90)	+2.0%	±0.064 %
-12	-2.0%	(91)	+2.0%	±0.064 %
-16	-2.0%	(92)	+2.0%	±0.064 %
-20	-2.0%	(93)	+2.0%	±0.063 %
Linear Fidelity, Res BW ≤ 300 Hz (Option 1DR only)				
dB from Ref Level				
-4	-2.0%	(94)	+2.0%	±0.064 %

Hewlett-Packard Company				
Model HP E4405B		Report No		
Serial No		Date		
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
8	-2.0%	(95)	+2.0%	±0.064 %
-12	-2.0%	(96)	+2.0%	±0.064 %
-16	-2.0%	(97)	+2.0%	±0.064 %
-20	-2.0%	(98)	+2.0%	±0.063 %
Zero Span, Res BW≤ 300 Hz (Option 1DR only)				
dB from Ref Level				
-4	-0.36 dB	(99)	+0.36 dB	±0.064 dB
8	0.42 dB	(100)	+0.42 dB	±0.064 dB
-12	-0.48 dB	(101)	+0.48 dB	±0.064 dB
-16	-0.54 dB	(102)	+0.54 dB	±0.064 dB
-20	-0.60 dB	(103)	+0.60 dB	±0.063 dB
-24	-0.66 dB	(104)	+0.66 dB	±0.064 dB
-28	-0.72 dB	(105)	+0.72 dB	±0.064 dB
-32	-0.78 dB	(106)	+0.78 dB	±0.064 dB
36	-0.84 dB	(107)	+0.84 dB	±0.064 dB
-40	-0.90 dB	(108)	+0.90 dB	±0.063 dB
44	-0.96 dB	(109)	+0.96 dB	±0.064 dB
48	-1.02 dB	(110)	+1.02 dB	±0.064 dB
-52	-1.08 dB	(111)	+1.08 dB	±0.089 dB
-56	-1.14 dB	(112)	+1.14 dB	±0.089 dB
60	-1.20 dB	(113)	+1.20 dB	±0.088 dB
-64	–1.5 dB	(114)	+1.5 dB	±0.089 dB
68	–1.5 dB	(115)	+1.5 dB	±0.089 dB
-70	–1.5 dB	(116)	+1.5 dB	±0.089 dB

Hew	Hewlett-Packard Company						
Mod	lel HP E4405B		Report No				
Seri	al No		Date				
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty		
12.	Input Attenuation Switching Uncertainty						
	Input Attenuation Setting						
	0 dB	–0.3 dB	(1)	+0.3 dB	±0.108 dB		
	5 dB	–0.3 dB	(2)	+0.3 dB	±0.107 dB		
	15 dB	–0.3 dB	(3)	+0.3 dB	±0.107 dB		
	20 dB	-0.3 dB	(4)	+0.3 dB	±0.089 dB		
	25 dB	–0.35 dB	(5)	+0.35 dB	±0.089 dB		
	30 dB	-0.40 dB	(6)	+0.40 dB	±0.089 dB		
	35 dB	–0.45 dB	(7)	+0.45 dB	±0.089 dB		
	40 dB	0.50 dB	(8)	+0.50 dB	±0.089 dB		
	45 dB	–0.55 dB	(9)	+0.55 dB	±0.089 dB		
	50 dB	-0.60 dB	(10)	+0.60 dB	±0.089 dB		
	55 dB	0.65 dB	(11)	+0.65 dB	±0.089 dB		
	60 dB	0.70 dB	(12)	+0.70 dB	±0.089 dB		
	65 dB	0.75 dB	(13)	+0.75 dB	±0.089 dB		
14.	Reference Level Accuracy						
	Log, Res BW ≥ 1 kHz						
	Reference Level						
	-10	0.3 dB	(1)	+0.3 dB	±0.144 dB		
	0	-0.3 dB	(2)	+0.3 dB	±0.144 dB		
	-30	-0.3 dB	(3)	+0.3 dB	±0.144 dB		
	40	-0.3 dB	(4)	+0.3 dB	±0.144 dB		
	-50	–0.5 dB	(5)	+0.5 dB	±0.156 dB		
	60	–0.5 dB	(6)	+0.5 dB	±0.156 dB		

Hewlett-Packard Company		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Model HP E4405B		Report No		
Serial No		Date		
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
-70	-0.5 dB	(7)	+0.5 dB	±0.156 dB
-80	-0.7 dB	(8)	+0.7 dB	±0.156 dB
Linear, Res BW ≥ 1 kHz Reference Level				
-10	–0.3 dB	(9)	+0.3 dB	±0.144 dB
0	–0.3 dB	(10)	+0.3 dB	±0.144 dB
-30	–0.3 dB	(11)	+0.3 dB	±0.144 dB
-40	–0.3 dB	(12)	+0.3 dB	±0.144 dB
-50	–0.5 dB	(13)	+0.5 dB	±0.156 dB
60	–0.5 dB	(14)	+0.5 dB	±0.156 dB
-70	-0.5 dB	(15)	+0.5 dB	±0.156 dB
80	–0.7 dB	(16)	+0.7 dB	±0.156 dB
Log, Res BW ≤ 300 Hz (Option 1DR only)				
Reference Level				
-10	-0.3 dB	(17)	+0.3 dB	±0.144 dB
0	–0.3 dB	(18)	+0.3 dB	±0.144 dB
-30	-0.3 dB	(19)	+0.3 dB	±0.144 dB
-40	-0.3 dB	(20)	+0.3 dB	±0.144 dB
-50	-0.5 dB	(21)	+0.5 dB	±0.156 dB
-60	-0.5 dB	(22)	+0.5 dB	±0.156 dB
-70	-0.5 dB	(23)	+0.5 dB	±0.156 dB
-80	-0.7 dB	(24)	+0.7 dB	±0.156 dB

Hev	Hewlett-Packard Company					
Mod	lel HP E4405B		Report No			
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
	Linear, Res BW \leq 300 Hz (Option 1DR only)					
	Reference Level					
	-10	–0.3 dB	(25)	+0.3 dB	±0.144 dB	
	0	–0.3 dB	(26)	+0.3 dB	±0.144 dB	
	-30	-0.3 dB	(27)	+0.3 dB	±0.144 dB	
	-40	–0.3 dB	(28)	+0.3 dB	±0.144 dB	
	-50	–0.5 dB	(29)	+0.5 dB	±0.156 dB	
	-60	–0.5 dB	(30)	+0.5 dB	±0.156 dB	
	-70	–0.5 dB	(31)	+0.5 dB	±0.156 dB	
	-80	-0.7 dB	(32)	+0.7 dB	±0.156 dB	
15.	Resolution Bandwidth Switching Uncertainty					
	Resolution Bandwidth					
	3 kHz	–0.3 dB	(1)	+0.3 dB	±0.064 dB	
	9 kHz	–0.3 dB	(2)	+0.3 dB	±0.064 dB	
	10 kHz	–0.3 dB	(3)	+0.3 dB	±0.064 dB	
	30 kHz	-0.3 dB	(4)	+0.3 dB	±0.064 dB	
	100 kHz	–0.3 dB	(5)	+0.3 dB	±0.064 dB	
	120 kHz	–0.3 dB	(6)	+0.3 dB	±0.064 dB	
	300 kHz	–0.3 dB	(7)	+0.3 dB	±0.064 dB	
	1 MHz	-0.3 dB	(8)	+0.3 dB	±0.064 dB	
	3 MHz	–0.3 dB	(9)	+0.3 dB	$\pm 0.064 \text{ dB}$	
	5 MHz	–0.6 dB	(10)	+0.6 dB	±0.083 dB	
	300 Hz (Option 1DR only)	–0.3 dB	(11)	+0.3 dB	±0.064 dB	
	200 Hz (Option 1DR only)	–0.3 dB	(12)	+0.3 dB	±0.064 dB	

Hew	lett-Packard Company				
Mod	el HP E4405B		Report No		
Seri	al No		Date	ан Алтана —	
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	100 Hz (Option 1DR only)	-0.3 dB	(13)	+0.3 dB	±0.064 dB
	30 Hz (Option 1DR only)	-0.3 dB	(14)	+0.3 dB	±0.064 dB
	10 Hz (Option 1DR only)	-0.3 dB	(15)	+0.3 dB	±0.064 dB
17.	Absolute Amplitude Accuracy (Reference Settings)				
	Log, Preamp Off	-0.34 dB	(1)	+0.34 dB	±0.148 dB
	Lin, Preamp Off	-0.34 dB	(2)	+0.34 dB	±0.148 dB
	Log, Preamp On	-0.5 dB	(3)	+0.5 dB	±0.148 dB
	Lin, Preamp On	0.5 dB	(4)	+0.5 dB	±0.148 dB
19.	Overall Absolute Amplitude Accuracy				
	0 dBm Reference Level				
	0 dBm input	-0.54 dB	(1)	+0.54 dB	±0.08 dB
	–10 dBm input	–0.54 dB	(2)	$+0.54~\mathrm{dB}$	±0.081 dB
	–20 dBm input	0.54 dB	(3)	+0.54 dB	±0.082 dB
	–30 dBm input	-0.54 dB	(4)	$+0.54~\mathrm{dB}$	±0.083 dB
	-40 dBm input	-0.54 dB	(5)	+0.54 dB	±0.084 dB
	–50 dBm input	-0.54 dB	(6)	+0.54 dB	±0.086 dB
	-20 dBm Reference Level				
	–20 dBm input	-0.54 dB	(7)	+0.54 dB	±0.082 dB
	–30 dBm input	-0.54 dB	(8)	+0.54 dB	±0.083 dB
	-40 dBm input	-0.54 dB	(9)	+0.54 dB	±0.084 dB
	–50 dBm input	-0.54 dB	(10)	+0.54 dB	±0.086 dB
	-40 dBm Reference Level				
	-40 dBm input	-0.54 dB	(11)	+0.54 dB	±0.084 dB

Hew	Hewlett-Packard Company					
Mod	el HP E4405B		Report No			
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
	-50 dBm input	-0.54 dB	(12)	+0.54 dB	±0.086 dB	
	–50 dBm Reference Level					
	–50 dBm input	–0.54 dB	(13)	+0.54 dB	$\pm 0.086 \text{ dB}$	
20.	Resolution Bandwidth Accuracy					
	Resolution Bandwidth					
	5 MHz	3.5 MHz	(1)	6.5 MHz	±38.2 kHz	
	3 MHz	2.55 MHz	(2)	3.45 MHz	±22.9 kHz	
	1 MHz	0.85 MHz	(3)	1.15 MHz	±7.64 kHz	
	300 kHz	255 kHz	(4)	345 kHz	±2.29 kHz	
	100 kHz	85 kHz	(5)	115 kHz	±764 Hz	
	30 kHz	25.5 kHz	(6)	34.5 kHz	±229 Hz	
	10 kHz	8.5 kHz	(7)	11.5 kHz	±76.4 Hz	
	3 kHz	2.55 kHz	(8)	3.45 kHz	±22.9 Hz	
	1 kHz	850 Hz	(9)	1.15 kHz	±7.64 Hz	
	120 kHz	102 kHz	(10)	138 kHz	±154 Hz	
	9 kHz	7.65 kHz	(11)	10.35 kHz	±11.5 Hz	
23.	Frequency Response		ta in the appropriat mperature at which			
	20 to 30 °C:					
	Band 0, 9 kHz to 3 GHz					
	Maximum Response		(1)	+0.5 dB	±0.245 dB	
	Minimum Response	-0.5 dB	(2)		±0.245 dB	
	Peak-to-Peak Response		(3)	1.0 dB	±0.245 dB	
	Band 1, 3 GHz to 6.7 GHz					
	Maximum Response		(4)	+1.5 dB	±0.355 dB	

	lett-Packard Company		n		
Mod	el HP E4405B		Report No	₩.,	
Seria	al No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	Minimum Response	–1.5 dB	(5)		±0.355 dB
	Peak-to-Peak Response		(6)	2.6 dB	±0.355 dB
	Band 2, 6.7 GHz to 13.2 GHz				
	Maximum Response		r(7)	+2.0 dB	±0.429 dB
	Minimum Response	-2.0 dB	(8)		±0.429 dB
	Peak-to-Peak Response		(9)	3.6 dB	±0.429 dB
	0 to 55 °C:				
	Band 0, 9 kHz to 3 GHz				
	Maximum Response		(1)	+1.0 dB	±0.245 dB
	Minimum Response	–1.0 dB	(2)		±0.245 dB
	Peak-to-Peak Response		(3)	2.0 dB	±0.245 dB
	Band 1, 3 GHz to 6.7 GHz				
	Maximum Response		(4)	+2.5 dB	±0.355 dB
	Minimum Response	–2.5 dB	(5)		±0.355 dB
	Peak-to-Peak Response		(6)	3.0 dB	±0.355 dB
	Band 2, 6.7 GHz to 13.2 GHz				
	Maximum Response		(7)	+3.0 dB	±0.429 dB
	Minimum Response	–3.0 dB	(8)		±0.429 dB
	Peak-to-Peak Response		(9)	4.0 dB	±0.429 dB
26.	Frequency Response (Preamp On) (Option 1DS only)				
	Maximum Response		(1)	+2.0 dB	±0.343 dB
	Minimum Response	–2.0 dB	(2)		±0.343 dB
	Peak-to-Peak Response		(3)	4.0 dB	±0.343 dB

Performance Verification Test Records HP E4405B Performance Verification Test Record

Hew	vlett-Packard Company				
Mod	lel HP E4405B		Report No		
Seri	al No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
28.	Other Input Related Spurious Responses				
	Center Freq Input Freq				
	2.0 GHz 2042.8 MHz		(1)	-65 dBc	±1.14 dB
	2.0 GHz 2642.8 MHz		(2)	65 dBc	±1.14 dB
	2.0 GHz 1820.8 MHz		(3)	65 dBc	±1.14 dB
	2.0 GHz 278.5 MHz		(4)	65 dBc	±1.14 dB
	2.0 GHz 5600.0 MHz		(5)	80 dBc	±1.14 dB
	2.0 GHz 6242.8 MHz		(6)	-80 dBc	±1.14 dB
	4.0 GHz 4042.8 MHz		(7)	65 dBc	±1.14 dB
	4.0 GHz 4642.8 MHz		(8)	65 dBc	±1.14 dB
	4.0 GHz 3742.9 MHz		(9)	65 dBc	±1.14 dB
	4.0 GHz 2242.8 MHz		(10)	80 dBc	±1.14 dB
	9.0 GHz 9042.8 MHz		(11)	65 dBc	±1.14 dB
	9.0 GHz 9642.8 MHz		(12)	-65 dBc	±1.14 dB
	9.0 GHz 9342.8 MHz		(13)	-65 dBc	±1.14 dB
	9.0 GHz 4982.1 MHz		(14)	-80 dBc	±1.14 dB
31.	Spurious Responses				
	300 MHz TOI, 1 kHz RBW	+11 dBm	(1)		±0.49 dB
	300 MHz TOI, 30 Hz RBW (<i>Option 1DR only</i>)	+11 dBm	(2)		±0.49 dB
	5 GHz TOI	+11 dBm	(3)		±0.589 dB
	8 GHz TOI	+7.5 dBm	(4)		±0.589 dB
	300 MHz SHI	+35 dBm	(5)		±0.90 dB
	900 MHz SHI	+45 dBm	(6)		±0.90 dB

Hev	vlett-Packard Company				
Mod	lel HP E4405B		Report No		
Seri	al No		Date	_	
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
•	1.55 GHz SHI	+75 dBm	(7)	· ·	±0.90 dB
	3.1 GHz SHI	+90 dBm	(8)		±0.90 dB
33.	Gain Compression				
	Test Frequency 53 MHz		(1)	1.0 dB	±0.127 dB
	50.004 MHz (Option 1DR only)		(2)	1.0 dB	±0.127 dB
	1403 MHz		(3)	1.0 dB	±0.127 dB
	2503 MHz		(4)	1.0 dB	±0.144 dB
	4403 MHz		(5)	1.0 dB	±0.201 dB
	7603 MHz		(6)	1.0 dB	±0.201 dB
36.	Displayed Average Noise Level		esults with preamp ient temperature w		
	1 kHz RBW, Preamp Off:				
	10 MHz to 1 GHz		(1)	-116 dBm	±1.82 dB
	1 GHz to 2 GHz		(2)	–115 dBm	±1.82 dB
	2 GHz to 3 GHz		(3)	–112 dBm	±1.82 dB
	3 GHz to 6 GHz		(4)	-112 dBm	±1.82 dB
	6 GHz to 12 GHz		(5)	-110 dBm	±1.82 dB
	12 GHz to 13.2 GHz		(6)	-107 dBm	±1.82 dB
	1 kHz RBW, Preamp On, 0 to 55 °C:				
	10 MHz to 1 GHz		(7)	–131 dBm	±1.82 dB
	1 GHz to 2 GHz		(8)	-129 dBm	±1.82 dB
	2 GHz to 3 GHz		(9)	–127 dBm	±1.82 dB
	10 Hz RBW, Preamp Off:				

Hewlett-Packard Company					
Model HP E4405B		Report No			
Serial No	Date	-			
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
10 MHz to 1 GHz		(10)	–135 dBm	±1.82 dB	
1 GHz to 2 GHz		(11)	–134 dBm	±1.82 dB	
2 GHz to 3 GHz		(12)	–131 dBm	±1.82 dB	
3 GHz to 6 GHz		(13)	–131 dBm	±1.82 dB	
6 GHz to 12 GHz		(14)	–129 dBm	±1.82 dB	
12 GHz to 13.2 GHz		(15)	–126 dBm	±1.82 dB	
10 Hz RBW, Preamp On, 0 to 55 °C:					
10 MHz to 1 GHz		(16)	–149 dBm	±1.82 dB	
1 GHz to 2 GHz		(17)	–147 dBm	±1.82 dB	
2 GHz to 3 GHz		(18)	–145 dBm	±1.82 dB	
1 kHz RBW, Preamp On, 20 to 30 °C:					
10 MHz to 1 GHz		(19)	–132 dBm	±1.82 dB	
1 GHz to 2 GHz		(20)	–131 dBm	±1.82 dB	
2 GHz to 3 GHz		(21)	–130 dBm	±1.82 dB	
10 Hz RBW, Preamp On, 20 to 30 °C:					
10 MHz to 1 GHz		(22)	–150 dBm	±1.82 dB	
1 GHz to 2 GHz		(23)	–149 dBm	±1.82 dB	
2 GHz to 3 GHz		(24)	–148 dBm	±1.82 dB	
38. Residual Responses					
150 kHz to 6.7 GHz		(1)	-90 dBm	±0.93 dB	
39. Fast Time Domain Amplitude Accuracy <i>(Option AYX only)</i>					
Amplitude Error	-0.3 %	(1)	+0.3 %	±0.029 %	

٦

Table 3-10HP E4405B Performance Verification Test Record

5

Hewlett-Packard Company						
Mod	el HP E4405B		Report No			
Seri	al No	· · · · · · · · · · · · · · · · · · ·	Date			
Test	Test Description Minimum		Results Measured	Maximum	Measurement Uncertainty	
41.	Tracking Generator Absolute Amplitude and Vernier Accuracy					
	Absolute Amplitude Accuracy	–0.75 dB	(1)	+0.75 dB	±0.087 dB	
	Vernier Accuracy, –2 dB	-0.4 dB	(2)	+0.4 dB	±0.11 dB	
	Vernier Accuracy, –3 dB	0.5 dB	(3)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –5 dB	-0.5 dB	(4)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –6 dB	–0.5 dB	(5)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –7 dB	–0.5 dB	(6)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –8 dB	-0.5 dB	(7)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –9 dB	–0.5 dB	(8)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, -10 dB	–0.5 dB	(9)	+0.5 dB	±0.16 dB	
43.	Tracking Generator Level Flatness					
	Positive Level Flatness, <1 MHz		(1)	+3.0 dB	±0.255 dB	
	Negative Level Flatness, <1 MHz	-3.0 dB	(2)		±0.255 dB	
	Positive Level Flatness, 1 MHz to 10 MHz		(3)	+3.0 dB	±0.145 dB	
	Negative Level Flatness, 1 MHz to 10 MHz	-3.0 dB	(4)		±0.145 dB	
	Positive Level Flatness, >10 MHz to 1.5 GHz		(5)	+2.0 dB	±0.122 dB	
	Negative Level Flatness, >10 MHz to 1.5 GHz	–2.0 dB	(6)		±0.122 dB	
	Positive Level Flatness, >1.5 GHz		(7)	+2.0 dB	±0.172 dB	

Hewlett-Packard Company						
Mod	lel HP E4405B		Report No			
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
	Negative Level Flatness, >1.5 GHz	-2.0 dB	(8)		±0.172 dB	
45.	Tracking Generator Harmonic Spurious Outputs (Option 1DN only)					
	2 nd Harmonic, <20 kHz		(1)	–15 dBc	±2.6 dB	
	2 nd Harmonic, ≥ 20 kHz		(2)	–25 dBc	±2.6 dB	
	3 rd Harmonic, <20 kHz		(3)	–15 dBc	±2.6 dB	
	3 rd Harmonic, ≥ 20 kHz		(4)	–25 dBc	±2.6 dB	
47.	Tracking Generator Non-Harmonic Spurious Outputs (Option 1DN only)					
	Highest Non-Harmonic Spurious Output Amplitude, 9 kHz to 2 GHz		(1)	–27 dBc	±2.67 dB	
	Highest Non-Harmonic Spurious Output Amplitude, 2 GHz to 3 GHz		(2)	–23 dBc	±3.12 dB	
48.	Tracking Generator LO Feedthrough Amplitude (Option 1DN only)					
	9 kHz to 2.9 GHz		(1)	–16 dBm	±1.94 dB	
	2.9 GHz to 3.0 GHz		(2)	–16 dBm	±2.49 dB	
49.	Gate Delay Accuracy and Gate Length Accuracy (Option 1D6 only)					
	Minimum Gate Delay	499.9 ns	(1)	1.5001µs	±475 ps	
	Maximum Gate Delay	499.9 ns	(2)	1.5001µs	±475 ps	

Hewlett-Packard Company						
Model HP E4405B			Report No			
Serial No			Date			
Test Description Minimum		Results Measured	Maximum	Measurement Uncertainty		
	1 μs Gate Length	499.9 ns	(3)	1.5001µs	±450 ps	
	65 ms Gate Length	64.993 ms	(4)	$65.007 \mathrm{\ ms}$	±561 ns	
50.	Gate Mode Amplitude Error (Option 1D6 only)					
	Amplitude Error	-0.2 dB	(1)	+0.2 dB	±0.023 dB	

Performance Verification Test Records HP E4405B Performance Verification Test Record

HP E4407B Performance Verification Test Record

Only the tests for HP E4407B are included in this test record, therefore not all test numbers are included.

Hewlett-Packard Company			
Address:		Report No	
		Date	
Model HP E4407B			
Serial No		Ambient temperature	°C
Options		Power mains line freq (nominal)	luency Hz
Firmware Revision	-	Relative humidity	%
Customer		Tested by	
Test Equipment Used:			
Description	Model No.	Trace No.	Cal Due Date
Synthesized Signal Generator			
Synthesized Sweeper #1			
Synthesized Sweeper #2			
Function Generator			
Power Meter, Dual-Channel			
RF Power Sensor #1			
RF Power Sensor #2			
Microwave Power Sensor			
Low-Power Power Sensor			
Digital Multimeter			
Universal Counter			
Frequency Standard			
Power Splitter			

HP E4407B Performance Verification Test Record **Table 3-11**

50 Ω Termination	 	
1 dB Step Attenuator		
10 dB Step Attenuator	 	
6 dB Fixed Attenuator	 	
20 dB Fixed Attenuator (Option 1DS only)		
Oscilloscope (Option 1D6 only)	 	
Microwave Spectrum Analyzer (Option 1DN only)	 	
Notes/comments:	 	

Table 3-12

HP E4407B Performance Verification Test Record

Hewlett-Packard Company						
Mod	lel HP E4407B	Report No				
Seri	al No		Date			
Test Description Minimum		Results Measured	Maximum	Measurement Uncertainty		
1.	10 MHz Reference Output Accuracy (Non-Option 1D5 only)					
	Settability	–5.0 Hz	(1)	+5.0 Hz	±293.3 μHz	
2.	10 MHz Precision Frequency Reference Output Accuracy (Option 1D5 only)					
	5 Minute Warm-Up Error	-0.1 ppm	(1)	+0.1 ppm	$\pm 0.000072 \text{ ppm}$	
	15 Minute Warm-Up Error	-0.01 ppm	(2)	+0.01 ppm	±0.000070 ppm	
4.	Frequency Readout and Marker Frequency Accuracy					
	Frequency Readout Accuracy					
	Center Freq Span					

Model HP E4407B			Report No				
Serial No	Serial No			Date			
Test Description		Minimum	Results Measured	Maximum	Measurement Uncertainty		
1500 MH z	20 MHz	1499.784990 MHz	(1)	1500.215010 MHz	±0 Hz		
$1500 \ \mathrm{MHz}$	10 MHz	1499.884990 MHz	(2)	1500.115010 MHz	±0 Hz		
$1500 \mathrm{~MHz}$	1 MHz	1499.988490 MHz	(3)	1500.011510 MHz	±0 Hz		
$4000 \mathrm{~MHz}$	20 MHz	3999.784990 MHz	(4)	4000.215010 MHz	±0 Hz		
$4000 \ \mathrm{MHz}$	10 MHz	3999.884990 MHz	(5)	4000.115010 MHz	±0 Hz		
$4000 \mathrm{~MHz}$	1 MHz	3999.988490 MHz	(6)	4000.011510 MHz	±0 Hz		
$9000 \ \mathrm{MHz}$	20 MHz	8999.784990 MHz	(7)	9000.215010 MHz	±0 Hz		
$9000 \mathrm{~MHz}$	10 MHz	8999.884990 MHz	(8)	9000.115010 MHz	±0 Hz		
$9000 \ \mathrm{MHz}$	1 MHz	8999.988490 MHz	(9)	9000.011510 MHz	±0 Hz		
16000 MHz	20 MHz	15999.784990 MHz	(10)	16000.215010 MHz	±0 Hz		
16000 MHz	10 MHz	15999.884990 MHz	(11)	16000.115010 MHz	±0 Hz		
16000 MHz	1 MHz	15999.988490 MHz	(12)	16000.011510 MHz	±0 Hz		
21000 MHz	20 MHz	20999.784990 MHz	(13)	21000.215010 MHz	±0 Hz		
21000 MHz	$10 \mathrm{MHz}$	20999.884990 MHz	(14)	21000.115010 MHz	±0 Hz		
21000 MHz	1 MHz	20999.988490 MHz	(15)	21000.011510 MHz	±0 Hz		

Hewlett-Packard Company						
Model HP E4407B			Report No			
Serial No			Date			
Test Description		Minimum	Results Measured	Maximum	Measurement Uncertainty	
Marker Count	Accuracy		sults in the appropri ion of the analyzer.	iate section below	v based upon the	
Firmware Rev. to A.03.00	ision Prior					
Center Freq	Span					
$1500 \ \mathrm{MHz}$	10 MHz	1499.999998 MHz	(16)	1500.000002 MHz	±0 Hz	
$1500 \ \mathrm{MHz}$	1 MHz	1499.999998 MHz	(17)	1500.000002 MHz	±0 Hz	
4000 MHz	$10 \mathrm{MHz}$	3999.999998 MHz	(18)	4000.000002 MHz	±0 Hz	
4000 MHz	1 MHz	3999.999998 MHz	(19)	4000.000002 MHz	±0 Hz	
9000 MHz	10 MHz	8999.999997 MHz	(20)	9000.000003 MHz	±0 Hz	
9000 MHz	1 MHz	8999.999997 MHz	(21)	9000.000003 MHz	±0 Hz	
16000 MHz	10 MHz	15999.999995 MHz	(22)	16000.000005 MHz	±0 Hz	
16000 MHz	1 MHz	20999.999995 MHz	(23)	21000.000005 MHz	±0 Hz	
$21000 \mathrm{~MHz}$	10 MHz	20999.999995 MHz	(24)	21000.000005 MHz	±0 Hz	
21000 MHz	1 MHz	20999.999995 MHz	(25)	21000.000005 MHz	±0 Hz	
Firmware Rev A.03.00 or late						
Center Freq	Span					
$1500 \ \mathrm{MHz}$	$10 \mathrm{~MHz}$	1499.999999 MHz	(16)	1500.000001 MHz	±0 Hz	

Hewlett-Packard Company

Model HP E4407B

Report No. _____

Serial No.

Date _____

Seri	ai ino.			Date		
Test	Description		Minimum	Results Measured	Maximum	Measurement Uncertainty
	1500 MHz	1 MHz	1499.999999 MHz	(17)	1500.000001 MHz	±0 Hz
	4000 MHz	10 MHz	3999.999999 MHz	(18)	4000.000001 MHz	± 0 Hz
	4000 MHz	1 MHz	3999.999999 MHz	(19)	4000.000001 MHz	±0 Hz
	9000 MHz	10 MHz	8999.999999 MHz	(20)	9000.000001 MHz	±0 Hz
	9000 MHz	1 MHz	8999.999999 MHz	(21)	9000.000001 MHz	±0 Hz
	16000 MHz	10 MHz	15999.999999 MHz	(22)	16000.000001 MHz	±0 Hz
	16000 MHz	1 MHz	20999.999999 MHz	(23)	21000.000001 MHz	±0 Hz
	21000 MHz	10 MHz	20999.999999 MHz	(24)	21000.000001 MHz	±0 Hz
	21000 MHz	1 MHz	20999.999999 MHz	(25)	21000.000001 MHz	±0 Hz
6.	Frequency S _j Accuracy	pan				
	Span	Start Freq				
	$3000 \mathrm{~MHz}$	0 Hz	2370 MHz	(1)	2430 MHz	±6.12 MHz
	100 MHz	10 MHz	79 MHz	(2)	81 MHz	±204 kHz
	100 kHz	10 MHz	79 kHz	(3)	81 kHz	±204 Hz
	100 MHz	800 MHz	79 MHz	(4)	81 MHz	±204 kHz
	100 kHz	800 MHz	79 kHz	(5)	81 kHz	±204 Hz
	100 MHz	1400 MHz	79 MHz	(6)	81 MHz	±204 kHz
	100 kHz	1499 MHz	79 kHz	(7)	81 kHz	±204 Hz

Hewlett-Packard Company					
Mod	el HP E4407B		Report No		
Seri	al No		Date		
Test	Test Description Mir		Results Measured	Maximum	Measurement Uncertainty
7.	Noise Sidebands				
	Offset from 1 GHz signal				
	10 kHz		(1)	–90 dBc/Hz	±1.154 dB
	20 kHz		(2)	–98 dBc/Hz	±1.154 dB
	30 kHz		(3)	-100 dBc/Hz	±1.154 dB
	100 kHz		(4)	–112 dBc/Hz	±1.154 dB
8.	System-Related Sidebands				
	Offset from 500 MHz signal				
	30 kHz to 230 kHz		(1)	65 dBc	±1.154 dB
	–30 kHz to –230 kHz		(2)	–65 dBc	±1.154 dB
9.	Residual FM				
	1 kHz Res BW, (Non-Option 1D5)		(1)	150 Hz	±9.24 Hz
	1 kHz Res BW, (<i>Option 1D5</i>)		(1)	100 Hz	±9.24 Hz
	10 Hz Res BW (Options 1DR and 1D5 only)		(2)	2 Hz	±0.274 Hz
10.	Sweep Time Accuracy				
	Sweep Time				
	$5 \mathrm{ms}$	-1.0%	(1)	±1.0%	±0.28%
	$20 \mathrm{ms}$	-1.0%	(2)	±1.0%	±0.28%
	100 ms	-1.0%	(3)	±1.0%	±0.28%
	1 s	-1.0%	(4)	±1.0%	±0.28%
	10 s	-1.0%	(5)	±1.0%	±0.28%
	1 ms (Option AYX only)	-1.0%	(6)	±1.0%	±0.28%

Performance Verification Test Records HP E4407B Performance Verification Test Record

Table 3-12 HP E4407B Performance Verification Test Record

Hewlett-Packard Company

Model HP E4407B

Report No. _____

Serial No.

Date _____

Seri	al No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	500 μs (Option AYX only)	-1.0%	(7)	±1.0%	±0.28%
	100 µs (Option AYX only)	-1.0%	(8)	±1.0%	±0.28%
11.	Display Scale Fidelity				
	Cumulative Log Fidelity, Res BW $\geq 1 \text{ kHz}$				
	dB from Ref Level				
	-4	-0.34 dB	(1)	+0.34 dB	±0.064 dB
	8	-0.38 dB	(2)	+0.38 dB	±0.064 dB
	-12	–0.42 dB	(3)	+0.42 dB	±0.064 dB
	-16	–0.46 dB	(4)	+0.46 dB	±0.064 dB
	-20	–0.50 dB	(5)	+0.50 dB	±0.063 dB
	-24	0.54 dB	(6)	+0.54 dB	±0.064 dB
	-28	-0.58 dB	(7)	+0.58 dB	±0.064 dB
	-32	–0.62 dB	(8)	+0.62 dB	±0.064 dB
	-36	–0.66 dB	(9)	+0.66 dB	±0.064 dB
	-40	-0.70 dB	(10)	+0.70 dB	±0.063 dB
	-44	–0.74 dB	(11)	+0.74 dB	±0.064 dB
	-48	–0.78 dB	(12)	+0.78 dB	±0.064 dB
	-52	–0.82 dB	(13)	+0.82 dB	±0.089 dB
	-56	-0.86 dB	(14)	+0.86 dB	±0.089 dB
	-60	–0.90 dB	(15)	+0.90 dB	±0.088 dB
	-64	-0.94 dB	(16)	+0.94 dB	±0.089 dB
	-68	-0.98 dB	(17)	+0.98 dB	±0.089 dB
	-72	–1.02 dB	(18)	+1.02 dB	±0.089 dB
	-76	–1.06 dB	(19)	+1.06 dB	±0.089 dB
	-80	-1.10 dB	(20)	+1.10 dB	±0.088 dB

Hewlett-Packard Company					
Model HP E4407B		Report No			
Serial No	Date				
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
-84	-1.14 dB	(21)	+1.14 dB	±0.089 dB	
Incremental Log Fidelity, Res BW≥1 kHz					
dB from Ref Level					
-4	–0.4 dB	(22)	+0.4 dB	±0.064 dB	
-8	-0.4 dB	(23)	+0.4 dB	±0.064 dB	
-12	–0.4 dB	(24)	+0.4 dB	±0.064 dB	
-16	–0.4 dB	(25)	+0.4 dB	±0.064 dB	
-20	–0.4 dB	(26)	+0.4 dB	±0.063 dB	
-24	–0.4 dB	(27)	+0.4 dB	±0.064 dB	
-28	-0.4 dB	(28)	+0.4 dB	±0.064 dB	
-32	-0.4 dB	(29)	+0.4 dB	±0.064 dB	
36	–0.4 dB	(30)	+0.4 dB	±0.064 dB	
40	-0.4 dB	(31)	+0.4 dB	±0.063 dB	
44	-0.4 dB	(32)	+0.4 dB	±0.064 dB	
48	–0.4 dB	(33)	+0.4 dB	±0.064 dB	
-52	-0.4 dB	(34)	+0.4 dB	±0.089 dB	
56	-0.4 dB	(35)	+0.4 dB	±0.089 dB	
60	–0.4 dB	(36)	+0.4 dB	±0.088 dB	
-64	-0.4 dB	(37)	+0.4 dB	±0.089 dB	
-68	–0.4 dB	(38)	+0.4 dB	±0.089 dB	
-72	–0.4 dB	(39)	+0.4 dB	±0.089 dB	
-76	-0.4 dB	(40)	+0.4 dB	±0.089 dB	
-80	–0.4 dB	(41)	+0.4 dB	±0.088 dB	

Performance Verification Test Records HP E4407B Performance Verification Test Record

Hewlett-Packard Company				
Model HP E4407B	Report No			
Serial No	Date			
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
Cumulative Log Fidelity, Res BW ≤ 300 Hz (Option 1DR only)				
dB from Ref Level				
-4	-0.34 dB	(43)	+0.34 dB	±0.064 dB
-8	–0.38 dB	(44)	+0.38 dB	±0.064 dB
-12	-0.42 dB	(45)	+0.42 dB	±0.064 dB
-16	-0.46 dB	(46)	+0.46 dB	±0.064 dB
-20	-0.50 dB	(47)	+0.50 dB	±0.063 dB
-24	-0.54 dB	(48)	+0.54 dB	±0.064 dB
-28	-0.58 dB	(49)	+0.58 dB	±0.064 dB
-32	-0.62 dB	(50)	+0.62 dB	±0.064 dB
-36	-0.66 dB	(51)	+0.66 dB	±0.064 dB
-40	-0.70 dB	(52)	+0.70 dB	±0.063 dB
-44	-0.74 dB	(53)	+0.74 dB	±0.064 dB
-48	–0.78 dB	(54)	+0.78 dB	±0.064 dB
-52	-0.82 dB	(55)	+0.82 dB	±0.089 dB
-56	–0.86 dB	(56)	+0.86 dB	±0.089 dB
-60	-0.90 dB	(57)	+0.90 dB	±0.088 dB
-64	-0.94 dB	(58)	+0.94 dB	±0.089 dB
-68	-0.98 dB	(59)	+0.98 dB	±0.089 dB
-72	-1.02 dB	(60)	+1.02 dB	±0.089 dB
-76	–1.06 dB	(61)	+1.06 dB	±0.089 dB
-80	–1.10 dB	(62)	+1.10 dB	±0.088 dB
-84	–1.14 dB	(63)	+1.14 dB	±0.089 dB
-88	-1.18 dB	(64)	+1.18 dB	±0.089 dB

Hewlett-Packard Company				
Model HP E4407B		Report No		
Serial No	Date			
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
-92	-1.22 dB	(65)	+1.22 dB	±0.089 dB
-96	–1.26 dB	(66)	+1.26 dB	±0.088 dB
98	–1.28 dB	(67)	+1.28 dB	±0.089 dB
Incremental Log Fidelity, Res BW \leq 300 Hz (Option 1DR only)				
dB from Ref Level				
-4	-0.4 dB	(68)	+0.4 dB	±0.064 dB
-8	-0.4 dB	(69)	+0.4 dB	±0.064 dB
-12	-0.4 dB	(70)	+0.4 dB	±0.064 dB
-16	-0.4 dB	(71)	+0.4 dB	±0.064 dB
-20	-0.4 dB	(72)	+0.4 dB	±0.063 dB
-24	-0.4 dB	(73)	+0.4 dB	±0.064 dB
-28	-0.4 dB	(74)	+0.4 dB	±0.064 dB
-32	-0.4 dB	(75)	+0.4 dB	±0.064 dB
-36	-0.4 dB	(76)	+0.4 dB	±0.064 dB
40	-0.4 dB	(77)	+0.4 dB	±0.063 dB
-44	-0.4 dB	(78)	+0.4 dB	±0.064 dB
-48	–0.4 dB	(79)	+0.4 dB	±0.064 dB
-52	-0.4 dB	(80)	+0.4 dB	±0.089 dB
-56	–0.4 dB	(81)	+0.4 dB	±0.089 dB
-60	–0.4 dB	(82)	+0.4 dB	±0.088 dB
-64	-0.4 dB	(83)	+0.4 dB	±0.089 dB
68	-0.4 dB	(84)	+0.4 dB	±0.089 dB
-72	-0.4 dB	(85)	+0.4 dB	±0.089 dB
-76	-0.4 dB	(86)	+0.4 dB	±0.089 dB

Hewlett-Packard Company				
Model HP E4407B		Report No		
Serial No		Date		
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
-80	-0.4 dB	(87)	+0.4 dB	±0.088 dB
Linear Fidelity, Res BW≥ 1 kHz				
dB from Ref Level				
-4	-2.0%	(89)	+2.0%	±0.064 %
-8	-2.0%	(90)	+2.0%	±0.064 %
-12	-2.0%	(91)	+2.0%	±0.064 %
-16	-2.0%	(92)	+2.0%	±0.064 %
-20	-2.0%	(93)	+2.0%	±0.063 %
Linear Fidelity, Res BW ≤ 300 Hz (Option 1DR only)				
dB from Ref Level				
-4	-2.0%	(94)	+2.0%	±0.064 %
8	-2.0%	(95)	+2.0%	±0.064 %
-12	-2.0%	(96)	+2.0%	±0.064 %
-16	-2.0%	(97)	+2.0%	±0.064 %
-20	-2.0%	(98)	+2.0%	±0.063 %
Zero Span, Res BW≤ 300 Hz (Option 1DR only)				
dB from Ref Level				
-4	-0.36 dB	(99)	+0.36 dB	±0.064 dB
-8	-0.42 dB	(100)	+0.42 dB	±0.064 dB
-12	–0.48 dB	(101)	+0.48 dB	±0.064 dB
-16	-0.54 dB	(102)	+0.54 dB	±0.064 dB
-20	-0.60 dB	(103)	+0.60 dB	±0.063 dB
-24	-0.66 dB	(104)	+0.66 dB	±0.064 dB

Hewlett-Packard Company				
Model HP E4407B		Report No		
Serial No		Date		
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
-28	-0.72 dB	(105)	+0.72 dB	±0.064 dB
-32	–0.78 dB	(106)	+0.78 dB	±0.064 dB
-36	–0.84 dB	(107)	+0.84 dB	±0.064 dB
-40	–0.90 dB	(108)	+0.90 dB	±0.063 dB
-44	-0.96 dB	(109)	+0.96 dB	±0.064 dB
-48	–1.02 dB	(110)	+1.02 dB	±0.064 dB
-52	–1.08 dB	(111)	+1.08 dB	±0.089 dB
-56	–1.14 dB	(112)	+1.14 dB	±0.089 dB
-60	–1.20 dB	(113)	+1.20 dB	±0.088 dB
-64	–1.5 dB	(114)	+1.5 dB	±0.089 dB
68	–1.5 dB	(115)	+1.5 dB	±0.089 dB
-70	–1.5 dB	(116)	+1.5 dB	±0.089 dB
12. Input Attenuation Switching Uncertainty				
Input Attenuation Setting				
0 dB	–0.3 dB	(1)	+0.3 dB	±0.108 dB
5 dB	–0.3 dB	(2)	+0.3 dB	±0.107 dB
15 dB	–0.3 dB	(3)	+0.3 dB	±0.107 dB
20 dB	–0.3 dB	(4)	+0.3 dB	±0.089 dB
25 dB	–0.35 dB	(5)	+0.35 dB	±0.089 dB
30 dB	-0.40 dB	(6)	+0.40 dB	±0.089 dB
35 dB	-0.45 dB	(7)	+0.45 dB	±0.089 dB
40 dB	–0.50 dB	(8)	+0.50 dB	±0.089 dB
45 dB	–0.55 dB	(9)	+0.55 dB	±0.089 dB
50 dB	–0.60 dB	(10)	+0.60 dB	±0.089 dB
55 dB	-0.65 dB	(11)	+0.65 dB	±0.089 dB

Hewlett-Packard Company				
Model HP E4407B		Report No		
Serial No		Date	- <u>.</u>	
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
60 dB	-0.70 dB	(12)	+0.70 dB	±0.089 dB
65 dB	–0.75 dB	(13)	+0.75 dB	±0.089 dB
14. Reference Level Accuracy				
Log, Res BW ≥ 1 kHz Reference Level				
-10	-0.3 dB	(1)	+0.3 dB	±0.144 dB
0	0.3 dB	(2)	+0.3 dB	±0.144 dB
-30	-0.3 dB	(3)	+0.3 dB	±0.144 dB
40	–0.3 dB	(4)	+0.3 dB	±0.144 dB
-50	-0.5 dB	(5)	+0.5 dB	±0.156 dB
60	–0.5 dB	(6)	+0.5 dB	±0.156 dB
-70	–0.5 dB	(7)	+0.5 dB	±0.156 dB
	-0.7 dB	(8)	+0.7 dB	$\pm 0.156~\mathrm{dB}$
Linear, Res BW≥1 kHz Reference Level				
-10	–0.3 dB	(9)	+0.3 dB	±0.144 dB
0	-0.3 dB	(10)	+0.3 dB	±0.144 dB
-30	–0.3 dB	(11)	+0.3 dB	±0.144 dB
-40	–0.3 dB	(12)	+0.3 dB	±0.144 dB
-50	–0.5 dB	(13)	+0.5 dB	±0.156 dB
60	–0.5 dB	(14)	+0.5 dB	±0.156 dB
-70	–0.5 dB	(15)	+0.5 dB	±0.156 dB
-80	–0.7 dB	(16)	+0.7 dB	±0.156 dB

Hewlett-Packard Company					
Model HP	E4407B		Report No		
Serial No			Date		
Test Descr	iption	Minimum	Results Measured	Maximum	Measurement Uncertainty
	Res BW ≤ 300 Hz on 1DR only)				
Re	ference Level				
-10		0.3 dB	(17)	+0.3 dB	±0.144 dB
0		–0.3 dB	(18)	+0.3 dB	±0.144 dB
-30		–0.3 dB	(19)	+0.3 dB	±0.144 dB
-40		0.3 dB	(20)	+0.3 dB	±0.144 dB
-50		–0.5 dB	(21)	+0.5 dB	±0.156 dB
-60		–0.5 dB	(22)	+0.5 dB	±0.156 dB
-70		0.5 d B	(23)	+0.5 dB	±0.156 dB
-80		–0.7 dB	(24)	+0.7 dB	±0.156 dB
	r, Res BW ≤ 300 Hz on 1DR only)				
Re	ference Level				
-10		–0.3 dB	(25)	+0.3 dB	±0.144 dB
0		–0.3 dB	(26)	+0.3 dB	±0.144 dB
-30		–0.3 dB	(27)	+0.3 dB	±0.144 dB
-40		–0.3 dB	(28)	+0.3 dB	±0.144 dB
-50		–0.5 dB	(29)	+0.5 dB	±0.156 dB
-60		–0.5 dB	(30)	+0.5 dB	±0.156 dB
-70		–0.5 dB	(31)	+0.5 dB	±0.156 dB
-80		–0.7 dB	(32)	+0.7 dB	±0.156 dB
	lution Bandwidth ching Uncertainty				
Resol	ution Bandwidth				
3 kH	Z	0.3 dB	(1)	+0.3 dB	±0.064 dB
9 kH	Z	–0.3 dB	(2)	+0.3 dB	±0.064 dB

Hew	lett-Packard Company				
Mod	el HP E4407B		Report No		
Serial No			Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	10 kHz	–0.3 dB	(3)	+0.3 dB	±0.064 dB
	30 kHz	–0.3 dB	(4)	+0.3 dB	±0.064 dB
	100 kHz	-0.3 dB	(5)	+0.3 dB	±0.064 dB
	120 kHz	–0.3 dB	(6)	+0.3 dB	±0.064 dB
	300 kHz	–0.3 dB	(7)	+0.3 dB	$\pm 0.064 \text{ dB}$
	1 MHz	–0.3 dB	(8)	+0.3 dB	±0.064 dB
	3 MHz	–0.3 dB	(9)	+0.3 dB	±0.064 dB
	5 MHz	-0.6 dB	(10)	+0.6 dB	±0.083 dB
	300 Hz (Option 1DR only)	-0.3 dB	(11)	+0.3 dB	±0.064 dB
	200 Hz (Option 1DR only)	–0.3 dB	(12)	+0.3 dB	±0.064 dB
	100 Hz (Option 1DR only)	–0.3 dB	(13)	+0.3 dB	±0.064 dB
	30 Hz (Option 1DR only)	–0.3 dB	(14)	+0.3 dB	±0.064 dB
	10 Hz (Option 1DR only)	–0.3 dB	(15)	+0.3 dB	±0.064 dB
17.	Absolute Amplitude Accuracy (Reference Settings)				
	Log, Preamp Off	–0.34 dB	(1)	+0.34 dB	±0.148 dB
	Lin, Preamp Off	–0.34 dB	(2)	+0.34 dB	±0.148 dB
	Log, Preamp On	–0.5 dB	(3)	+0.5 dB	±0.148 dB
	Lin, Preamp On	-0.5 dB	(4)	+0.5 dB	±0.148 dB
19.	Overall Absolute Amplitude Accuracy				
	0 dBm Reference Level				
	0 dBm input	–0.54 dB	(1)	+0.54 dB	±0.08 dB
	–10 dBm input	–0.54 dB	(2)	+0.54 dB	±0.081 dB
	–20 dBm input	–0.54 dB	(3)	+0.54 dB	±0.082 dB

Mod	el HP E4407B		Report No		
Serial No			Date	-	
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	–30 dBm input	-0.54 dB	(4)	+0.54 dB	±0.083 dB
	–40 dBm input	–0.54 dB	(5)	+0.54 dB	±0.084 dB
	–50 dBm input	–0.54 dB	(6)	+0.54 dB	±0.086 dB
	–20 dBm Reference Level				
	–20 dBm input	–0.54 dB	(7)	+0.54 dB	±0.082 dB
	–30 dBm input	–0.54 dB	(8)	+0.54 dB	±0.083 dB
	-40 dBm input	-0.54 dB	(9)	+0.54 dB	±0.084 dB
	–50 dBm input	–0.54 dB	(10)	+0.54 dB	±0.086 dB
	-40 dBm Reference Level				
	–40 dBm input	–0.54 dB	(11)	+0.54 dB	±0.084 dB
	–50 dBm input	–0.54 dB	(12)	+0.54 dB	±0.086 dB
	–50 dBm Reference Level				
	–50 dBm input	–0.54 dB	(13)	+0.54 dB	±0.086 dB
20.	Resolution Bandwidth Accuracy				
	Resolution Bandwidth				
	5 MHz	3.5 MHz	(1)	6.5 MHz	±38.2 kHz
	3 MHz	2.55 MHz	(2)	3.45 MHz	±22.9 kHz
	1 MHz	0.85 MHz	(3)	1.15 MHz	±7.64 kHz
	300 kHz	255 kHz	(4)	345 kHz	±2.29 kHz
	100 kHz	85 kHz	(5)	115 kHz	±764 Hz
	30 kHz	25.5 kHz	(6)	34.5 kHz	±229 Hz
	10 kHz	8.5 kHz	(7)	11.5 kHz	±76.4 Hz
	3 kHz	2.55 kHz	(8)	3.45 kHz	±22.9 Hz
	1 kHz	850 Hz	(9)	1.15 kHz	±7.64 Hz
	120 kHz	102 kHz	(10)	138 kHz	±154 Hz

Hew	vlett-Packard Company				
Mod	lel HP E4407B		Report No		
Seri	al No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	9 kHz	7.65 kHz	(11)	10.35kHz	±11.5 Hz
23.	Frequency Response		ta in the appropriat erature at which the		
	20 to 30 °C:				
	Band 0, 9 kHz to 3 GHz				
	Maximum Response		(1)	+0.5 dB	±0.245 dB
	Minimum Response	-0.5 dB	(2)		±0.245 dB
	Peak-to-Peak Response		(3)	1.0 dB	±0.245 dB
	Band 1, 3 GHz to 6.7 GHz				
	Maximum Response		(4)	+1.5 dB	±0.355 dB
	Minimum Response	–1.5 dB	(5)		±0.355 dB
	Peak-to-Peak Response		(6)	2.6 dB	±0.355 dB
	Band 2, 6.7 GHz to 13.2 GHz				
	Maximum Response		(7)	+2.0 dB	±0.429 dB
	Minimum Response	–2.0 dB	(8)		±0.429 dB
	Peak-to-Peak Response		(9)	3.6 dB	±0.429 dB
	Band 3, 13.2 GHz to 25 GHz				
	Maximum Response		(10)	+2.0 dB	±0.425 dB
	Minimum Response	-2.0 dB	(11)		±0.425 dB
	Peak-to-Peak Response		(12)	3.6 dB	±0.425 dB
	Band 4, 25 GHz to 26.5 GHz				
	Maximum Response		(13)	+2.0 dB	±0.428 dB
	Minimum Response	-2.0 dB	(14)		±0.428 dB
	Peak-to-Peak Response		(15)	3.6 dB	±0.428 dB

Hewlett-Packard Company				
Model HP E4407B		Report No		
Serial No	Date			
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
0 to 55 °C:				
Band 0, 9 kHz to 3 GHz				
Maximum Response		(1)	+1.0 dB	±0.245 dB
Minimum Response	-1.0 dB	(2)		±0.245 dB
Peak-to-Peak Response		(3)	2.0 dB	±0.245 dB
Band 1, 3 GHz to 6.7 GHz				
Maximum Response		(4)	+2.5 dB	±0.355 dB
Minimum Response	–2.5 dB	(5)		±0.355 dB
Peak-to-Peak Response		(6)	3.0 dB	±0.355 dB
Band 2, 6.7 GHz to 13.2 GHz				
Maximum Response		(7)	+3.0 dB	±0.429 dB
Minimum Response	–3.0 dB	(8)		±0.429 dB
Peak-to-Peak Response		(9)	4.0 dB	±0.429 dB
Band 3, 13.2 GHz to 25 GHz				
Maximum Response		(10)	+3.0 dB	±0.425 dB
Minimum Response	–3.0 dB	(11)		±0.425 dB
Peak-to-Peak Response		(12)	4.0 dB	±0.425 dB
Band 4, 25 GHz to 26.5 GHz				
Maximum Response		(13)	+3.0 dB	±0.428 dB
Minimum Response	–3.0 dB	(14)		±0.428 dB
Peak-to-Peak Response		(15)	4.0 dB	±0.428 dB

Hew	Hewlett-Packard Company						
Mod	Model HP E4407B Report No						
Seri	al No	Date					
Test Description Minimum		Results Measured	Maximum	Measurement Uncertainty			
26.	Frequency Response (Preamp On) (<i>Option 1DS only</i>)						
	Maximum Response		(1)	+2.0 dB	±0.343 dB		
	Minimum Response	–2.0 dB	(2)		±0.343 dB		
	Peak-to-Peak Response		(3)	4.0 dB	±0.343 dB		
28.	Other Input-Related Spurious Responses						
	Center Freq Input Freq						
	2.0 GHz 2042.8 MHz		(1)	-65 dBc	±1.14 dB		
	2.0 GHz 2642.8 MHz		(2)	-65 dBc	±1.14 dB		
	2.0 GHz 1820.8 MHz		(3)	-65 dBc	±1.14 dB		
	2.0 GHz 278.5 MHz		(4)	-65 dBc	±1.14 dB		
	2.0 GHz 5600.0 MHz		(5)	-80 dBc	±1.14 dB		
	2.0 GHz 6242.8 MHz		(6)	-80 dBc	±1.14 dB		
	4.0 GHz 4042.8 MHz		(7)	-65 dBc	±1.14 dB		
	4.0 GHz 4642.8 MHz		(8)	65 dBc	±1.14 dB		
	4.0 GHz 3742.9 MHz		(9)	65 dBc	±1.14 dB		
	4.0 GHz 2242.8 MHz		(10)	-80 dBc	±1.14 dB		
	9.0 GHz 9042.8 MHz		(11)	65 dBc	±1.14 dB		
	9.0 GHz 9642.8 MHz		(12)	65 dBc	±1.14 dB		
	9.0 GHz 9342.8 MHz		(13)	65 dBc	±1.14 dB		
	9.0 GHz 4982.1 MHz		(14)	80 dBc	±1.14 dB		
	15.0 GHz 15042.8 MHz		(15)	65 dBc	±1.14 dB		
	15.0 GHz 15642.8 MHz		(16)	-65 dBc	±1.14 dB		
	15.0 GHz 18830.35 MHz		(17)	65 dBc	±1.14 dB		

Hew	vlett-Packard Company				an a
Mod	lel HP E4407B		Report No		
Serial No Date					
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	15.0 GHz 4151.75 MHz		(18)	80 dBc	±1.14 dB
	21.0 GHz 21042.8 MHz		(19)	-65 dBc	±1.14 dB
	21.0 GHz 21642.8 MHz		(20)	–65 dBc	±1.14 dB
	21.0 GHz 21342.8 MHz		(21)	65 dBc	±1.14 dB
	21.0 GHz 5008.95 MHz		(22)	-80 dBc	±1.14 dB
31.	Spurious Responses				
	300 MHz TOI, 1 kHz RBW	+11 dBm	(1)		±0.49 dB
	300 MHz TOI, 30 Hz RBW (<i>Option 1DR only</i>)	+11 dBm	(2)		±0.49 dB
	5 GHz TOI	+11 dBm	(3)		±0.589 dB
	8 GHz TOI	+7.5 dBm	(4)		±0.589 dB
	300 MHz SHI	+35 dBm	(5)		±0.90 dB
	900 MHz SHI	+45 dBm	(6)		±0.90 dB
	1.55 GHz SHI	+75 dBm	(7)		±0.90 dB
	3.1 GHz SHI	+90 dBm	(8)		±0.90 dB
33.	Gain Compression				
	Test Frequency				
	53 MHz		(1)	1.0 dB	±0.127 dB
	50.004 MHz (Option 1DR only)		(2)	1.0 dB	±0.127 dB
	1403 MHz		(3)	1.0 dB	±0.127 dB
	2503 MHz		(4)	1.0 dB	±0.144 dB
	4403 MHz		(5)	1.0 dB	±0.201 dB
	7603 MHz		(6)	1.0 dB	±0.201 dB
	14003 MHz		(7)	1.0 dB	±0.201 dB

Hew	Hewlett-Packard Company					
Mod	lel HP E4407B		Report No			
Seri	al No	Date				
Test	Test Description Minimum Measured Maximum Uncertaint				Measurement Uncertainty	
37.	Displayed Average Noise Level	Note: Enter res upon the ambi	sults with preamp or ent temperature wh	n in the appropri en the test was p	ate section based erformed.	
	1 kHz RBW, Preamp Off:			···		
	10 MHz to 1 GHz		(1)	–116 dBm	±1.82 dB	
	1 GHz to 2 GHz		(2)	–115 dBm	±1.82 dB	
	2 GHz to 3 GHz		(3)	–112 dBm	±1.82 dB	
	3 GHz to 6 GHz		(4)	–112 dBm	±1.82 dB	
	6 GHz to 12 GHz		(5)	–110 dBm	±1.82 dB	
	12 GHz to 22 GHz		(6)	–107 dBm	±1.82 dB	
	22 GHz to 26.5 GHz		(7)	–101 dBm	±1.82 dB	
	1kHz RBW, Preamp On, 0 to 55 °C:					
	10 MHz to 1 GHz		(8)	–131 dBm	±1.82 dB	
	1 GHz to 2 GHz		(9)	–129 dBm	±1.82 dB	
	2 GHz to 3 GHz		(10)	–127 dBm	±1.82 dB	
	10 Hz RBW, Preamp Off:					
	10 MHz to 1 GHz		(11)	–135 dBm	±1.82 dB	
	1 GHz to 2 GHz		(12)	–134 dBm	±1.82 dB	
	2 GHz to 3 GHz		(13)	–131 dBm	±1.82 dB	
	3 GHz to 6 GHz		(14)	–131 dBm	±1.82 dB	
	6 GHz to 12 GHz		(15)	–129 dBm	±1.82 dB	
	12 GHz to 22 GHz		(16)	–126 dBm	±1.82 dB	
	22 GHz to 26.5 GHz		(17)	–120 dBm	±1.82 dB	
	10 Hz RBW, Preamp On, 0 to 55 °C:					
	10 MHz to 1 GHz		(18)	–149 dBm	±1.82 dB	

Hew	lett-Packard Company					
Mod	Model HP E4407B Report No					
Seri	Serial No Date					
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
	1 GHz to 2 GHz		(19)	-147 dBm	±1.82 dB	
	2 GHz to 3 GHz		(20)	–145 dBm	±1.82 dB	
	1kHz RBW, Preamp On, 20 to 30 °C:					
	10 MHz to 1 GHz		(21)	–132 dBm	±1.82 dB	
	1 GHz to 2 GHz		(22)	–131 dBm	±1.82 dB	
	2 GHz to 3 GHz		(23)	–130 dBm	±1.82 dB	
	10 Hz RBW, Preamp On, 20 to 30 °C:					
	10 MHz to 1 GHz		(24)	–150 dBm	±1.82 dB	
	1 GHz to 2 GHz		(25)	–149 dBm	±1.82 dB	
	2 GHz to 3 GHz		(26)	–148 dBm	±1.82 dB	
38.	Residual Responses					
	150 kHz to 6.7 GHz		(1)	–90 dBm	±0.93 dB	
39.	Fast Time Domain Amplitude Accuracy (Option AYX only)					
	Amplitude Error	-0.3 %	(1)	+0.3 %	±0.029 %	
41.	Tracking Generator Absolute Amplitude and Vernier Accuracy					
	Absolute Amplitude Accuracy	–0.75 dB	(1)	+0.75 dB	±0.087 dB	
	Vernier Accuracy, –2 dB	-0.4 dB	(2)	+0.4 dB	±0.11 dB	
	Vernier Accuracy, –3 dB	–0.5 dB	(3)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –5 dB	0.5 dB	(4)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –6 dB	–0.5 dB	(5)	+0.5 dB	±0.16 dB	
	Vernier Accuracy, –7 dB	–0.5 dB	(6)	+0.5 dB	±0.16 dB	

Hew	lett-Packard Company				
Mod	el HP E4407B		Report No		
Seri	al No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
- V	Vernier Accuracy, –8 dB	0.5 dB	(7)	+0.5 dB	±0.16 dB
	Vernier Accuracy, –9 dB	0.5 dB	(8)	+0.5 dB	±0.16 dB
	Vernier Accuracy, –10 dB	–0.5 dB	(9)	+0.5 dB	±0.16 dB
43.	Tracking Generator Output Level Flatness				
	Positive Level Flatness, <1 MHz		(1)	+3.0 dB	±0.255 dB
	Negative Level Flatness, <1 MHz	–3.0 dB	(2)		±0.255 dB
	Positive Level Flatness, 1 MHz to 10 MHz		(3)	+3.0 dB	±0.145 dB
	Negative Level Flatness, 1 MHz to 10 MHz	–3.0 dB	(4)		±0.145 dB
	Positive Level Flatness, >10 MHz to 1.5 GHz		(5)	+2.0 dB	±0.122 dB
	Negative Level Flatness, >10 MHz to 1.5 GHz	-2.0 dB	(6)		±0.122 dB
	Positive Level Flatness, >1.5 GHz		(7)	+2.0 dB	±0.172 dB
	Negative Level Flatness, >1.5 GHz	-2.0 dB	(8)		±0.172 dB
45.	Tracking Generator Harmonic Spurious Outputs (Option 1DN only)				
	2 nd Harmonic, <20 kHz		(1)	$-15 \mathrm{dBc}$	±2.6 dB
	2 nd Harmonic, ≥ 20 kHz		(2)	–25 dBc	±2.6 dB
	3 rd Harmonic, <20 kHz		(3)	–15 dBc	±2.6 dB
	3 rd Harmonic, ≥ 20 kHz		(4)	-25 dBc	±2.6 dB

Hewlett-Packard Company						
Model HP E4407B		Report No				
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
47.	Tracking Generator Non-Harmonic Spurious Outputs (Option 1DN only)					
	Highest Non-Harmonic Spurious Output Amplitude, 9 kHz to 2 GHz		(1)	–27 dBc	±2.67 dB	
	Highest Non-Harmonic Spurious Output Amplitude, 2 GHz to 3 GHz		(2)	-23 dBc	±3.12 dB	
48.	Tracking Generator LO Feedthrough Amplitude (Option 1DN only)					
	9 kHz to 2.9 GHz		(1)	–16 dBm	±1.94 dB	
	2.9 GHz to 3.0 GHz		(2)	–16 dBm	±2.49 dB	
49.	Gate Delay and Gate Length Accuracy (Option 1D6 only)					
	Minimum Gate Delay	499.9 ns	(1)	1.5001µs	±475 ps	
	Maximum Gate Delay	499.9 ns	(2)	1.5001µs	±475 ps	
	1 µs Gate Length	499.9 ns	(3)	1.5001µs	±450 ps	
	65 ms Gate Length	64.993ms	(4)	65.007ms	±561 ns	
50.	Gate Mode Amplitude Error (Option 1D6 only)					
	Amplitude Error	–0.2 dB	(1)	+0.2 dB	±0.023 dB	
51.	First LO Output Amplitude Accuracy (Option AYZ only) 20 to 30 °C	Note: Enter data in the appropriate section based upon the ambient temperature at which the test was performed.				
	First LO Frequency					
	2.9 GHz	+15.5 dBm	(1)	+17.0 dBm	±0.357 dB	

Hewlett-Packard Company

Model HP E4407B

Report No. _____

Serial No. ____

Date _____

Serial No Date				
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
3.1 GHz	+15.5 dBm	(2)	+17.0 dBm	±0.357 dB
3.3 GHz	+15.5 dBm	(3)	+17.0 dBm	±0.357 dB
$3.5~\mathrm{GHz}$	+15.5 dBm	(4)	+17.0 dBm	$\pm 0.357 \text{ dB}$
3.7 GHz	+15.5 dBm	(5)	+17.0 dBm	±0.357 dB
3.9 GHz	+15.5 dBm	(6)	+17.0 dBm	±0.357 dB
4.1 GHz	+15.5 dBm	(7)	+17.0 dBm	±0.357 dB
4.3 GHz	+15.5 dBm	(8)	+17.0 dBm	±0.357 dB
$4.5~\mathrm{GHz}$	+15.5 dBm	(9)	+17.0 dBm	±0.357 dB
4.7 GHz	+15.5 dBm	(10)	+17.0 dBm	±0.357 dB
4.9 GHz	+15.5 dBm	(11)	+17.0 dBm	±0.357 dB
$5.1\mathrm{GHz}$	+15.5 dBm	(12)	+17.0 dBm	±0.357 dB
5.3 GHz	+15.5 dBm	(13)	+17.0 dBm	±0.357 dB
$5.5~\mathrm{GHz}$	+15.5 dBm	(14)	+17.0 dBm	±0.357 dB
$5.7~\mathrm{GHz}$	+15.5 dBm	(15)	+17.0 dBm	±0.357 dB
5.9 GHz	+15.5 dBm	(16)	+17.0 dBm	±0.357 dB
6.1 GHz	+15.5 dBm	(17)	+17.0 dBm	±0.357 dB
6.3 GHz	+13.0 dBm	(18)	+17.5 dBm	±0.357 dB
$6.5 \mathrm{GHz}$	+13.0 dBm	(19)	+17.5 dBm	±0.357 dB
6.7 GHz	+13.0 dBm	(20)	+17.5 dBm	±0.357 dB
6.9 GHz	+13.0 dBm	(21)	+17.5 dBm	±0.357 dB
7.1 GHz	+13.0 dBm	(22)	+17.5 dBm	±0.357 dB
0 to 55 ° C First LO Frequency				
2.9 GHz	+15.0 dBm	(1)	+17.5 dBm	±0.357 dB
3.1 GHz	+15.0 dBm	(2)	+17.5 dBm	±0.357 dB
3.3 GHz	+15.0 dBm	(3)	+17.5 dBm	±0.357 dB

Mod	lel HP E4407B		Report No		
	al No		Date		
	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	3.5 GHz	+15.0 dBm	(4)	+17.5 dBm	±0.357 dB
	3.7 GHz	+15.0 dBm	(5)	+17.5 dBm	±0.357 dB
	3.9 GHz	+15.0 dBm	(6)	+17.5 dBm	±0.357 dB
	4.1 GHz	+15.0 dBm	(7)	+17.5 dBm	±0.357 dB
	4.3 GHz	+15.0 dBm	(8)	+17.5 dBm	±0.357 dB
	$4.5~\mathrm{GHz}$	+15.0 dBm	(9)	+17.5 dBm	±0.357 dB
	4.7 GHz	+15.0 dBm	(10)	+17.5 dBm	±0.357 dB
	4.9 GHz	+15.0 dBm	(11)	+17.5 dBm	±0.357 dB
	5.1 GHz	+15.0 dBm	(12)	+17.5 dBm	±0.357 dB
	5.3 GHz	+15.0 dBm	(13)	+17.5 dBm	±0.357 dB
	$5.5\mathrm{GHz}$	+15.0 dBm	(14)	+17.5 dBm	±0.357 dB
	5.7 GHz	+15.0 dBm	(15)	+17.5 dBm	±0.357 dB
	5.9 GHz	+15.0 dBm	(16)	+17.5 dBm	±0.357 dB
	6.1 GHz	+15.0 dBm	(17)	+17.5 dBm	±0.357 dB
	6.3 GHz	+13.0 dBm	(18)	+17.5 dBm	±0.357 dB
	$6.5\mathrm{GHz}$	+13.0 dBm	(19)	+17.5 dBm	±0.357 dB
	6.7 GHz	+13.0 dBm	(20)	+17.5 dBm	±0.357 dB
	6.9 GHz	+13.0 dBm	(21)	+17.5 dBm	±0.357 dB
	7.1 GHz	+13.0 dBm	(22)	+17.5 dBm	±0.357 dB
52.	IF Input Accuracy, (Option AYZ only)		ta in the appropriat erature at which the		
	20 to 30 °C:				
	IF Input Accuracy	-1.0 dB	(1)	+1.0 dBm	±0.23 dB
	0 to 50 °C:				
	IF Input Accuracy	–1.5 dB	(1)	+1.5 dBm	±0.23 dB

Report

The tables in "Test Procedure" are essentially the Report.

Performance Verification Test Records

HP E4408B Performance Verification Test Record

Only the tests for HP E4408B are included in this test record, therefore not all test numbers a re included.

Hewlett-Packard Company				
Address:		Report No		
		Date		
· · · · · · · · · · · · · · · · · · ·				
Model HP E4408B				
Serial No		Ambient temperature	°C	
Options		Power mains line frequ (nominal)	lency Hz	
Firmware Revision		Relative humidity	%	
Customer		Tested by		
Test Equipment Used:				
Description	Model No.	Trace No.	Cal Due Date	
Synthesized Signal Generator				
Synthesized Sweeper #1				
Synthesized Sweeper #2				
Function Generator				
Power Meter, Dual-Channel				
RF Power Sensor #1				
RF Power Sensor #2				
Microwave Power Sensor				
Low-Power Power Sensor	and the second s			
Digital Multimeter	·			
Universal Counter				
Frequency Standard				
Power Splitter	-			
50 Ω Termination				

Performance Verification Test Records HP E4408B Performance Verification Test Record

Table 3-13HP E4408B Performance Verification Test Record

1 dB Step Attenuator	 	
10 dB Step Attenuator	 	
6 dB Fixed Attenuator	 	
Microwave Spectrum Analyzer (Option 1DN only)	 	
Notes/comments:		

Hev	Hewlett-Packard Company					
Model HP E4408B			Report No			
Serial No			Date			
Tes	t Description		Minimum	Results Measured	Maximum	Measurement Uncertainty
1. 10 MHz Reference Output Accuracy						
	Settability		-5.0 Hz	(1)	+5.0 Hz	$\pm 293.3 \mu Hz$
4.	Frequency R Accuracy an Count Accur	d Marker				
	Frequency Rea Accuracy	adout				
	Center Freq	Span				
	1500 MHz	20 MHz	1499.784990 MHz	(1)	1500.215010 MHz	±0 Hz
	1500 MHz	10 MHz	1499.884990 MHz	(2)	1500.115010 MHz	±0 Hz
	1500 MHz	1 MHz	1499.988490 MHz	(3)	1500.011510 MHz	±0 Hz
	4000 MHz	20 MHz	3999.784990 MHz	(4)	4000.215010 MHz	±0 Hz
	4000 MHz	10 MHz	3999.884990 MHz	(5)	4000.115010 MHz	±0 Hz
	4000 MHz	1 MHz	3999.988490 MHz	(6)	4000.011510 MHz	±0 Hz

Hewlett-Packard Company						
Model HP E4408B		Report No	Report No			
Serial No.		Date				
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty		
9000 MHz 20 MHz	8999.784990 MHz	(7)	9000.215010 MHz	±0 Hz		
9000 MHz 10 MHz	8999.884990 MHz	(8)	9000.115010 MHz	±0 Hz		
9000 MHz 1 MHz	8999.988490 MHz	(9)	9000.011510 MHz	±0 Hz		
16000 MHz 20 MHz	15999.784990 MHz	(10)	16000.215010 MHz	±0 Hz		
16000 MHz 10 MHz	15999.884990 MHz	(11)	16000.115010 MHz	±0 Hz		
16000 MHz 1 MHz	15999.988490 MHz	(12)	16000.011510 MHz	±0 Hz		
21000 MHz 20 MHz	20999.784990 MHz	(13)	21000.215010 MHz	±0 Hz		
21000 MHz 10 MHz	20999.884990 MHz	(14)	21000.115010 MHz	±0 Hz		
21000 MHz 1 MHz	20999.988490 MHz	(15)	21000.011510 MHz	±0 Hz		
Marker Count Accuracy		esults in the appropriate section below based upon the ision of the analyzer.				
Firmware Revision Prior to A.03.00						
Center Freq Span						
1500 MHz 10 MHz	1499.999998 MHz	(16)	1500.000002 MHz	±0 Hz		
1500 MHz 1 MHz	1499.999998 MHz	(17)	1500.000002 MHz	±0 Hz		
4000 MHz 10 MHz	3999.999998 MHz	(18)	4000.000002 MHz	±0 Hz		
4000 MHz 1 MHz	3999.999998 MHz	(19)	4000.000002 MHz	±0 Hz		

Hewlett-Packard C Model HP E4408B			Report No.		
			Report No		
Serial No		T	Date	-	T
Test Description		Minimum	Results Measured	Maximum	Measurement Uncertainty
9000 MHz	10 MHz	8999.999997 MHz	(20)	9000.000003 MHz	±0 Hz
9000 MHz	1 MHz	8999.999997 MHz	(21)	9000.000003 MHz	±0 Hz
16000 MHz	10 MHz	15999.999995 MHz	(22)	16000.000005 MHz	±0 Hz
16000 MHz	1 MHz	20999.999995 MHz	(23)	21000.000005 MHz	±0 Hz
21000 MHz	10 MHz	20999.999995 MHz	(24)	21000.000005 MHz	±0 Hz
21000 MHz	1 MHz	20999.999995 MHz	(25)	21000.000005 MHz	±0 Hz
Firmware Revi A.03.00 or late					
Center Freq	Span				
$1500 \mathrm{~MHz}$	10 MHz	1499.999999 MHz	(16)	1500.000001 MHz	±0 Hz
1500 MHz	1 MHz	1499.999999 MHz	(17)	1500.000001 MHz	±0 Hz
4000 MHz	$10 \mathrm{~MHz}$	3999.999999 MHz	(18)	4000.000001 MHz	±0 Hz
4000 MHz	1 MHz	3999.999999 MHz	(19)	4000.000001 MHz	±0 Hz
9000 MHz	10 MHz	8999.999999 MHz	(20)	9000.000001 MHz	±0 Hz
$9000 \mathrm{~MHz}$	1 MHz	8999.999999 MHz	(21)	9000.000001 MHz	±0 Hz
16000 MHz	10 MHz	15999.999999 MHz	(22)	16000.000001 MHz	±0 Hz
16000 MHz	$1 \ \mathrm{MHz}$	20999.999999 MHz	(23)	21000.000001 MHz	±0 Hz

Hev	vlett-Packard Company				
Mod	lel HP E4408B		Report No		
Seri	ial No		Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	21000 MHz 10 MHz	20999.999999 MHz	(24)	21000.000001 MHz	±0 Hz
	21000 MHz 1 MHz	20999.999999 MHz	(25)	21000.000001 MHz	±0 Hz
6.	Frequency Span Readout Accuracy				
	Span Start Freq				
	3000 MHz 0 Hz	2370 MHz	(1)	2430 MHz	±6.12 MHz
	100 MHz 10 MHz	79 MHz	(2)	81 MHz	±204 kHz
	100 kHz 10 MHz	79 kHz	(3)	81 kHz	±204 Hz
	100 MHz 800 MHz	79 MHz	(4)	81 MHz	±204 kHz
	100 kHz 800 MHz	79 kHz	(5)	81 kHz	±204 Hz
	100 MHz 1400 MHz	79 MHz	(6)	81 MHz	±204 kHz
	100 kHz 1499 MHz	79 kHz	(7)	81 kHz	±204 Hz
7.	Noise Sidebands				
	Offset from 1 GHz signal				
	10 kHz		(1)	-90 dBc/Hz	±1.154 dB
	20 kHz		(2)	–98 dBc/Hz	±1.154 dB
	30 kHz		(3)	-100 dBc/Hz	±1.154 dB
	100 kHz		(4)	-112 dBc/Hz	±1.154 dB
8.	System Related Sidebands				
	Offset from 500 MHz signal				
	30 kHz to 230 kHz		(1)	-65 dBc	±1.154 dB
	–30 kHz to –230 kHz		(2)	65 dBc	±1.154 dB

Performance Verification Test Records HP E4408B Performance Verification Test Record

Hewlett-Packard Company						
Mod	el HP E4408B		Report No.			
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
9.	Residual FM					
	1 kHz Res BW		(1)	$150~\mathrm{Hz}$	±9.24 Hz	
10.	Sweep Time Accuracy					
	Sweep Time					
	5 ms	-1.0%	(1)	±1.0%	±0.28%	
	20 ms	-1.0%	(2)	±1.0%	±0.28%	
	100 ms	-1.0%	(3)	±1.0%	±0.28%	
	1 s	-1.0%	(4)	±1.0%	±0.28%	
	10 s	-1.0%	(5)	±1.0%	±0.28%	
11.	Display Scale Fidelity					
	Cumulative Log Fidelity, Res BW ≥ 1 kHz					
	dB from Ref Level					
1	-4	–0.34 dB	(1)	+0.34 dB	±0.064 dB	
	8	–0.38 dB	(2)	+0.38 dB	±0.064 dB	
	-12	-0.42 dB	(3)	+0.42 dB	±0.064 dB	
	-16	-0.46 dB	(4)	+0.46 dB	±0.064 dB	
	-20	-0.50 dB	(5)	+0.50 dB	±0.063 dB	
	-24	-0.54 dB	(6)	+0.54 dB	±0.064 dB	
	-28	-0.58 dB	(7)	+0.58 dB	±0.064 dB	
	-32	-0.62 dB	(8)	+0.62 dB	±0.064 dB	
	-36	-0.66 dB	(9)	+0.66 dB	±0.064 dB	
	-40	–0.70 dB	(10)	+0.70 dB	±0.063 dB	
	-44	-0.74 dB	(11)	+0.74 dB	±0.064 dB	
	-48	–0.78 dB	(12)	+0.78 dB	±0.064 dB	
	-52	-0.82 dB	(13)	+0.82 dB	±0.089 dB	

Hewlett-Packard Company					
Model HP E4408B		Report No			
Serial No		Date			
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
-56	-0.86 dB	(14)	+0.86 dB	±0.089 dB	
-60	-0.90 dB	(15)	+0.90 dB	±0.088 dB	
-64	–0.94 dB	(16)	+0.94 dB	±0.089 dB	
68	-0.98 dB	(17)	+0.98 dB	±0.089 dB	
-72	–1.02 dB	(18)	+1.02 dB	±0.089 dB	
-76	–1.06 dB	(19)	+1.06 dB	±0.089 dB	
-80	–1.10 dB	(20)	+1.10 dB	±0.088 dB	
-84	–1.14 dB	(21)	+1.14 dB	±0.089 dB	
Incremental Log Fidelity, Res BW ≥ 1 kHz					
dB from Ref Level					
-4	-0.4 dB	(22)	+0.4 dB	±0.064 dB	
-8	-0.4 dB	(23)	+0.4 dB	±0.064 dB	
-12	-0.4 dB	(24)	+0.4 dB	±0.064 dB	
-16	-0.4 dB	(25)	+0.4 dB	±0.064 dB	
-20	-0.4 dB	(26)	+0.4 dB	±0.063 dB	
-24	-0.4 dB	(27)	+0.4 dB	±0.064 dB	
-28	-0.4 dB	(28)	+0.4 dB	±0.064 dB	
-32	–0.4 dB	(29)	+0.4 dB	±0.064 dB	
36	-0.4 dB	(30)	+0.4 dB	±0.064 dB	
-40	-0.4 dB	(31)	+0.4 dB	±0.063 dB	
-44	-0.4 dB	(32)	+0.4 dB	±0.064 dB	
-48	-0.4 dB	(33)	+0.4 dB	±0.064 dB	
-52	-0.4 dB	(34)	+0.4 dB	±0.089 dB	
56	-0.4 dB	(35)	+0.4 dB	±0.089 dB	
60	-0.4 dB	(36)	+0.4 dB	±0.088 dB	

Hew	vlett-Packard Company					
Mod	lel HP E4408B		Report No			
Serial No			Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
	-64	-0.4 dB	(37)	+0.4 dB	±0.089 dB	
	-68	-0.4 dB	(38)	+0.4 dB	±0.089 dB	
	-72	-0.4 dB	(39)	+0.4 dB	±0.089 dB	
	-76	-0.4 dB	(40)	+0.4 dB	±0.089 dB	
	-80	–0.4 dB	(41)	+0.4 dB	±0.088 dB	
	Linear Fidelity, Res BW ≥ 1 kHz					
	dB from Ref Level					
	-4	-2.0%	(89)	+2.0%	±0.064 %	
	-8	-2.0%	(90)	+2.0%	±0.064 %	
	-12	-2.0%	(91)	+2.0%	±0.064 %	
	-16	-2.0%	(92)	+2.0%	±0.064 %	
	-20	-2.0%	(93)	+2.0%	±0.063 %	
12.	Input Attenuation Switching Uncertainty					
	Input Attenuation Setting					
	0 dB	–0.3 dB	(1)	+0.3 dB	±0.108 dB	
	5 dB	–0.3 dB	(2)	+0.3 dB	±0.107 dB	
	15 dB	–0.3 dB	(3)	+0.3 dB	±0.107 dB	
	20 dB	-0.3 dB	(4)	+0.3 dB	±0.089 dB	
	25 dB	–0.35 dB	(5)	+0.35 dB	±0.089 dB	
	30 dB	-0.40 dB	(6)	+0.40 dB	±0.089 dB	
	35 dB	–0.45 dB	(7)	+0.45 dB	±0.089 dB	
	40 dB	-0.50 dB	(8)	+0.50 dB	±0.089 dB	
	45 dB	-0.55 dB	(9)	+0.55 dB	±0.089 dB	
	$50 \mathrm{dB}$	-0.60 dB	(10)	+0.60 dB	±0.089 dB	

Hew	Hewlett-Packard Company					
Mod	el HP E4408B		Report No			
Seria	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
	55 dB	-0.65 dB	(11)	+0.65 dB	±0.089 dB	
	60 dB	-0.70 dB	(12)	+0.70 dB	±0.089 dB	
	65 dB	–0.75 dB	(13)	+0.75 dB	±0.089 dB	
14.	Reference Level Accuracy					
	Log					
	Reference Level					
	-10	–0.3 dB	(1)	+0.3 dB	±0.144 dB	
	0	–0.3 dB	(2)	+0.3 dB	±0.144 dB	
	-30	–0.3 dB	(3)	+0.3 dB	±0.144 dB	
	40	–0.3 dB	(4)	+0.3 dB	±0.144 dB	
	50	–0.5 dB	(5)	+0.5 dB	±0.156 dB	
	60	–0.5 dB	(6)	+0.5 dB	±0.156 dB	
	-70	0.5 dB	(7)	+0.5 dB	±0.156 dB	
		–0.7 dB	(8)	+0.7 dB	±0.156 dB	
	Linear					
	Reference Level					
	-10	-0.3 dB	(9)	+0.3 dB	±0.144 dB	
	0	0.3 dB	(10)	+0.3 dB	±0.144 dB	
	30	-0.3 dB	(11)	+0.3 dB	±0.144 dB	
	40	0.3 dB	(12)	+0.3 dB	±0.144 dB	
	50	0.5 dB	(13)	+0.5 dB	±0.156 dB	
	60	–0.5 dB	(14)	+0.5 dB	±0.156 dB	
	-70	–0.5 dB	(15)	+0.5 dB	±0.156 dB	

Hewlett-Packard Company					
Mod	el HP E4408B		Report No		
Serial No			Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	-80	-0.7 dB	(16)	+0.7 dB	±0.156 dB
15.	Resolution Bandwidth Switching Uncertainty				
	Resolution Bandwidth				
	3 kHz	–0.3 dB	(1)	+0.3 dB	±0.064 dB
	9 kHz	–0.3 dB	(2)	+0.3 dB	±0.064 dB
	10 kHz	–0.3 dB	(3)	+0.3 dB	±0.064 dB
	30 kHz	–0.3 dB	(4)	+0.3 dB	±0.064 dB
	100 kHz	–0.3 dB	(5)	+0.3 dB	±0.064 dB
	120 kHz	–0.3 dB	(6)	+0.3 dB	±0.064 dB
	300 kHz	–0.3 dB	(7)	+0.3 dB	±0.064 dB
	1 MHz	–0.3 dB	(8)	+0.3 dB	±0.064 dB
	3 MHz	–0.3 dB	(9)	+0.3 dB	±0.064 dB
	5 MHz	–0.6 dB	(10)	+0.6 dB	±0.083 dB
17.	Absolute Amplitude Accuracy (Reference Settings)				
	Log, Preamp Off	–0.4 dB	(1)	+0.4 dB	±0.148 dB
	Lin, Preamp Off	–0.4 dB	(2)	+0.4 dB	±0.148 dB
19.	Overall Absolute Amplitude Accuracy				
	0 dBm Reference Level				
	0 dBm input	–0.6 dB	(1)	+0.6 dB	±0.08 dB
	–10 dBm input	–0.6 dB	(2)	+0.6 dB	±0.081 dB
	–20 dBm input	–0.6 dB	(3)	+0.6 dB	±0.082 dB
	–30 dBm input	–0.6 dB	(4)	+0.6 dB	±0.083 dB
	–40 dBm input	–0.6 dB	(5)	+0.6 dB	±0.084 dB

Hewlett-Packard Company						
Model HP E4408B		Report No				
Serial No	Serial No			Date		
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty		
–50 dBm input	-0.6 dB	(6)	+0.6 dB	±0.086 dB		
–20 dBm Reference Level						
–20 dBm input	–0.6 dB	(7)	+0.6 dB	±0.082 dB		
–30 dBm input	–0.6 dB	(8)	+0.6 dB	±0.083 dB		
-40 dBm input	-0.6 dB	(9)	+0.6 dB	±0.084 dB		
–50 dBm input	–0.6 dB	(10)	+0.6 dB	±0.086 dB		
-40 dBm Reference Level						
–40 dBm input	–0.6 dB	(11)	+0.6 dB	±0.084 dB		
–50 dBm input	–0.6 dB	(12)	+0.6 dB	±0.086 dB		
–50 dBm Reference Level						
–50 dBm input	–0.6 dB	(13)	+0.6 dB	±0.086 dB		
20. Resolution Bandwidth Accuracy						
Resolution Bandwidth						
5 MHz	3.5 MHz	(1)	6.5 MHz	±38.2 kHz		
3 MHz	2.55 MHz	(2)	3.45 MHz	±22.9 kHz		
1 MHz	0.85 MHz	(3)	1.15 MHz	±7.64 kHz		
300 kHz	255 kHz	(4)	345 kHz	±2.29 kHz		
100 kHz	85 kHz	(5)	115 kHz	±764 Hz		
30 kHz	25.5 kHz	(6)	34.5 kHz	±229 Hz		
10 kHz	8.5 kHz	(7)	11.5 kHz	±76.4 Hz		
3 kHz	2.55 kHz	(8)	3.45 kHz	±22.9 Hz		
1 kHz	850 Hz	(9)	1.15 kHz	±7.64 Hz		
120 kHz	102 kHz	(10)	138 kHz	$\pm 154~{ m Hz}$		
9 kHz	7.65 kHz	(11)	10.35kHz	$\pm 11.5~\mathrm{Hz}$		

Performance Verification Test Records HP E4408B Performance Verification Test Record

Hewlett-Packard Company				
Model HP E4408B		Report No		
Serial No		Date		
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
24. Frequency Response		ta in the appropriate rature at which the		
20 to 30 °C:				
Band 0, 9 kHz to 3 GHz				
Maximum Response		(1)	+0.5 dB	$\pm 0.245~\mathrm{dB}$
Minimum Response	–0.5 dB	(2)		$\pm 0.245~\mathrm{dB}$
Peak-to-Peak Response		(3)	1.0 dB	$\pm 0.245~\mathrm{dB}$
Band 1, 3 GHz to 6.7 GHz				
Maximum Response		(4)	+1.5 dB	$\pm 0.355 \mathrm{dB}$
Minimum Response	–1.5 dB	(5)		$\pm 0.355 \mathrm{dB}$
Peak-to-Peak Response		(6)	2.6 dB	±0.355 dB
Band 2, 6.7 GHz to 13.2 GHz				
Maximum Response		(7)	+2.0 dB	±0.429 dB
Minimum Response	–2.0 dB	(8)		±0.429 dB
Peak-to-Peak Response		(9)	3.6 dB	±0.429 dB
Band 3, 13.2 GHz to 25 GHz				
Maximum Response		(10)	+2.0 dB	±0.425 dB
Minimum Response	–2.0 dB	(11)		$\pm 0.425~\mathrm{dB}$
Peak-to-Peak Response		(12)	3.6 dB	±0.425 dB
Band 4, 25 GHz to 26.5 GHz				
Maximum Response		(13)	+2.0 dB	±0.428 dB
Minimum Response	–2.0 dB	(14)		±0.428 dB
Peak-to-Peak Response		(15)	3.6 dB	±0.428 dB
0 to 55 °C:				

Hewlett-Packard Company					
Model HP E4408B		Report No			
Serial No	Date				
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
Band 0, 9 kHz to 3 GHz					
Maximum Response		(1)	+1.0 dB	±0.245 dB	
Minimum Response	–1.0 dB	(2)		±0.245 dB	
Peak-to-Peak Response		(3)	2.0 dB	±0.245 dB	
Band 1, 3 GHz to 6.7 GHz					
Maximum Response		(4)	+2.5 dB	±0.355 dB	
Minimum Response	–2.5 dB	(5)		±0.355 dB	
Peak-to-Peak Response		(6)	3.0 dB	±0.355 dB	
Band 2, 6.7 GHz to 13.2 GHz					
Maximum Response		(7)	+3.0 dB	±0.429 dB	
Minimum Response	–3.0 dB	(8)		±0.429 dB	
Peak-to-Peak Response		(9)	4.0 dB	±0.429 dB	
Band 3, 13.2 GHz to 25 GHz					
Maximum Response		(10)	+3.0 dB	±0.425 dB	
Minimum Response	–3.0 dB	(11)		$\pm 0.425~\mathrm{dB}$	
Peak-to-Peak Response		(12)	4.0 dB	±0.425 dB	
Band 4, 25 GHz to 26.5 GHz					
Maximum Response		(13)	+3.0 dB	±0.428 dB	
Minimum Response	–3.0 dB	(14)		±0.428 dB	
Peak-to-Peak Response		(15)	4.0 dB	$\pm 0.428 \text{ dB}$	

Hewlett-Packard Company					
Model HP E4408B		Report No			
Serial No		Date			
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
28. Other Input Related Spurious Responses					
Center Freq Input Freq					
2.0 GHz 2042.8 MHz		(1)	-65 dBc	±1.14 dB	
2.0 GHz 2642.8 MHz		(2)	-65 dBc	±1.14 dB	
2.0 GHz 1820.8 MHz		(3)	-65 dBc	±1.14 dB	
2.0 GHz 278.5 MHz		(4)	-65 dBc	±1.14 dB	
2.0 GHz 5600.0 MHz		(5)	-80 dBc	±1.14 dB	
2.0 GHz 6242.8 MHz		(6)	-80 dBc	±1.14 dB	
4.0 GHz 4042.8 MHz		(7)	-65 dBc	±1.14 dB	
4.0 GHz 4642.8 MHz		(8)	-65 dBc	±1.14 dB	
4.0 GHz 3742.9 MHz		(9)	-65 dBc	±1.14 dB	
4.0 GHz 2242.8 MHz		(10)	-80 dBc	±1.14 dB	
9.0 GHz 9042.8 MHz		(11)	-65 dBc	±1.14 dB	
9.0 GHz 9642.8 MHz		(12)	65 dBc	±1.14 dB	
9.0 GHz 9342.8 MHz		(13)	65 dBc	±1.14 dB	
9.0 GHz 4982.1 MHz		(14)	-80 dBc	±1.14 dB	
15.0 GHz 15042.8 MHz		(15)	65 dBc	±1.14 dB	
15.0 GHz 15642.8 MHz		(16)	65 dBc	±1.14 dB	
15.0 GHz 18830.35 MHz		(17)	65 dBc	±1.14 dB	
15.0 GHz 4151.75 MHz		(18)	-80 dBc	±1.14 dB	
21.0 GHz 21042.8 MHz		(19)	-65 dBc	±1.14 dB	
21.0 GHz 21642.8 MHz		(20)	65 dBc	±1.14 dB	
21.0 GHz 21342.8 MHz		(21)	-65 dBc	±1.14 dB	
21.0 GHz 5008.95 MHz		(22)	-80 dBc	±1.14 dB	

Table 3-14 HP E4408B Performance Verification Test Record

Hewlett-Packard Company						
Model HP E4408B			Report No			
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
32.	Spurious Responses	Note: TR Entry	v 2 does not apply to	the HP E4408B.		
	300 MHz TOI	+7.5 dBm	(1)		±0.49 dB	
	5 GHz TOI	+7.5 dBm	(3)		±0.589 dB	
	8 GHz TOI	+5 dBm	(4)		±0.589 dB	
	300 MHz SHI	+30 dBm	(5)		±0.90 dB	
	900 MHz SHI	+40 dBm	(6)		±0.90 dB	
	1.55 GHz SHI	+70 dBm	(7)		±0.90 dB	
	3.1 GHz SHI	+85 dBm	(8)		±0.90 dB	
33.	Gain Compression	Note: TR Entry	2 does not apply to	the HP E4408B.		
	Test Frequency					
	53 MHz		(1)	1.0 dB	±0.127 dB	
	1403 MHz		(3)	1.0 dB	±0.127 dB	
	2503 MHz		(4)	1.0 dB	±0.144 dB	
	4403 MHz		(5)	1.0 dB	±0.201 dB	
	7603 MHz		(6)	1.0 dB	±0.201 dB	
	14003 MHz		(7)	1.0 dB	±0.201 dB	
37.	Displayed Average Noise Level					
	10 MHz to 1 GHz		(1)	–116 dBm	±1.82 dB	
	1 GHz to 2 GHz	· · · · ·	(2)	–115 dBm	±1.82 dB	
	2 GHz to 3 GHz		(3)	–112 dBm	±1.82 dB	
	3 GHz to 6 GHz		(4)	–112 dBm	±1.82 dB	
	6 GHz to 12 GHz		(5)	-110 dBm	±1.82 dB	
	12 GHz to 22 GHz		(6)	–107 dBm	±1.82 dB	
	22 GHz to 26.5 GHz		(7)	–101 dBm	±1.82 dB	

Hewlett-Packard Company							
Mod	el HP E4408B		Report No				
Seri	al No		Date				
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty		
38.	Residual Responses						
	150 kHz to 6.7 GHz		(1)	90 dBm	±0.93 dB		
41.	Tracking Generator Absolute Amplitude and Vernier Accuracy						
	Absolute Amplitude Accuracy	–0.75 dB	(1)	+0.75 dB	±0.087 dB		
	Vernier Accuracy, –2 dB	–0.4 dB	(2)	+0.4 dB	±0.11 dB		
	Vernier Accuracy, –3 dB	–0.5 dB	(3)	+0.5 dB	±0.16 dB		
	Vernier Accuracy, –5 dB	–0.5 dB	(4)	+0.5 dB	±0.16 dB		
	Vernier Accuracy, –6 dB	–0.5 dB	(5)	+0.5 dB	±0.16 dB		
	Vernier Accuracy, –7 dB	–0.5 dB	(6)	+0.5 dB	±0.16 dB		
	Vernier Accuracy, –8 dB	–0.5 dB	(7)	+0.5 dB	±0.16 dB		
	Vernier Accuracy, –9 dB	–0.5 dB	(8)	+0.5 dB	±0.16 dB		
	Vernier Accuracy, –10 dB	–0.5 dB	(9)	+0.5 dB	±0.16 dB		
43.	Tracking Generator Level Flatness						
	Positive Level Flatness, <1 MHz		(1)	+3.0 dB	±0.255 dB		
	Negative Level Flatness, <1 MHz	–3.0 dB	(2)		±0.255 dB		
	Positive Level Flatness, 1 MHz to 10 MHz		(3)	+3.0 dB	±0.145 dB		
	Negative Level Flatness, 1 MHz to 10 MHz	–3.0 dB	(4)		±0.145 dB		
	Positive Level Flatness, >10 MHz to 1.5 GHz		(5)	+2.0 dB	±0.122 dB		
	Negative Level Flatness, >10 MHz to 1.5 GHz	-2.0 dB	(6)		±0.122 dB		

Table 3-14 HP E4408B Performance Verification Test Record

Hewlett-Packard Company							
Mod	el HP E4408B		Report No				
Seri	al No		Date				
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty		
	Positive Level Flatness, >1.5 GHz		(7)	+2.0 dB	±0.172 dB		
	Negative Level Flatness, >1.5 GHz	–2.0 dB	(8)		±0.172 dB		
45.	Tracking Generator Harmonic Spurious Outputs (Option 1DN only)						
	2 nd Harmonic, <20 kHz		(1)	–15 dBc	±2.6 dB		
	2 nd Harmonic, ≥ 20 kHz		(2)	-25 dBc	±2.6 dB		
	3 rd Harmonic, <20 kHz		(3)	–15 dBc	±2.6 dB		
	3 rd Harmonic, ≥ 20 kHz		(4)	-25 dBc	±2.6 dB		
47.	Tracking Generator Non-Harmonic Spurious Outputs (Option 1DN only)						
	Highest Non-Harmonic Spurious Output Amplitude, 9 kHz to 2 GHz		(1)	-27 dBc	±2.67 dB		
	Highest Non-Harmonic Spurious Output Amplitude, 2 GHz to 3 GHz		(2)	–23 dBc	±3.12 dB		
48.	Tracking Generator LO Feedthrough Amplitude (Option 1DN only)						
	9 kHz to 2.9 GHz		(1)	–16 dBm	±1.94 dB		
	2.9 GHz to 3.0 GHz		(2)	–16 dBm	±2.49 dB		

Performance Verification Test Records

HP E4411B Performance Verification Test Record

Only the tests for HP E4411B are included in this test record, therefore not all test numbers are included.

Hewlett-Packard Company			
Address:		Report No	
		Date	-
Model HP E4411B			
Serial No		Ambient temperature	°C
Options		Power mains line frequ (nominal)	ency Hz
Firmware Revision		Relative humidity	%
Customer		Tested by	
Test Equipment Used:			
Description	Model No.	Trace No.	Cal Due Date
Synthesized Signal Generator			
Synthesized Sweeper			
Function Generator			
Power Meter, Dual-Channel		· · · · · · · · · · · · · · · · · · ·	
RF Power Sensor #1			
RF Power Sensor #2 (Non-Option 1DP only)			
Low-Power Power Sensor			
75Ω Power Sensor (Option 1DP only)			
Digital Multimeter			
Universal Counter			
Frequency Standard			
Power Splitter			

Table 3-15HP E4411B Performance Verification Test Record

50Ω Termination	 	
Minimum Loss Pad (Option 1DP only)	 	
1 dB Step Attenuator	 	
10 dB Step Attenuator		
6 dB Fixed Attenuator	 	
20 dB Fixed Attenuator (Option 1DS only)		
Oscilloscope (Option 1D6 only)		
Notes/comments:	 	

Table 3-16

Hewlett-Packard Company						
Mod	el HP E4411B			Report No	<u></u>	
Seri	al No			Date		
Test	Description		Minimum	Results Measured	Maximum	Measurement Uncertainty
1.	10 MHz Refe Output Accu					
	Settability		–5.0 Hz	(1)	+5.0 Hz	±293.3 μHz
3.	Frequency R Accuracy an Count Accur	d Marker				
	Frequency Rea Accuracy	adout				
	Center Freq	Span				
	1490 MHz	20 MHz	1489.784990 MHz	(1)	1490.215010 MHz	±0 Hz
	1490 MHz	10 MHz	1489.884990 MHz	(2)	1490.115010 MHz	± 0 Hz
	1490 MHz	1 MHz	1489.988490 MHz	(3)	1490.011510 MHz	±0 Hz
	Marker Count	Accuracy				

Hewlett-Packard Company						
Model HP E4411B		Report No				
Serial No		Date				
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty		
Center Freq Span						
1490 MHz 10 MHz	1489.999998 MHz	(4)	1490.000002 MHz	±0 Hz		
1490 MHz 1 MHz	1489.999998 MHz	(5)	1490.000002 MHz	±0 Hz		
5. Frequency Span Readout Accuracy						
Span Start Freq						
1500 MHz 0 Hz	1185 MHz	(1)	1215 MHz	±3.06 MHz		
100 MHz 10 MHz	79 MHz	(2)	81 MHz	±204 kHz		
100 kHz 10 MHz	79 kHz	(3)	81 kHz	±204 Hz		
100 MHz 800 MHz	79 MHz	(4)	81 MHz	±204 kHz		
100 kHz 800 MHz	79 kHz	(5)	81 kHz	±204 Hz		
100 MHz 1400 MHz	79 MHz	(6)	81 MHz	±204 kHz		
100 kHz 1499 MHz	79 kHz	(7)	81 kHz	±204 Hz		
7. Noise Sidebands						
Offset from 1 GHz signal						
10 kHz		(1)	–90 dBc/Hz	±1.154 dB		
20 kHz		(2)	-100 dBc/Hz	±1.154 dB		
30 kHz		(3)	–102 dBc/Hz	±1.154 dB		
100 kHz		(4)	–112 dBc/Hz	±1.154 dB		
8. System Related Sidebands						
Offset from 500 MHz signal						
30 kHz to 230 kHz		(1)	-65 dBc	±1.154 dB		
–30 kHz to –230 kHz		(2)	-65 dBc	±1.154 dB		

Performance Verification Test Records HP E4411B Performance Verification Test Record

Hewlett-Packard Company						
Mod	el HP E4411B		Report No.			
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
9.	Residual FM					
	1 kHz Res BW		(1)	150 Hz	±9.24 Hz	
10.	Sweep Time Accuracy					
	Sweep Time					
	$5~{ m ms}$	-1.0%	(1)	+1.0%	±0.28%	
	$20 \mathrm{ms}$	-1.0%	(2)	+1.0%	±0.28%	
	100 ms	-1.0%	(3)	+1.0%	±0.28%	
	1 s	-1.0%	(4)	+1.0%	±0.28%	
	10 s	-1.0%	(5)	+1.0%	±0.28%	
11.	Display Scale Fidelity					
	Cumulative Log Fidelity, Res BW $\geq 1 \text{ kHz}$					
	dB from Ref Level					
	-4	–0.34 dB	(1)	+0.34 dB	±0.064 dB	
	8	–0.38 dB	(2)	+0.38 dB	±0.064 dB	
	-12	–0.42 dB	(3)	+0.42 dB	±0.064 dB	
	-16	–0.46 dB	(4)	+0.46 dB	±0.064 dB	
	-20	–0.50 dB	(5)	+0.50 dB	±0.063 dB	
	-24	–0.54 dB	(6)	+0.54 dB	±0.064 dB	
	-28	–0.58 dB	(7)	+0.58 dB	±0.064 dB	
	-32	-0.62 dB	(8)	+0.62 dB	±0.064 dB	
	-36	–0.66 dB	(9)	+0.66 dB	±0.064 dB	
	40	–0.70 dB	(10)	+0.70 dB	±0.063 dB	
	44	–0.74 dB	(11)	+0.74 dB	±0.064 dB	
	48	–0.78 dB	(12)	+0.78 dB	±0.064 dB	
	-52	–0.82 dB	(13)	+0.82 dB	±0.089 dB	

Hewlett-Packard Company						
Model HP E4411B	Report No.					
Serial No		Date				
Test Description	Minimum	Results Measured	Maximum	Measurement Uncertainty		
56	-0.86 dB	(14)	+0.86 dB	±0.089 dB		
60	-0.90 dB	(15)	+0.90 dB	±0.088 dB		
64	-0.94 dB	(16)	+0.94 dB	±0.089 dB		
68	-0.98 dB	(17)	+0.98 dB	±0.089 dB		
-72	–1.02 dB	(18)	+1.02 dB	±0.089 dB		
-76	-1.06 dB	(19)	+1.06 dB	±0.089 dB		
-80	–1.10 dB	(20)	+1.10 dB	±0.088 dB		
-84	-1.14 dB	(21)	+1.14 dB	±0.089 dB		
Incremental Log Fidelity, Res BW ≥ 1 kHz						
dB from Ref Level						
-4	-0.4 dB	(22)	+0.4 dB	±0.064 dB		
-8	-0.4 dB	(23)	+0.4 dB	±0.064 dB		
-12	-0.4 dB	(24)	+0.4 dB	±0.064 dB		
-16	-0.4 dB	(25)	+0.4 dB	±0.064 dB		
-20	-0.4 dB	(26)	+0.4 dB	±0.063 dB		
-24	-0.4 dB	(27)	+0.4 dB	±0.064 dB		
-28	-0.4 dB	(28)	+0.4 dB	±0.064 dB		
-32	-0.4 dB	(29)	+0.4 dB	±0.064 dB		
36	-0.4 dB	(30)	+0.4 dB	±0.064 dB		
-40	-0.4 dB	(31)	+0.4 dB	±0.063 dB		
-44	-0.4 dB	(32)	+0.4 dB	±0.064 dB		
-48	-0.4 dB	(33)	+0.4 dB	±0.064 dB		
-52	-0.4 dB	(34)	+0.4 dB	±0.089 dB		
-56	-0.4 dB	(35)	+0.4 dB	±0.089 dB		
-60	-0.4 dB	(36)	+0.4 dB	±0.088 dB		

Hew	Hewlett-Packard Company						
Mod	lel HP E4411B		Report No				
Seri	al No		Date	Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty		
	64	-0.4 dB	(37)	+0.4 dB	±0.089 dB		
	-68	-0.4 dB	(38)	+0.4 dB	±0.089 dB		
	-72	-0.4 dB	(39)	+0.4 dB	±0.089 dB		
	-76	-0.4 dB	(40)	+0.4 dB	±0.089 dB		
	-80	–0.4 dB	(41)	+0.4 dB	±0.088 dB		
	Linear Fidelity, Res BW ≥ 1 kHz						
	dB from Ref Level						
	-4	-2.0%	(89)	+2.0%	±0.064 %		
	-8	-2.0%	(90)	+2.0%	±0.064 %		
	-12	-2.0%	(91)	+2.0%	±0.064 %		
	-16	-2.0%	(92)	+2.0%	±0.064 %		
	-20	-2.0%	(93)	+2.0%	±0.063 %		
12.	Input Attenuation Switching Uncertainty						
	Input Attenuation Setting						
	0 dB	–0.3 dB	(1)	+0.3 dB	±0.108 dB		
	5 dB	-0.3 dB	(2)	+0.3 dB	±0.107 dB		
	15 dB	-0.3 dB	(3)	+0.3 dB	±0.107 dB		
	20 dB	–0.3 dB	(4)	+0.3 dB	±0.089 dB		
	25 dB	-0.35 dB	(5)	+0.35 dB	±0.089 dB		
	30 dB	-0.40 dB	(6)	+0.40 dB	±0.089 dB		
	35 dB	–0.45 dB	(7)	+0.45 dB	±0.089 dB		
	40 dB	–0.50 dB	(8)	+0.50 dB	±0.089 dB		
	45 dB	–0.55 dB	(9)	+0.55 dB	±0.089 dB		
	50 dB	-0.60 dB	(10)	+0.60 dB	±0.089 dB		

Hew	Hewlett-Packard Company							
Mod	el HP F	E4411B		Report No				
Seri	al No			Date				
Test	Descri	ption	Minimum	Results Measured	Maximum	Measurement Uncertainty		
	$55 \mathrm{dB}$		-0.65 dB	(11)	+0.65 dB	±0.089 dB		
	60 dB		–0.70 dB	(12)	+0.70 dB	±0.089 dB		
13.	Refer Accur	ence Level acy						
		erence Level dBm) 75 Ω (dBmV)						
	-15	+33.75	-0.3 dB	(1)	+0.3 dB	±0.144 dB		
	-5	+43.75	-0.3 dB	(2)	+0.3 dB	±0.144 dB		
	-35	+13.75	-0.3 dB	(3)	+0.3 dB	±0.144 dB		
	-45	+3.75	-0.3 dB	(4)	+0.3 dB	±0.144 dB		
	-55	-6.25	–0.5 dB	(5)	+0.5 dB	±0.156 dB		
	-65	-16.25	–0.5 dB	(6)	+0.5 dB	±0.156 dB		
	-75	-26.25	–0.7 dB	(7)	+0.7 dB	±0.156 dB		
		erence Level Bm) 75Ω (dBmV)						
	-15	+33.75	-0.3 dB	(8)	+0.3 dB	±0.144 dB		
	-5	+43.75	0.3 dB	(9)	+0.3 dB	±0.144 dB		
	-35	+13.75	-0.3 dB	(10)	+0.3 dB	±0.144 dB		
	-45	+3.75	–0.3 dB	(11)	+0.3 dB	±0.144 dB		
	-55	6.25	-0.5 dB	(12)	+0.5 dB	±0.156 dB		
	-65	-16.25	–0.5 dB	(13)	+0.5 dB	±0.156 dB		
	-75	-26.25	-0.7 dB	(14)	+0.7 dB	±0.156 dB		

Hewlett-Packard Company						
Model HP E4411B			Report No	Report No.		
Seri	al No		Date			
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
15.	Resolution Bandwidth Switching Uncertainty					
	Resolution Bandwidth					
	3 kHz	-0.3 dB	(1)	+0.3 dB	±0.064 dB	
	9 kHz	-0.3 dB	(2)	+0.3 dB	±0.064 dB	
	10 kHz	–0.3 dB	(3)	+0.3 dB	±0.064 dB	
	30 kHz	–0.3 dB	(4)	+0.3 dB	±0.064 dB	
	100 kHz	-0.3 dB	(5)	+0.3 dB	±0.064 dB	
	120 kHz	–0.3 dB	(6)	+0.3 dB	±0.064 dB	
	300 kHz	–0.3 dB	(7)	+0.3 dB	±0.064 dB	
	1 MHz	0.3 dB	(8)	+0.3 dB	±0.064 dB	
	3 MHz	–0.3 dB	(9)	+0.3 dB	±0.064 dB	
	5 MHz	–0.6 dB	(10)	+0.6 dB	±0.083 dB	
16.	Absolute Amplitude Accuracy (Reference Settings)					
	Log, Preamp Off	-0.4 dB	(1)	+0.4 dB	±0.148 dB	
	Lin, Preamp Off	–0.4 dB	(2)	+0.4 dB	±0.148 dB	
18.	Overall Absolute Amplitude Accuracy					
	0 dBm Reference Level					
	0 dBm input	–0.6 dB	(1)	+0.6 dB	±0.08 dB	
	–10 dBm input	–0.6 dB	(2)	+0.6 dB	±0.081 dB	
	–20 dBm input	-0.6 dB	(3)	+0.6 dB	±0.082 dB	
	–30 dBm input	-0.6 dB	(4)	+0.6 dB	$\pm 0.083 \mathrm{dB}$	
	40 dBm input	-0.6 dB	(5)	+0.6 dB	±0.084 dB	
	–50 dBm input	–0.6 dB	(6)	+0.6 dB	±0.086 dB	

Table 3-16	HP E4411B Performance	Verification Test Record
------------	-----------------------	--------------------------

Hew	lett-Packard Company					
Model HP E4411B Report No						
Seri	al No		Date	Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
	-20 dBm Reference Level					
	–20 dBm input	-0.6 dB	(7)	+0.6 dB	±0.082 dB	
	–30 dBm input	-0.6 dB	(8)	+0.6 dB	±0.083 dB	
	–40 dBm input	-0.6 dB	(9)	+0.6 dB	±0.084 dB	
	–50 dBm input	0.6 dB	(10)	+0.6 dB	±0.086 dB	
	-40 dBm Reference Level					
	-40 dBm input	-0.6 dB	(11)	+0.6 dB	±0.084 dB	
	–50 dBm input	-0.6 dB	(12)	+0.6 dB	±0.086 dB	
	–50 dBm Reference Level					
	–50 dBm input	-0.6 dB	(13)	+0.6 dB	±0.086 dB	
20.	Resolution Bandwidth Accuracy					
	Resolution Bandwidth					
	5 MHz	3.5 MHz	(1)	6.5 MHz	±38.2 kHz	
	3 MHz	2.55 MHz	(2)	3.45 MHz	±22.9 kHz	
	1 MHz	0.85 MHz	(3)	1.15 MHz	±7.64 kHz	
	300 kHz	255 kHz	(4)	345 kHz	±2.29 kHz	
	100 kHz	85 kHz	(5)	115 kHz	±764 Hz	
	30 kHz	25.5 kHz	(6)	34.5 kHz	±229 Hz	
	10 kHz	8.5 kHz	(7)	11.5 kHz	±76.4 Hz	
	3 kHz	2.55 kHz	(8)	3.45 kHz	±22.9 Hz	
	1 kHz	850 Hz	(9)	1.15 kHz	±7.64 Hz	
	120 kHz	102 kHz	(10)	138 kHz	±154 Hz	
	9 kHz	7.65 kHz	(11)	10.35 kHz	±11.5 Hz	

Performance Verification Test Records HP E4411B Performance Verification Test Record

Hewlett-Packard Co	mpany				
Model HP E4411B			Report No		
Serial No	_		Date		
Test Description		Minimum	Results Measured	Maximum	Measurement Uncertainty
21. Frequency Res	ponse	Note: Enter data in the appropriate section below depending upon the input impedance of the analyzer and the ambient temperature at which the test was performed.			
50 Ω, 20 to 30 °C):				
Maximum Res	ponse		(1)	+0.5 dB	±0.245 dB
Minimum Resp	oonse	–0.5 dB	(2)		±0.245 dB
Peak-to-Peak R	lesponse		(3)	1.0 dB	±0.245 dB
50 Ω, 0 to 55 °C:					
Maximum Res	ponse		(1)	+1.0 dB	±0.245 dB
Minimum Resp	oonse	–1.0 dB	(2)		±0.245 dB
Peak-to-Peak F	lesponse		(3)	2.0 dB	±0.245 dB
75 Ω, 20 to 30 °C	:				
Maximum Res	ponse		(1)	+0.5 dB	±0.189 dB
Minimum Resp	oonse	–0.5 dB	(2)		±0.189 dB
Peak-to-Peak F	lesponse		(3)	1.0 dB	±0.189 dB
75 Ω, 0 to 55 °C:					
Maximum Res	ponse		(1)	+1.0 dB	±0.189 dB
Minimum Resp	oonse	–1.0 dB	(2)		±0.189 dB
Peak-to-Peak F	lesponse		(3)	2.0 dB	±0.189 dB
27. Other Input Re Spurious Respo					
Input Frequen	cy				
542.8 MHz			(1)	65 dBc	±1.08 dB
510.7 MHz			(2)	65 dBc	±1.08 dB
1310.7 MHz	:		(3)	-45 dBc	±1.08 dB

Hew	lett-Packard Company					
Mod	el HP E4411B		Report No			
Serial No Date						
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty	
29.	Spurious Responses	Note: Enter the results in the appropriate lines below based upon the input impedance of the analyzer. TR Entry 2 does not apply to HP E4411B.				
	50 MHz TOI, 50 Ω	+7.5 dBm	(1)		±0.489 dB	
	50 MHz TOI, 75 Ω	+56.25 dBmV	(1)		±0.481 dB	
ļ	40 MHz SHI, 50 Ω	+35 dBm	(3)		±1.11 dB	
	40 MHz SHI, 75 Ω	+83.75 dBmV	(3)		±1.11 dB	
32.	Gain Compression	Note: TR Entr	y 2 does not apply to	HP E4411B.		
	Test Frequency					
	53 MHz		(1)	1.0 dB	±0.127 dB	
	1403 MHz		(3)	1.0 dB	±0.127 dB	
34.	Displayed Average Noise Level		ta in the appropriat edance of the analyz		depending upon	
	50 Ω:					
	400 kHz		(1)	–115 dBm	±1.82 dB	
	1 MHz to 10 MHz		(2)	–115 dBm	±1.82 dB	
	$10~\mathrm{MHz}$ to $500~\mathrm{MHz}$		(3)	-119 dBm	±1.82 dB	
	500 MHz to 1 GHz		(4)	–117 dBm	±1.82 dB	
	1 GHz to 1.5 GHz		(5)	–113 dBm	±1.82 dB	
	75 Ω:					
	1 MHz to 10 MHz		(21)	–63 dBmV	±1.82 dB	
	$10~\mathrm{MHz}$ to $500~\mathrm{MHz}$		(22)	–65 dBmV	±1.82 dB	
	500 MHz to 1 GHz		(23)	–60 dBmV	±1.82 dB	
	1 GHz to 1.5 GHz		(24)	–53 dBmV	±1.82 dB	

Performance Verification Test Records HP E4411B Performance Verification Test Record

Hew	lett-Packard Company				
Model HP E4411B			Report No		
Serial No			Date		
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
38.	Residual Responses	Note: Enter data in the appropriate section below depending upon the input impedance of the analyzer.			
	50 Ω 150 kHz to 1.5 GHz		(1)	–90 dBm	±0.90 dB
	75 Ω, 1 MHz to 1.5 GHz		(1)	–36 dBmV	±0.90 dB
40.	Tracking Generator Absolute Amplitude and Vernier Accuracy		ta in the appropriated ance of the analyzed		depending upon
	50 Ω (Option 1DN)				
	Absolute Amplitude Accuracy	–0.5 dB	(1)	+0.5 dB	±0.14 dB
	Positive Vernier Accuracy		(2)	+0.75 dB	±0.19 dB
	Negative Vernier Accuracy	–0.75 dB	(3)		±0.19 dB
	Power Sweep Accuracy		(4)	1.5 dB	±0.19 dB
	$75 \ \Omega \ (Option \ 1DQ)$				
	Absolute Amplitude Accuracy	–1.5 dB	(1)	+1.5 dB	±0.14 dB
	Positive Vernier Accuracy		(2)	+0.9 dB	±0.19 dB
	Negative Vernier Accuracy	–0.9 dB	(3)		±0.19 dB
	Power Sweep Accuracy		(4)	1.8 dB	±0.19 dB
42.	Tracking Generator Level Flatness	Note: Enter data in the appropriate section below depending upon the input impedance of the analyzer.			
	50Ω (Option 1DN)				
	Positive Level Flatness, <1 MHz		(1)	+2.0 dB	$\pm 0.588 \text{ dB}$
	Negative Level Flatness, <1 MHz	-2.0 dB	(2)		$\pm 0.588 \text{ dB}$
	Positive Level Flatness, 1 MHz to 10 MHz		(3)	+2.0 dB	±0.281 dB

Mod	el HP E4411B		Report No	· · · · · · · · · · · · · · · · · · ·	
Seria	al No		Date	-	
Test	Description	Minimum	Results Measured	Maximum	Measurement Uncertainty
	Negative Level Flatness, 1 MHz to 10 MHz	-2.0 dB	(4)		±0.281 dB
	Positive Level Flatness, >10 MHz		(5)	+1.5 dB	±0.202 dB
	Negative Level Flatness, >10 MHz	–1.5 dB	(6)		±0.202 dB
	75 Ω (Option 1DQ)				
	Positive Level Flatness, 1 MHz to 10 MHz		(3)	+2.5 dB	±0.314 dB
	Negative Level Flatness, 1 MHz to 10 MHz	–2.5 dB	(4)		±0.314 dB
	Positive Level Flatness, >10 MHz		(5)	+2.0 dB	±0.314 dB
	Negative Level Flatness, >10 MHz	–2.0 dB	(6)		±0.314 dB
44.	Tracking Generator Harmonic Spurious Outputs (Option 1DN or Option 1DQ only)				
	2 nd Harmonic, <20 MHz		(1)	-20 dBc	±2.6 dB
	2 nd Harmonic, ≥ 20 MHz		(2)	–25 dBc	±2.6 dB
	3 rd Harmonic, <20 MHz		(3)	-20 dBc	±2.6 dB
	3 rd Harmonic, ≥20 MHz		(4)	–25 dBc	±2.6 dB
46.	Tracking Generator Non-Harmonic Spurious Outputs (Option 1DN or Option 1DQ only)				
	Highest Non-Harmonic Spurious Output Amplitude		(1)	–35 dBc	±2.67 dB

4 HP E4401B Specifications and Characteristics

About This Chapter

This chapter contains specifications and characteristics for the HP E4401B spectrum analyzer. The distinction between specifications and characteristics is described as follows.

- Specifications describe the performance of parameters covered by the product warranty. (The temperature range is 0 °C to 55 °C, unless otherwise noted.)
- Characteristics describe product performance that is useful in the application of the product, but is not covered by the product warranty.
- Typical performance describes additional product performance information that is not covered by the product warranty. It is performance beyond an indicated specification, that most units will exhibit.
- Nominal values indicate the expected, but not warranted, value of a parameter.

The following conditions must be met for the analyzer to meet its specifications.

- **□** The analyzer is within the one year calibration cycle.
- □ If Auto Align All is selected:
 - After 2 hours of storage within the operating temperature range.
 - 5 minutes after the analyzer is turned on with sweep times less than 4 seconds.
- □ If Auto Align Off is selected:
 - When the analyzer is at a constant temperature, within the operating temperature range, for a minimum of 90 minutes,
 - After the analyzer is turned on for a minimum of 90 minutes, and Align Now All has been run.
 - When Align Now All is run:
 - Every hour
 - If the ambient temperature changes more than 3 °C
 - If the 10 MHz reference changes
- □ If Auto Align All but RF is selected:
 - When the analyzer is at a constant temperature, within the operating temperature range, for a minimum of 90 minutes.

- After the analyzer is turned on for a minimum of 90 minutes, and Align Now RF has been run.
- When **Align Now RF** is run:
 - Every hour
 - If the ambient temperature changes more than 3 $^{\circ}\mathrm{C}$

Frequency

	Specifications	Supplemental Information
Frequency Range		
50 Ω	9 kHz to 1.5 GHz	
50 Ω, Preamp On (Option 1DS)	100 kHz to 1.5 GHz	
75 Ω (Option 1DP)	1 MHz to 1.5 GHz	
75 Ω, Preamp On (Option 1DS, 1DP)	1 MHz to 1.5 GHz	

	Specifications	Supplemental Information
Frequency Reference		
Aging Rate	$\pm 2 \times 10^{-6}$ /year	$\pm 1.0 imes 10^{-7}$ /day, characteristic
Settability	$\pm 5 imes 10^{-7}$	
Temperature Stability	$\pm 5 \times 10^{-6}$	

	Specifications	Supplemental Information
High Stability Frequency Reference (Option 1D5)		
Aging Rate	$\pm 1 \times 10^{-7}$ /year	$\pm 5 \times 10^{-10}$ /day, 7-day average after being powered on for 7 days, characteristic
Settability	$\pm 1 \times 10^{-8}$	
Temperature Stability		
20 to 30 °C	$\pm 1 \times 10^{-8}$	
0 to 55 °C	$\pm 5 imes 10^{-8}$	
Warm-Up (Internal frequency reference selected)		
After 5 minutes		$<\pm1\times10^{-7}$ of final frequency, ^a characteristic
After 15 minutes		$<\pm1\times10^{-8}$ of final frequency, ^a characteristic

a. Final frequency is defined as frequency 60 minutes after power-on with analyzer set to internal frequency reference.

	Specifications	Supplemental Information
Frequency Readout Accuracy		
(Start, Stop, Center, Marker)	±(frequency indication × frequency reference error ^a + span accuracy + 15% of RBW + 10 Hz)	

a. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

	Specifications	Supplemental Information
Marker Frequency Counter		
Resolution	Selectable from 1 Hz to 100 kHz	
Accuracy ^a	\pm (marker frequency \times frequency reference error ^b + counter resolution)	For RBW ≥ 1 kHz

a. Marker level to displayed noise level > 25 dB, RBW/ Span \ge 0.002, frequency offset = 0 Hz.

b. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

	Specifications	Supplemental Information
Frequency Span		
Range	0 Hz (zero span), 100 Hz to 1.5 GHz	
Resolution	2 Hz	
Accuracy	±1% of span	

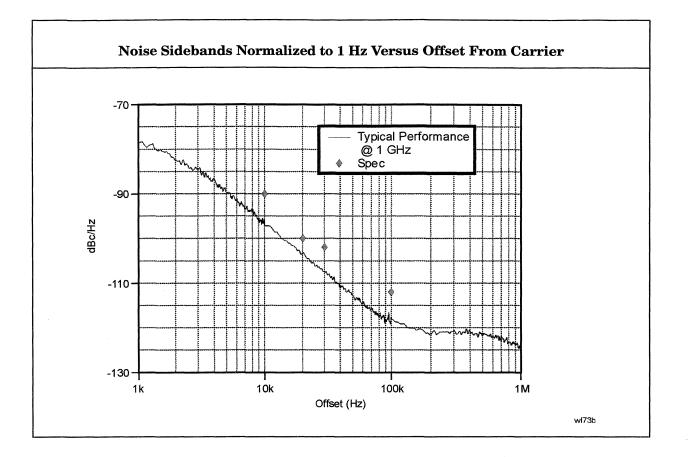
	Specifications	Supplemental Information
Sweep Time		
Range	5 ms to 2000 s	50 ms is the minimum sweep time with the tracking generator in operation (Option 1DN or 1DQ)
(Option AYX)	20 µs to 2000 s	For Span = 0 Hz, RBW \geq 1 kHz
Accuracy		
Span = 0 Hz 5 ms to 2000 s	±1%	
20 µs to < 5ms (Option AYX)	±1%	
Sweep Trigger ^{ab}	Free Run, Single, Line, Video, External, Delayed, Gate (Option 1D6), TV (Option B7B)	
Delayed Trigger ^{ac}		
Range	1 µs to 400 s	
Resolution	[(delay in seconds)/65000] rounded up to nearest µs	
Accuracy	±(500 ns +(0.01% of delay))	

a. Gate cannot be used simultaneously with delayed or TV trigger.

b. Auto align is suspended in video, external, gate, and delayed trigger modes while waiting for a trigger event to occur.

c. Delayed trigger is available with line, external, and TV trigger (Option B7B).

	Specifications	Supplemental Information
Resolution Bandwidth (RBW)		
Range		
–3 dB bandwidth	1 kHz to 3 MHz, in 1-3-10 sequence, 5 MHz	
-6 dB bandwidth (EMI)	9 kHz and 120 kHz	
(Option 1DR)		Only available in spans
–3 dB bandwidth	Adds 10, 30, 100, 300 Hz	≤ 5 MHz, sweep times ≥ 5 ms, and not usable with tracking
-6 dB bandwidth (EMI)	Add 200 Hz	generator in operation (Option 1DN or Option 1DQ)


Frequency

	Specifications	Supplemental Information
Accuracy		·
1 kHz to 3 MHz RBW	±15%	
5 MHz RBW	±30%	
10 Hz to 300 Hz RBW (Option 1DR)	±10%	
Shape		
1 kHz to 5 MHz RBW		Synchronously tuned four poles, approximately Gaussian shape
10 Hz to 300 Hz RBW (Option 1DR)		Digital, approximately Gaussian shape
Selectivity (60 dB/3 dB bandwidth ratio)		
1 kHz to 5 MHz RBW		<15:1, characteristic
10 Hz to 300 Hz RBW (Option 1DR)		<5:1, characteristic

	Specifications	Supplemental Information
Video Bandwidth (VBW) (-3 dB)		de s
Range	30 Hz to 1 MHz in 1-3-10 sequence	3 MHz, characteristic
(Option 1DR)	Adds 1, 3, 10 Hz for RBW's <1 kHz	
Accuracy		±30%, characteristic
Shape		Post detection, single pole low- pass filter used to average displayed noise
		Video bandwidths below 30 Hz are digital bandwidths with anti-aliasing filtering.

4-7

	Specifications	Supplemental Information
Stability		
Noise Sidebands, offset from CW signal with 1 kHz RBW, 30 Hz VBW and sample detector		
≥10 kHz	\leq -90 dBc/Hz	
≥20 kHz	\leq -100 dBc/Hz	
≥30 kHz	$\leq -102 \text{ dBc/Hz}$	
≥100 kHz	\leq –112 dBc/Hz	
Residual FM		
1 kHz RBW, 1 kHz VBW	≤150 Hz p–p in 100 ms	
(Option 1D5)	≤100 Hz p–p in 100 ms	
10 Hz RBW, 10 Hz VBW (Option 1DR and 1D5)	≤2 Hz p–p in 20 ms	
10 Hz RBW, 10 Hz VBW (<i>Option 1DR</i>)		≤10 Hz p–p in 20 ms, characteristic
System-Related Sidebands, offset from CW signal		
≥30 kHz	≤ –65 dBc	
Line-Related Sidebands, offset from CW signal (Option 1DR)		
<300 Hz		≤ –50 dBc, characteristic
>300 Hz to 30 kHz		\leq –55 dBc, characteristic

Amplitude

Amplitude specifications do not apply for the negative peak detector mode.

	Specifications	Supplemental Information
Measurement Range	Displayed Average Noise Level to Maximum Safe Input Level	
Input Attenuator Range	0 to 60 dB, in 5 dB steps	

	Specifications	Supplemental Information
Maximum Safe Input Level		
Input attenuator setting ≥15 dB		Signals > +33 dBm (2 W) nominal may trigger input
Average Continuous Power or Peak Pulse Power		protection, which disconnects the input path. (75 Ω : signals > +79 dBmV (1 W))
$50 \ \Omega$	+30 dBm (1 W)	
75 Ω (Option 1DP)	+75 dBmV (0.4 W)	
dc	100 Vdc	dc transients may momentarily trigger input protection
Input attenuator setting <15 dB		Signals > +6 dBm (4 mW) nominal may trigger input
Average Continuous Power or Peak Pulse Power		protection, which automatically increases input attenuation to 15 dB. (75 Ω :
50 Ω	+3 dBm (2 mW)	signals > +61 dBmV (15 mW))
75 Ω (Option 1DP)	+59 dBmV (10 mW)	
dc	100 Vdc	dc transients may trigger input protection

	Specifications	Supplemental Information
1 dB Gain Compression		
Total power at input mixer ^{ab} 50 MHz to 1.5 GHz		
50 Ω 75 Ω (Option 1DP)	0 dBm +46.75 dBmV	
Preamp On (Option 1DS) Total power at the preamp ^c 50 Ω 75 Ω		–20 dBm, characteristic 26.75 dBmV, characteristic

a. Mixer power level (dBm) = input power (dBm) – input attenuation (dB).

b. For resolution bandwidths 1 kHz to 30 kHz, the maximum input signal amplitude must be \leq reference level +10 dB. (Option 1DP: For resolution bandwidths 1 kHz to 30 kHz, the maximum input signal amplitude must be \leq reference level +5 dB).

c. Total power at the preamp = total power at the input (dBm).

	Specifications		Supplemental Information
Displayed Average Noise Level			
(Input terminated, 0 dB attenuation, sample detector, Reference Level = -70 dBm) (75 Ω : Reference Level = -21.24 dBmV)			
50 Ω	1 kHz RBW 30 Hz VBW	10 Hz RBW 1 Hz VBW (Option 1DR)	
400 kHz to 10 MHz	≤ –115 dBm	≤ –134 dBm	
10 MHz to 500 MHz	≤ –119 dBm	≤ –138 dBm	
500 MHz to 1.0 GHz	≤–117 dBm	≤ –136 dBm	
1.0 GHz to 1.5 GHz	≤ –113 dBm	≤ –132 dBm	

	Specif	ications	Supplemental Information
50 Ω, Preamp On (Option 1DS)	1 kHz RBW 30 Hz VBW	10 Hz RBW 1 Hz VBW (Option 1DR)	
400 kHz to 10 MHz	≤ –131 dBm	≤-149 dBm	
10 MHz to 500 MHz	≤ –135 dBm	≤ –153 dBm	
500 MHz to 1.0 GHz	≤ –133 dBm	≤ –151 dBm	
1.0 GHz to 1.5 GHz	≤ –129 dBm	≤ –147 dBm	
75 Ω, (Option 1DP)	1 kHz RBW 30 Hz VBW	10 Hz RBW 1 Hz VBW (Option 1DR)	
1 MHz to 10 MHz	\leq -63 dBmV	$\leq -82 \text{ dBmV}$	
10 MHz to 500 MHz	\leq -65 dBmV	$\leq -84 \text{ dBmV}$	
500 MHz to 1.0 GHz	\leq -60 dBmV	\leq -79 dBmV	
1.0 GHz to 1.5 GHz	$\leq -53 \text{ dBmV}$	$\leq -72 \text{ dBmV}$	
75 Ω, Preamp On (Option 1DP and 1DS)	1 kHz RBW 30 Hz VBW	10 Hz RBW 1 Hz VBW (Option 1DR)	
1 MHz to 10 MHz	$\leq -80 \text{ dBmV}$	≤ –98 dBmV	
10 MHz to 500 MHz	$\leq -81 \text{ dBmV}$	$\leq -99 \text{ dBmV}$	
500 MHz to 1.0 GHz	$\leq -76 \text{ dBmV}$	\leq -94 dBmV	
1.0 GHz to 1.5 GHz	\leq -69 dBmV	$\leq -87 \text{ dBmV}$	

	Specifications	Supplemental Information
Display Range		
Log Scale	Ten divisions displayed; 0.1, 0.2, 0.5 dB/division and 1 to 20 dB/division in 1 dB steps	
$RBW \ge 1 \ kHz$	Calibrated 0 to –85 dB from Reference Level	
$RBW \leq 300 Hz$ (Option 1DR)	Calibrated 0 to –120 dB ^a from Reference Level	
Linear Scale	Ten divisions	
Scale Units	dBm, dBmV, dBµV, V,W and Hz (Option BAA)	

a. 0 to -70 dB range when span = 0 Hz, or when auto ranging is off: (:DISPlay:WINDow:TRACe:Y[:SCALe]:LOG:RANGe:AUTO OFF).

	Specifications	Supplemental Information
Marker Readout Resolution		
Log scale		
RBW≥1 kHz		
0 to –85 dB from ref level	0.04 dB	
RBW ≤ 300 Hz		
0 to –120 dB from ref level	0.04 dB	
Linear scale	0.01% of Reference Level	
Fast Sweep Times for Zero Span		
20 µs to <5 ms (Option AYX)		
Log		
0 to -85 dB from ref level	0.3 dB	
Linear	0.3% of Reference Level for linear scale	

	Specifications	Supplemental Information
Frequency Response		
50 Ω, Absolute ^a /Relative		
9 kHz to 1.5 GHz		
10 dB attenuation		
20 to 30 °C	$\pm 0.5 \text{ dB}$	
0 to 55 $^{\circ}\mathrm{C}$	±1.0 dB	
0 dB, 5 dB, 15 to 60 dB attenuation		±1.0 dB, characteristic
50 Ω, Absolute ^a /Relative Preamp On <i>(Option 1DS</i>)		
100 kHz to 1.5 GHz		
0 dB attenuation		
20 to 30 °C	±1.0 dB	
0 to 55 °C	±1.5 dB	
5 dB to 20 dB attenuation		±1.5 dB, characteristic
75 Ω, Absolute ^a /Relative (Option 1DP)		
1 MHz to 1.5 GHz		
10 dB attenuation		
20 to 30 °C	±0.5 dB	
0 to 55 °C	±1.0 dB	
0, 5, 15 to 50 dB attenuation		±1.0 dB, characteristic
55 to 60 dB attenuation		
1 MHz to 1 GHz		±1.0 dB, characteristic
1 GHz to 1.5 GHz		±1.25 dB, characteristic
75 Ω, Absolute ^a /Relative Preamp On <i>(Option 1DS and 1DP)</i>		
1 MHz to 1.5 GHz		
0 dB attenuation		
20 to 30 °C	±1.5 dB	
0 to 55 °C	±2.0 dB	

	Specifications	Supplemental Information
5 dB to 20 dB attenuation		±2.0 dB, characteristic

a. Absolute flatness values are referenced to the amplitude at 50 MHz.

	Specifications	Supplemental Information
Input Attenuation Switching Uncertainty at 50 MHz		
Attenuator Setting		
0 dB to 5 dB	±0.3 dB	
10 dB	Reference	
15 dB	±0.3 dB	
20 to 60 dB	$\pm (0.1 \text{ dB} + 0.01 \times \text{Attenuator})$ Setting)	

	Specifications	Supplemental Information
Preamp (Option 1DS)		
Gain		+20 dB, nominal ^a
Noise figure		4 dB, characteristic

a. Amplifier is before the input attenuator.

	Specifications	Supplemental Information
Absolute Amplitude Accuracy		
At reference settings ^a	±0.34 dB	
Preamp On ^b (Option 1DS)	±0.5 dB	
Overall Amplitude Accuracy ^c		
20 to 30 °C	± (0.54 dB + Absolute Frequency Response)	

a. Settings are: reference level -25 dBm; (75 Ω reference level +28.75 dBmV); input attenuation 10 dB; center frequency 50 MHz; RBW 1 kHz; VBW 1 kHz; scale linear or log; span 2 kHz; sweep time coupled, sample detector, signal at reference level.

b. Settings are: reference level -30 dBm; (75 Ω reference level +18.75 dBmV); input attenuation 0 dB; center frequency 50 MHz; RBW 1 kHz; VBW 1 kHz; scale linear or log; span 2 kHz; sweep time coupled, signal at reference level.

c. For reference level 0 to -50 dBm; input attenuation 10 dB; RBW 1 kHz; VBW 1 kHz; scale log, log range 0 to 50 dB from reference level; sweep time coupled; signal input 0 to -50 dBm; span ≤20 kHz.

	Specifications	Supplemental Information
RF Input VSWR (at tuned frequency)		
Attenuator setting		
50 Ω		
0 to 5 dB attenuation		1.55:1, characteristic
10 to 60 dB attenuation		1.35:1, characteristic
75Ω		
1 MHz to 1.1 GHz		
0 to 5 dB attenuation		1.55:1, characteristic
10 to 60 dB attenuation		1.35:1, characteristic
1.1 GHz to 1.5 GHz		
0 to 60 dB attenuation		2.0:1, characteristic
Input protection is tripped		Open input, characteristic
Amptd Ref is On		Open input, characteristic
Auto Align All is selected		Open input momentarily during retrace, characteristic

	Specifications	Supplemental Information
Auto Alignment ^a		
Sweep-to-sweep variation		±0.1 dB, characteristic

a. Set Auto Align to Off and use Align Now, All to eliminate this variation.

	Specifications	Supplemental Information
Resolution Bandwidth Switching Uncertainty (at Reference Level)		
1 kHz RBW	Reference	
3 kHz to 3 MHz RBW	±0.3 dB	
5 MHz RBW	±0.6 dB	
10 Hz to 300 Hz RBW (Option 1DR)	±0.3 dB	

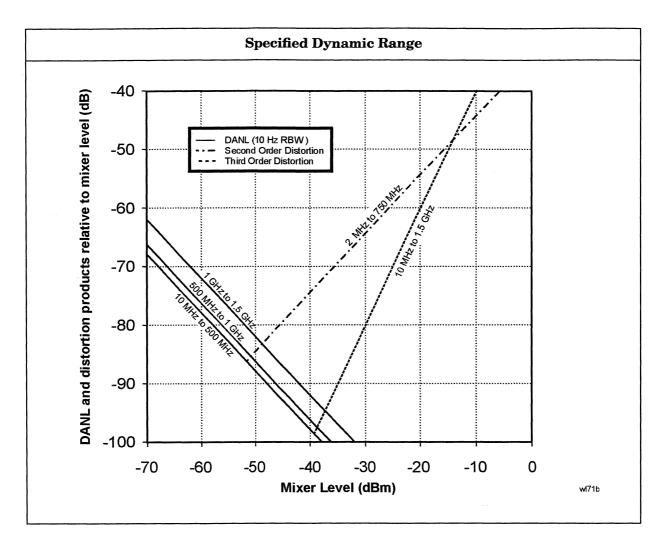
	Specifications	Supplemental Information
Reference Level		
Range	Adjustable over Amplitude Measurement Range	
Resolution		
Log Scale	±0.1 dB	
Linear Scale	±0.12% of Reference Level	
50 Ω, Accuracy (at a fixed frequency, a fixed attenuator, and referenced to -35 dBm (-10 dBm, Preamp On (Option 1DS))		
Reference Level (dBm) – input attenuator setting (dB) + preamp gain (dB)		
–10 dBm to > –60 dBm	±0.3 dB	
60 dBm to >85 dBm	±0.5 dB	
–85 dBm to –90 dBm	±0.7 dB	
75 Ω (Option 1DP), Accuracy (at a fixed frequency, a fixed attenuator, and referenced to 18.75 dBmV (38.75 dBmV, Preamp On (Option 1DS)))		

	Specifications	Supplemental Information
Reference Level (dBmV) – input attenuator setting (dB) + preamp gain (dB)		
38.75 dBmV to > –11.25 dBmV	±0.3 dB	
–11.25 dBmV to > –26.25 dBmV	±0.5 dB	
–26.25 dBmV to –41.25 dBmV	±0.7 dB	

	Specifications	Supplemental Information
Display Scale Switching Uncertainty		
Switching between Linear and Log	±0.15 dB at Reference Level	
Log Scale Switching	No error	

	Specifications	Supplemental Information
Display Scale Fidelity		
Log Maximum Cumulative		
0 to –85 dB from Reference Level	±(0.3 dB + 0.01 × dB from Reference Level)	
RBW \leq 300 Hz (Option 1DR)		
Span > 0 Hz		
0 to –98 dB from Reference Level	±(0.3 dB + 0.01 × dB from Reference Level)	
–98 to –120 dB from Reference Level		±2.0 dB, characteristic
Span = 0 Hz ^a		
0 to -60 dB from Reference Level	$\pm (0.3 \text{ dB} + 0.015 \times \text{dB} \text{ from})$ Reference Level)	
60 to70 dB from Reference Level	±1.5 dB	
Log Incremental Accuracy		
0 to –80 dB ^b from reference level	±0.4 dB/4 dB	
Linear Accuracy	±2% of Reference Level	

a. or when auto ranging is off: (:DISPlay:WINDow:TRACe:Y[:SCALe]:LOG:RANGe:AUTO OFF) b. 0 to -50 dB for RBWs ≤ 300 Hz and span = 0 Hz, or when auto ranging is off.


	Specifications	Supplemental Information
Spurious Responses		
50 Ω		
Second Harmonic Distortion		
Input Signal		
2 MHz to 750 MHz	< –75 dBc for –40 dBm signal at input mixer. ^a	+35 dBm SHI (second harmonic intercept)
Preamp On <i>(Option 1DS)</i> 2 MHz to 750 MHz		0 dBm SHI, characteristic
Third Order Intermodulation Distortion		
2 MHz to 10 MHz		+5 dBm TOI (third order intercept), characteristic
10 MHz to 1.5 GHz	< –80 dBc for two –30 dBm signals at input mixer ^a and >50 kHz separation.	+10 dBm TOI +15 dBm TOI, typical, 20 to 30 °C
Preamp On <i>(Option 1DS),</i> 10 MHz to 1.5 GHz		–16 dBm TOI, characteristic
Other Input Related Spurious		
30 kHz ≤ offset ≤1200 MHz	< −65 dBc for −20 dBm signals at input mixer ^a ≤1.5 GHz.	
Offset >1200 MHz	< −45 dBc for −20 dBm signal at input mixer ^a ≤1.5 GHz.	
Noise Floor Degradation		
Input frequency = 1210.7 MHz ± RBW		< –62 dBc for –45 dBm signal at input mixer ^a

a. Mixer Power Level (dBm) = Input Power (dBm) – Input Attenuation (dB).

	Specifications	Supplemental Information
Spurious Responses		
75 Ω, (Option 1DP)		
Second Harmonic Distortion Input signal		
2 MHz to 750 MHz	<-75 dBc for +8.75 dBmV signal at input mixer. ^a	
Preamp On <i>(Option 1DS),</i> 2 MHz to 750 MHz		< -40 dBc for with 0 dB input attenuation, characteristic
Third Order Intermodulation Distortion		
10 MHz to 1.5 GHz	< –80 dBc for two +18.75 dBmV signals at input mixer ^a and >50 kHz separation.	
Preamp On <i>(Option 1DS)</i> , 10 MHz to 1.5 GHz		< –28 dBc for two +18.75 dBmV signals at the Input with 0 dB input attenuation and > 50 kHz separation, characteristic
Other Input Related Spurious		
30 kHz ≤ offset	< -65 dBc for +28.75 dBmV	
≤1200 MHz	signal at input mixer ^a ≤1.5 GHz.	
Offset >1200 MHz	< –45 dBc, for +28.75 dBmV signal at input mixer ^a ≤1.5 GHz.	
Noise Floor Degradation		
Input frequency = 1210.7 MHz ± RBW		< –62 dBc, for +3.75 dBmV signal at input mixer ^a

a. Mixer Power Level (dBm) = Input Power (dBm) – Input Attenuation (dB)

Amplitude

	Specifications	Supplemental Information
Residual Responses (Input terminated and 0 dB attenuation)		
50 Ω		
150 kHz to 1.5 GHz	< -90 dBm	
75 Ω, (Option 1DP)		
1 MHz to 1.5 GHz	< -36 dBmV	

Options

Time Gated Spectrum Analysis (Option 100)		
	Specifications	Supplemental Information
Gate Delay		
Range	1 µs to 400 s	
Accuracy	$\pm(500 \text{ ns} + (0.01\% \times (\text{maximum of gate delay or length})))$	From gate trigger input to positive edge of gate output
Gate Length		
Range	1 µs to 400 s	
Accuracy	±(500 ns + (0.01% × (maximum of gate delay or length)))	From positive edge to negative edge of gate output
Resolution	[(maximum of gate delay or length in seconds)/65000] rounded up to nearest µs	Dependent on the greater of gate delay or gate length
Additional Amplitude Error ^a		
Log Scale	±0.2 dB	

Time Gated Spectrum Analysis (Option 1D6)

a. While in gate mode.

Linear Scale

Tracking Generator (Option 1DN or 1DQ)

 ± 0.1 % of reference level

	Specifications	Supplemental Information
Warm-Up	5 minutes	

	Specifications	Supplemental Information
Output Frequency Range		
$50 \ \Omega \ (Option \ 1DN)$	9 kHz to 1.5 GHz	
$75 \ \Omega \ (Option \ 1DQ)$	1 MHz to 1.5 GHz	

	Specifications	Supplemental Information
Minimum Resolution BW	1 kHz	Not usable with resolution bandwidths ≤300 Hz (Option 1DR)

	Specifications	Supplemental Information
Output Power Level		
Range		
$50 \ \Omega$ (Option 1DN)		
0 to 55 °C	0 to –70 dBm	
20 to 30 °C	2 to –70 dBm	
$75 \ \Omega \ (Option \ 1DQ)$	+42.75 to –27.25 dBmV	
Resolution	0.1 dB	
Absolute Accuracy (at 50 MHz with coupled source attenuator)		
50 Ω (Option 1DN) referenced to 0 dBm	$\pm 0.5 \mathrm{dB}$	
75 Ω (Option 1DQ) referenced to +42.75 dBmV	± 1.5 dB	
Vernier		
Range	10 dB	
Accuracy (with coupled source attenuator)		
50 Ω (Option 1DN) referenced to 0 dBm	±0.75 dB, for 0 to –10 dBm	
75 Ω (Option 1DQ) referenced to 42.75 dBmV	±0.9 dB, for +42.75 to +32.75 dBmV	
Output Attenuator Range	0 to 60 dB in 10 dB steps	

	Specifications	Supplemental Information
Maximum Safe Reverse Level		dc transients may trigger output protection
50 Ω (Option 1DN) ^a		+20 dBm (0.1 W), 100 Vdc, characteristic
75 Ω (Option 1DQ) ^a		+69 dBmV (0.1 W), 100 Vdc, characteristic

a. dc transients may trigger reverse power protection.

	Specifications	Supplemental Information
Output Power Sweep		
Range		
50 Ω (Option 1DN)	(–15 dBm to 0 dBm) – (Source Attenuator Setting)	
$75~\Omega~(Option~1DQ)$	(+27.75 dBm to +42.75 dBmV) – (Source Attenuator Setting)	
Resolution	0.1 dB	
Accuracy (zero span)		
$50 \ \Omega \ (Option \ 1DN)$	<1.5 dB peak-to-peak	
75 Ω (Option 1DQ)	<1.8 dB peak-to-peak	

	Specifications	Supplemental Information
Output Flatness		
Referenced to 50 MHz, 0 dB attenuator		
$50 \ \Omega$ (Option 1DN)		
9 kHz to 10 MHz	±2 dB	
10 MHz to 1.5 GHz	±1.5 dB	
75 Ω (Option 1DQ)		
1 MHz to 10 MHz	±2.5 dB	
10 MHz to 1.5 GHz	±2 dB	

	Specifications	Supplemental Information
Spurious Outputs		
50 Ω (Option 1DN) (0 dBm output), 75 Ω (Option 1DQ) (+42.75 dBmV output)		
Harmonic Spurs		
9 kHz to 20 MHz	< -20 dBc	
20 MHz to 1.5 GHz	< -25 dBc	
Non-harmonic Spurs	< -35 dBc	

	Specifications	Supplemental Information
Dynamic Range	Maximum Output Power Level – Displayed Average Noise Level	

	Specifications	Supplemental Information
Output Tracking		
Drift		No error
Swept Tracking Error		No error for coupled sweep times

	Specifications	Supplemental Information
RF Power-Off Residuals		
50 Ω (Option 1DN) 100 kHz to 1.5 GHz		< –120 dBm, characteristic
75 Ω (<i>Option 1DQ</i>) 1 MHz to 1.5 GHz		< -65 dBmV, characteristic

	Specifications	Supplemental Information
Output Attenuator Repeatability		±0.2 dB, characteristic

Options

	Specifications	Supplemental Information
Output VSWR		
50 Ω (Option 1DN)		<2.5:1, characteristic
75 Ω (Option 1DQ)		<2.0:1, characteristic

	Specifications	Supplemental Information
Output Attenuator Accuracy		
0 dB	Reference	
10 dB		± 0.6 dB, characteristic
20 dB		± 0.9 dB, characteristic
30 dB		±1.2 dB, characteristic
40 dB		±1.5 dB, characteristic
50 dB		±1.8 dB, characteristic
60 dB		±2.1 dB, characteristic

Tracking Generator Output Accuracy 50 Ω (Option 1DN)

Relative Accuracy (Referred to 0 dBm) = Output Attenuator Accuracy + Vernier Accuracy + Output Flatness

Absolute Accuracy = Relative Accuracy (Referred to 0 dBm) + Absolute Accuracy at 50 MHz

Tracking Generator Output Accuracy 75 Ω (Option 1DQ)

Relative Accuracy (Referred to +42.75 dBmV) = Output Attenuator Accuracy + Vernier Accuracy + Output Flatness

Absolute Accuracy = Relative Accuracy (Referred to +42.75 dBmV) + Absolute Accuracy at 50 MHz

FM Demodulation (Option BAA)

The FM demodulation characteristics will be met after an Align Now,
FM Demod has been run.

	Specifications	Supplemental Information
Input Level		\geq (-60 dBm + attenuator setting – preamp gain), characteristic
Signal Level		0 to –30 dB below reference level, characteristic
FM Deviation		
Range		10 kHz to 1 MHz
Resolution		Provides 1 Hz display annotation resolution
FM Deviation Range		
10 kHz to 40 kHz		12 Hz, characteristic
>40 kHz to 200 kHz		60 Hz, characteristic
>200 kHz to 1 MHz		300 Hz, characteristic
Accuracy ^a FM Rate < FM BW/100, VBW \geq (30 × FM Rate), RBW > the maximum of (30 × FM deviation) or (30 × FM Rate)		< (2% of FM deviation range + 2 × Resolution), characteristic
Offset Error ^a		5% of FM Deviation Range + 300 Hz, characteristic
FM Bandwidth (-3 dB)		
FM Deviation Range		
10 kHz to 40 kHz		$7.5 \times FM$ deviation range, characteristic
>40 kHz to 200 kHz		$1.3 \times FM$ deviation range, characteristic
>200 kHz to 1 MHz		$0.3 \times FM$ deviation range, characteristic

a. In time domain sweeps (span = 0 Hz).

	Specifications	Supplemental Information
TV Trigger and Picture On Screen		TV Trigger initiates a sweep of the analyzer after the sync pulse of a selected line of a TV video field. Picture On Screen displays the TV picture on the analyzer display.
Amplitude Requirements		
TV Source: SA		Top 50% of linear display, characteristic
TV Source: EXT VIDEO IN		500 mVp–p to 2 Vp–p, characteristic
Compatible Standards	NTSC–M, NTSC–Japan, PAL–M, PAL–B,D,G,H,I, PAL–N, PAL–N Combination, SECAM-L	
Field Selection	Entire frame, even, odd	
Sync Polarity	Positive or negative	
TV Trigger		
Line Selection	1 to 525, or 1 to 625, standard dependent	

TV Trigger and Picture On Screen (Option B7B)

General

	Specifications	Supplemental Information
Temperature Range		
Operating	0 to 55 °C	Floppy disk 10 to 40 $^{\circ}\mathrm{C}$
Storage	-40 to +75 °C	

	Specifications	Supplemental Information
Audible Noise (ISO 7779)		
Sound Pressure at 25 °C		<40 dBa, (<4.6 Bels power)

	Specifications	Supplemental Information
Military Specification	Has been type tested to the environmental specifications of MIL-PRF-28800F class 3.	

	Specifications	Supplemental Information
EMI Compatibility	Conducted and radiated emission is in compliance with CISPR Pub. 11/1990 Group 1 Class A.	

	Specifications	Supplemental Information
Immunity Testing		
Radiated Immunity		Testing was done at 3 V/m according to IEC 801-3/1984. When the analyzer tuned frequency is identical to the immunity test signal frequency there may be signals of up to -60 dBm displayed on the screen.
Electrostatic Discharge		Air discharges of up to 8 kV were applied according to IEC 801-2/1991. Discharges to center pins of any of the connectors may cause damage to the associated circuitry.

	Specifications	Supplemental Information
Power Requirements		Uses CUKonverter® topology in the power supply.
ac Operation		
Voltage, frequency	90 to 132 V rms, 47 to 440 Hz	
	195 to 250 V rms, 47 to 66 Hz $$	
Power Consumption, On	<300 W	
Power Consumption, Standby	<5 W	
dc Operation		
Voltage	12 to 20 Vdc	
Power Consumption	<200 W	

	Specifications	Supplemental Information
Measurement Speed		
Local Measurement and Display Update rate ^a		\geq 28/s, characteristic
Remote Measurement and HP-IB Transfer Rate ^b (Option A4H)		≥ 19/s, characteristic

a. Auto align off, 5 ms sweep time, fixed center frequency.

b. Auto align off, 5 ms sweep time, fixed center frequency, 401 point trace, display off (DISPlay:ENABle off), and 32-bit integer data format (FORMat:DATA INT,32).


	Specifications	Supplemental Information
Data Storage		
Internal		200 Traces or States
External (10 to 40 °C) 3.5" 1.44 MB, MS-DOS® compatible floppy disk		200 Traces or States

	Specifications	Supplemental Information
Downloadable Program Memory		2 MB available memory
(Option B72)		10 MB available memory

	Specifications	Supplemental Information
Demod Tune Listen		
АМ		Internal speaker, front-panel earphone jack and front-panel volume control.
FM (Option BAA)		
(Option A4J, AYX, or BAA)		An uncalibrated demodulated signal is available on the AUX VIDEO OUT or EXT VIDEO OUT connectors at the rear panel.

	Specifications	Supplemental Information
Weight (without options)		
Net		12.6 kg (27.7 lb), characteristic
Shipping		27.3 kg (60 lb), characteristic

General

Inputs and Outputs

Internal

	Specifications	Supplemental Information
Amptd Ref ^a		Amplitude reference
Frequency		50 MHz
Frequency Accuracy		Frequency reference error ^b
$50 \ \Omega$ Amplitude		–25 dBm ^c , nominal
75 Ω Amplitude (Option 1DP)		+28.75 dBmV ^c , nominal

a. Turn the amplitude reference signal on/off by pressing the keys: Input/Output, Amptd Ref.

b. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

c. The internal amplitude reference actual power is stored internally.

Front Panel

	Specifications	Supplemental Information
INPUT 50 Ω		
Connector	Type-N female	
Impedance		50 Ω, nominal
INPUT 75 Ω (Option 1DP)		
Connector	BNC female	
Impedance		75 Ω, nominal

	Specifications	Supplemental Information
RF OUT 50 Ω, (Option 1DN)		
Connector	Type-N female	
Impedance		50 Ω, nominal
RF OUT 75 Ω, (Option 1DQ)		
Connector	BNC female	
Impedance		75 Ω, nominal

	Specifications	Supplemental Information
PROBE POWER		
Voltage/Current		+15 Vdc, ±7% at 150 mA max., characteristic
		–12.6 Vdc ±10% at 150 mA max., characteristic

	Specifications	Supplemental Information
EXT KEYBOARD		Feature not implemented.
Connector	6-pin mini-DIN	

	Specifications	Supplemental Information
Speaker		Front panel knob controls volume

	Specifications	Supplemental Information
Headphone		Front panel knob controls volume
Connector	3.5 mm (1/8 inch) miniature audio jack	
Power Output		0.2 W into 4 Ω, characteristic

Rear Panel

	Specifications	Supplemental Information
10 MHz REF OUT		
Connector	BNC female	
Impedance		50 Ω, nominal
Output Amplitude		>0 dBm, characteristic

	Specifications	Supplemental Information
10 MHz REF IN		
Connector	BNC female	Note: Analyzer noise sidebands and spurious response performance may be affected by the quality of the external reference used.
Impedance		50 Ω, nominal
Input Amplitude Range		–15 to +10 dBm, characteristic
Frequency		10 MHz, nominal

	Specifications	Supplemental Information
GATE TRIG/EXT TRIG IN		
Connector	BNC female	
External Trigger Input		
Trigger Level		Selectable positive or negative edge initiates sweep in EXT TRIG mode (5 V TTL)
Gate Trigger Input (Option 1D6)		
Minimum Pulse Width		>30 ns (5 V TTL)

	Specifications	Supplemental Information
GATE/HI SWP OUT		
Connector	BNC female	
High Sweep Output		
Level		High = sweep; Low = retrace (5 V TTL)
Gate Output (Option 1D6)		
Level		High = gate on; Low = gate off (5 V TTL)

	Specifications	Supplemental Information
VGA OUTPUT		
Connector	VGA compatible, 15-pin mini D-SUB	
Format		VGA (31.5 kHz horizontal, 60 Hz vertical sync rates, non-interlaced) Analog RGB
Resolution	640 imes 480	

	Specifications	Supplemental Information
AUX IF OUT (Option A4J or AYX)		RBW≥1 kHz
Connector	BNC female	
Frequency		21.4 MHz, nominal
Amplitude Range (for signal at reference level and for reference levels – input attenuation + preamp gain of -10 to -70 dBm)		–10 dBm (uncorrected), characteristic
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
AUX VIDEO OUT (Option A4J or AYX)		RBW≥1 kHz
Connector	BNC female	
Amplitude Range (into >10 $k\Omega$)		0 to 1 V (uncorrected), characteristic

	Specifications	Supplemental Information
HI SWP IN (Option A4J or AYX)		
Connector	BNC female	
Input		Open collector, low stops sweep (5 V TTL)

	Specifications	Supplemental Information
HI SWP OUT (Option A4J or AYX)		
Connector	BNC female	
Output		High = sweep, Low = retrace (5 V TTL)

	Specifications	Supplemental Information
SWP OUT (Option A4J or AYX)		
Connector	BNC female	
Amplitude		0 to +10 V ramp, characteristic

	Specifications	Supplemental Information
HP-IB Interface (Option A4H)		
Connector	IEEE-488 bus connector	
HP-IB Codes		SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and C28

	Specifications	Supplemental Information
Serial Interface (Option 1AX)		
Connector	9-pin D-SUB male	RS-232

	Specifications	Supplemental Information
Parallel Interface (Option A4H or 1AX)		Printer port only
Connector	25-pin D-SUB female	

	Specifications	Supplemental Information
EXT VIDEO IN/TV TRIG OUT^a (Option B7B or BAA)		EXT VIDEO IN is the Baseband composite video input for TV trigger and picture on screen. TV TRIG OUT is the TV trigger output.
Connector	BNC Female (75 Ω)	
Impedance		75 Ω, characteristic.
(Option BAA without Option B7B)		Feature not implemented.
(Option BAA with Option B7B)		
External Video Input Video Amplitude		1 Vp–p, nominal, characteristic
TV Trigger Output		Positive edge indicates start of selected TV line after sync. pulse.
Amplitude		TTL (0 V and 3.4 V with 75 Ω series resistance), characteristic

a. This connector is labelled EXT VIDEO IN on older spectrum analyzers and EXT VIDEO IN/TV TRIG OUT on newer spectrum analyzers.

	Specifications	Supplemental Information
EXT VIDEO OUT (Option B7B or BAA)		Baseband video output RBW ≥ 1 kHz
Connector	BNC Female (75 Ω)	
Impedance		75 Ω, characteristic.
Amplitude (Option BAA without Option B7B)		0 to 1 V (uncorrected), characteristic
Amplitude (Option BAA with Option B7B)		
TV Source: SA		0 to 1 V (uncorrected), characteristic
TV Source and EXT VIDEO IN		Same as level at EXT VIDEO IN/TV TRIG OUT, characteristic

Regulatory Information

CAUTION This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 1010 and 664 respectively.

NOTE This product has been designed and tested in accordance with IEC Publication 1010, Safety Requirements for Electronic Measuring Apparatus, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.

The CE mark is a registered trademark of the European Community (if accompanied by a year, it is the year when the design was proven).

The CSA mark is the Canadian Standards Association safety mark.

SP•

Œ

ISM 1-A

This is a symbol of an Industrial Scientific and Medical Group 1 Class A product. (CISPR 11, Clause 4)

Declaration of Conformity

DECLARATION OF CONFORMITY According to ISO/IEC Guide 22 and EN 45014		
Manufacturer's Name:	Hewlett-Packard Co.	
Manufacturer's Address:	1400 Fountaingrove Parkway Santa Rosa, CA 95403-1799 USA	
Declares that the products	u de la constante de	
Product Name:	Spectrum Analyzer	
Model Number:	HP E4401B, HP E4402B, HP E4403B, HP E4404B, HP E4405B, HP E4407B, HP E4408B, HP E4411B	
Product Options:	This declaration covers all options of the above products.	
Conform to the following Product	specifications:	
Safety: IEC 61010-1:1990 / EN CAN/CSA-C22.2 No. 10		
EMC: CISPR 11:1990/EN 55011:1991 Group 1, Class A IEC 801-2:1984/EN 50082-1:1992 4 kV CD, 8 kV AD IEC 801-3:1984/EN 50082-1:1992 3 V/m, 27-500 MHz IEC 801-4:1988/EN 50082-1:1992 0.5 kV sig. lines, 1 kV power lines		
	the requirements of the Low Voltage Directive	
73/23/EEC and the EMC Directive 89/336/EEC and carry the CE-marking accordingly.		
	they Pleith	
Santa Rosa, CA, USA 7 Jan. 199	99 Greg Pfeiffer/Quality Engineering Manager	
European Contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH Department HQ- TRE, Herreneberger Strasse 130, D71034 Boblingen, Germany (FAX +49-7031-14-3143)		

5 HP E4402B Specifications and Characteristics

About This Chapter

This chapter contains specifications and characteristics for the HP E4402B spectrum analyzer. The distinction between specifications and characteristics is described as follows.

- Specifications describe the performance of parameters covered by the product warranty. (The temperature range is 0 °C to 55 °C, unless otherwise noted.)
- Characteristics describe product performance that is useful in the application of the product, but is not covered by the product warranty.
- Typical performance describes additional product performance information that is not covered by the product warranty. It is performance beyond an indicated specification, that most units will exhibit.
- Nominal values indicate the expected, but not warranted, value of a parameter.

The following conditions must be met for the analyzer to meet its specifications.

- \Box The analyzer is within the one year calibration cycle.
- □ If Auto Align All is selected:
 - After 2 hours of storage within the operating temperature range.
 - 5 minutes after the analyzer is turned on with sweep times less than 4 seconds.
 - After the front-panel amplitude reference is connected to the INPUT, and Align Now RF has been run, after the analyzer is turned on. And, once every 24 hours, or if ambient temperature changes more than 30 °C¹.
- □ If Auto Align Off is selected:
 - When the analyzer is at a constant temperature, within the operating temperature range, for a minimum of 90 minutes,
 - After the analyzer is turned on for a minimum of 90 minutes, the front panel amplitude reference has been connected to the INPUT, and Align Now All has been run.
 - When Align Now All is run:
 - Every hour
 - 1. 10 °C if Option 1DS is active.

- If the ambient temperature changes more than 3 °C
- If the 10 MHz reference changes
- When Align Now RF is run (with the front-panel amplitude reference connected to the INPUT):
 - Every 24 hours
 - If the ambient temperature changes more than $30 \, {}^{\circ}\mathrm{C}^1$
- □ If Auto Align All but RF is selected:
 - When the analyzer is at a constant temperature, within the operating temperature range, for a minimum of 90 minutes.
 - After the analyzer is turned on for a minimum of 90 minutes, the front panel amplitude reference has been connected to the INPUT, and Align Now RF has been run.
 - When Align Now RF is run (with the front-panel amplitude reference connected to the INPUT):
 - Every hour
 - If the ambient temperature changes more than 3 °C

^{1. 10 °}C if Option 1DS is active.

Frequency

	Specifications	Supplemental Information
Frequency Range		
	9 kHz to 3 GHz	
Preamp On (Option 1DS)	1 MHz to 3 GHz	

	Specifications	Supplemental Information
Frequency Reference		
Aging Rate	$\pm 2 \times 10^{-6}$ /year	$\pm 1.0 imes 10^{-7}$ /day, characteristic
Settability	$\pm 5 imes 10^{-7}$	
Temperature Stability	$\pm5 imes10^{-6}$	

	Specifications	Supplemental Information
High Stability Frequency Reference (Option 1D5)		
Aging Rate	$\pm 1 imes 10^{-7}$ /year	$\pm5 imes10^{-10}$ /day, 7-day average after being powered on for 7 days, characteristic
Settability	$\pm 1 \times 10^{-8}$	
Temperature Stability		
20 to 30 °C	$\pm 1 \times 10^{-8}$	
0 to 55 °C	$\pm 5 imes 10^{-8}$	
Warm-Up (Internal frequency reference selected)		
After 5 minutes		$<\pm1\times10^{-7}$ of final frequency, ^a characteristic
After 15 minutes		<±1×10 ⁻⁸ of final frequency, ^a characteristic

a. Final frequency is defined as frequency 60 minutes after power-on with analyzer set to internal frequency reference.

	Specifications	Supplemental Information
Frequency Readout Accuracy		
(Start, Stop, Center, Marker)	±(frequency indication × frequency reference error ^a + span accuracy + 15% of RBW + 10 Hz)	

a. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

	Specifications	Supplemental Information
Marker Frequency Counter		
Resolution	Selectable from 1 Hz to 100 kHz	
Accuracy ^a	\pm (marker frequency \times frequency reference error ^b + counter resolution)	For RBW ≥ 1 kHz

a. Marker level to displayed noise level > 25 dB, RBW/ Span \ge 0.002, frequency offset = 0 Hz.

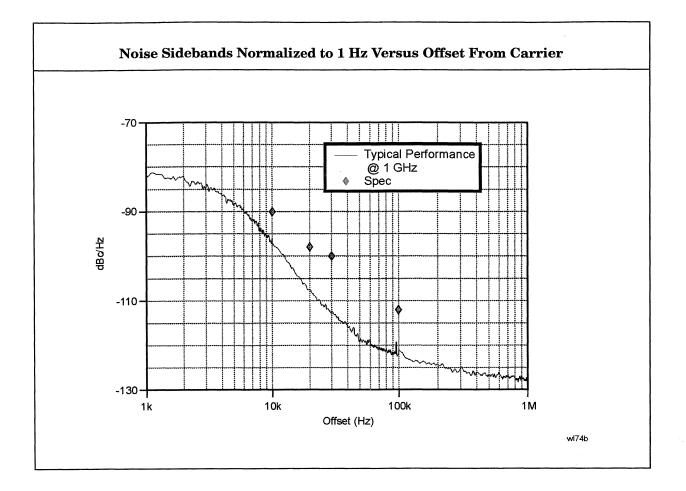
b. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

	Specifications	Supplemental Information
Frequency Span		
Range	0 Hz (zero span), 100 Hz to 3 GHz	
Resolution	2 Hz	
Accuracy	±1% of span	

	Specifications	Supplemental Information
Sweep Time		
Range	5 ms to 2000 s	50 ms is the minimum sweep time with the tracking generator in operation (Option 1DN)
(Option AYX)	20 µs to 2000 s	For Span = 0 Hz, RBW ≥ 1 kHz
Accuracy		
Span = 0 Hz 5 ms to 2000 s	±1%	
$20\mu s$ to < 5ms (Option AYX)	±1%	
Sweep Trigger ^{ab}	Free Run, Single, Line, Video, External, Delayed, Gate (Option 1D6), TV (Option B7B)	
Delayed Trigger ^{ac}		
Range	1 µs to 400 s	
Resolution	[(delay in seconds)/65000] rounded up to nearest μs	
Accuracy	±(500 ns +(0.01% of delay))	

a. Gate cannot be used simultaneously with delayed or $\ensuremath{\mathsf{TV}}$ trigger.

b. Auto align is suspended in video, external, gate, and delayed trigger modes while waiting for a trigger event to occur.


c. Delayed trigger is available with line, external, and TV trigger (Option B7B).

	Specifications	Supplemental Information
Resolution Bandwidth (RBW)		
Range		
–3 dB bandwidth	1 kHz to 3 MHz, in 1-3-10 sequence, 5 MHz	
-6 dB bandwidth (EMI)	9 kHz and 120 kHz	
(Option 1DR)		Only available in spans
–3 dB bandwidth	Adds 10, 30, 100, 300 Hz	≤ 5 MHz, sweep times ≥ 5 ms, and not usable with tracking
–6 dB bandwidth (EMI)	Add 200 Hz	generator in operation (<i>Option 1DN</i>)

	Specifications	Supplemental Information
Accuracy		
1 kHz to 3 MHz RBW	±15%	
5 MHz RBW	±30%	
10 Hz to 300 Hz RBW (Option 1DR)	±10%	
Shape		
1 kHz to 5 MHz RBW		Synchronously tuned four poles, approximately Gaussian shape
10 Hz to 300 Hz RBW (Option 1DR)		Digital, approximately Gaussian shape
Selectivity (60 dB/3 dB bandwidth ratio)		
1 kHz to 5 MHz RBW		<15:1, characteristic
10 Hz to 300 Hz RBW (Option 1DR)		<5:1, characteristic

	Specifications	Supplemental Information
Video Bandwidth (VBW) (–3 dB)		41
Range	30 Hz to 1 MHz in 1-3-10 sequence	3 MHz, characteristic
(Option 1DR)	Adds 1, 3, 10 Hz for RBW's <1 kHz	
Accuracy		±30%, characteristic
Shape		Post detection, single pole low- pass filter used to average displayed noise
		Video bandwidths below 30 Hz are digital bandwidths with anti-aliasing filtering.

	Specifications	Supplemental Information
Stability		
Noise Sidebands, offset from CW signal with 1 kHz RBW, 30 Hz VBW and sample detector		
≥10 kHz	\leq –90 dBc/Hz	
≥20 kHz	≤ –98 dBc/Hz	
≥30 kHz	≤ –100 dBc/Hz	
≥100 kHz	≤ –112 dBc/Hz	
Residual FM		
1 kHz RBW, 1 kHz VBW	≤150 Hz p–p in 100 ms	
(Option 1D5)	≤100 Hz p–p in 100 ms	
10 Hz RBW, 10 Hz VBW (Option 1DR and 1D5)	≤2 Hz p–p in 20 ms	
10 Hz RBW, 10 Hz VBW (Option 1DR)		≤10 Hz p–p in 20 ms, characteristic
System-Related Sidebands, offset from CW signal		
≥30 kHz	≤ –65 dBc	
Line-Related Sidebands, offset from CW signal (Option 1DR)		
<300 Hz		≤–50 dBc, characteristic
>300 Hz to 30 kHz		\leq –55 dBc, characteristic

Amplitude

Amplitude specifications do not apply for the negative peak detector mode.

	Specifications	Supplemental Information
Measurement Range	Displayed Average Noise Level to Maximum Safe Input Level	
Input Attenuator Range	0 to 65 dB, in 5 dB steps	

	Specifications	Supplemental Information
Maximum Safe Input Level		
Average Continuous Power	+30 dBm (1 W)	
Input attenuator setting ≥5 dB		
Peak Pulse Power for <10 µsec pulse width, <1% duty cycle, and input attenuation ≥30 dB	+50 dBm (100 W)	
dc	100 Vdc	

	Specifications	Supplemental Information
1 dB Gain Compression		
Total power at input mixer ^{ab}		
50 MHz to 3.0 GHz	0 dBm	
Preamp On (Option 1DS) Total power at the preamp ^c		–20 dBm, characteristic

a. Mixer power level (dBm) = input power (dBm) - input attenuation (dB).

b. For resolution bandwidths 1 kHz to 30 kHz, the maximum input signal amplitude must be \leq reference level +10 dB.

c. Total power at the preamp (dBm) = total power at the input (dBm) - input attenuation (dB).

	Specifi	cations	Supplementa	l Information
Displayed Average Noise Level				
(Input terminated, 0 dB attenuation, sample detector, Reference Level = -70 dBm)				
	1 kHz RBW 30 Hz VBW	10 Hz RBW 1 Hz VBW (Option 1DR)	1 kHz RBW 30 Hz VBW	10 Hz RBW 1 Hz VBW (Option 1DR)
1 MHz to 10 MHz			≤–117 dBm, characteristic	≤–136 dBm, characteristic
10 MHz to 1.0 GHz	≤ –117 dBm	≤ –136 dBm		
1.0 GHz to 2.0 GHz	≤ –116 dBm	≤ –135 dBm		
2.0 GHz to 3.0 GHz	≤–114 dBm	≤ –133 dBm		
Preamp On (Option 1DS)	1 kHz RBW 30 Hz VBW	10 Hz RBW 1 Hz VBW (Option 1DR)	1 kHz RBW 30 Hz VBW	10 Hz RBW 1 Hz VBW (Option 1DR)
0 to 55 °C				
1 MHz to 10 MHz			≤ –132 dBm, characteristic	$\leq -150 \text{ dBm},$ characteristic
10 MHz to 1.0 GHz	≤ –132 dBm	≤ –150 dBm		-985.
1.0 GHz to 2.0 GHz	≤ –131 dBm	≤ –149 dBm		
2.0 GHz to 3.0 GHz	≤ –129 dBm	≤ –147 dBm		
20 to 30 °C				
10 MHz to 1.0 GHz	≤ –133 dBm	$\leq -151 \text{ dBm}$		
1.0 GHz to 2.0 GHz	≤ –133 dBm	$\leq -151 \text{ dBm}$		
2.0 GHz to 3.0 GHz	\leq -132 dBm	≤ –150 dBm		

	Specifications	Supplemental Information
Display Range		
Log Scale	Ten divisions displayed; 0.1, 0.2, 0.5 dB/division and 1 to 20 dB/division in 1 dB steps	
$RBW \ge 1 \text{ kHz}$	Calibrated 0 to –85 dB from Reference Level	
$RBW \leq 300 Hz$ (Option 1DR)	Calibrated 0 to –120 dB ^a from Reference Level	
Linear Scale	Ten divisions	
Scale Units	dBm, dBmV, dBµV, V,W and Hz (Option BAA)	

a. 0 to -70 dB range when span = 0 Hz, or when auto ranging is off: (:DISPlay:WINDow:TRACe:Y[:SCALe]:LOG:RANGe:AUTO OFF).

	Specifications	Supplemental Information
Marker Readout Resolution		
Log scale		
$RBW \ge 1 kHz$		
0 to –85 dB from ref level	0.04 dB	
$RBW \le 300 Hz$		
0 to –120 dB from ref level	0.04 dB	
Linear scale	0.01% of Reference Level	
Fast Sweep Times for Zero Span		
20 µs to <5 ms (Option AYX)		
Log		
0 to –85 dB from ref level	0.3 dB	
Linear	0.3% of Reference Level for linear scale	

	Specifications	Supplemental Information
Frequency Response		
50 Ω Absolute ^a /Relative		
9 kHz to 3.0 GHz		
10 dB attenuation		
20 to 30 °C	±0.5 dB	
0 to 55 °C	±1.0 dB	
50 Ω, Absolute ^a /Relative Preamp On (<i>Option 1DS</i>)		
1 MHz to 3.0 GHz		
0 dB attenuation	±2.0 dB	

a. Absolute flatness values are referenced to the amplitude at 50 MHz.

	Specifications	Supplemental Information
Input Attenuation Switching Uncertainty at 50 MHz		
Attenuator Setting		
0 dB to 5 dB	±0.3 dB	
10 dB	Reference	
15 dB	±0.3 dB	
20 to 65 dB attenuation	$\pm (0.1 \text{ dB} + 0.01 \times \text{Attenuator})$ Setting)	

	Specifications	Supplemental Information
Preamp (Option 1DS)		
Gain		+20 dB, nominal ^a
Noise figure		5 dB, characteristic

a. Amplifier is between the input attenuator and the input mixer.

Attenuation Accuracy Relative to the 10 dB Attenuator Setting, Characteristic		
	Frequency Range	
Attenuation, dB	dc-3.0 GHz, (± dB)	
0	0.3	
5	0.3	
10 (Reference)	Reference	
15	0.4	
20	0.4	
25	0.5	
30	0.5	
35	0.6	
40	0.6	
45	0.7	
50	0.7	
55	0.9	
60	0.9	
65	1.0	

	Specifications	Supplemental Information
Absolute Amplitude Accuracy		
At reference settings ^a	±0.34 dB	
Preamp On ^b (Option 1DS)	±0.5 dB	
Overall Amplitude Accuracy ^c		
20 to 30 °C	± (0.54 dB + Absolute Frequency Response)	

a. Settings are: reference level -20 dBm; input attenuation 10 dB; center frequency 50 MHz; RBW 1 kHz; VBW 1 kHz; scale linear or log; span 2 kHz; sweep time coupled, sample detector, signal at reference level.

b. Settings are: reference level -30 dBm; input attenuation 0 dB; center frequency 50 MHz; RBW 1 kHz; VBW 1 kHz; scale linear or log; span 2 kHz; sweep time coupled, signal at reference level.

c. For reference level 0 to -50 dBm; input attenuation 10 dB; RBW 1 kHz; VBW 1 kHz; scale log, log range 0 to 50 dB from reference level; sweep time coupled; signal input 0 to -50 dBm; span ≤ 20 kHz.

	Specifications	Supplemental Information
RF Input VSWR (at tuned frequency)		
Attenuator setting 0 dB		
100 kHz to 3 GHz		3.0:1, characteristic
Attenuator setting 5 dB		
100 kHz to 3 GHz		1.6:1, characteristic
Attenuator setting 10 to 65 dB		
9 kHz to 100 kHz		2.0:1, characteristic
100 kHz to 3 GHz		1.4:1, characteristic

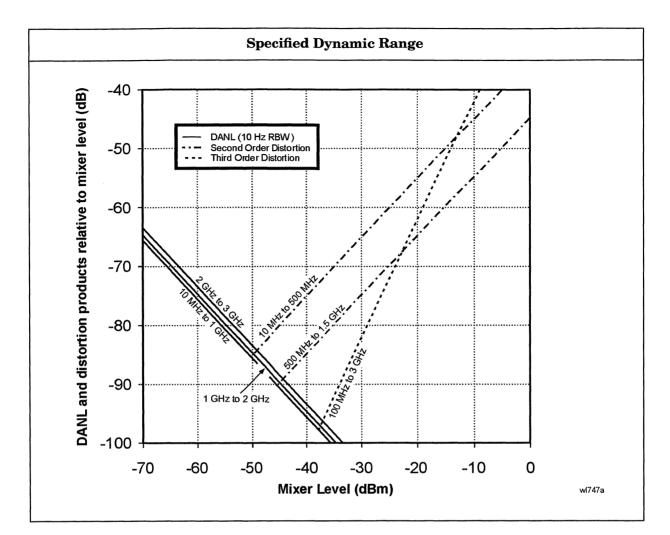
	Specifications	Supplemental Information
Auto Alignment ^a		
Sweep-to-sweep variation		±0.1 dB, characteristic

a. Set Auto Align to Off and use Align Now, All to eliminate this variation.

	Specifications	Supplemental Information
Resolution Bandwidth Switching Uncertainty (at Reference Level)		n da Later
1 kHz RBW	Reference	
3 kHz to 3 MHz RBW	±0.3 dB	
5 MHz RBW	±0.6 dB	
10 Hz to 300 Hz RBW (Option 1DR)	±0.3 dB	

	Specifications	Supplemental Information
Reference Level		
Range	Adjustable over Amplitude Measurement Range	
Resolution		
Log Scale	±0.1 dB	
Linear Scale	±0.12% of Reference Level	
Accuracy (at a fixed frequency, a fixed attenuator, and referenced to -30 dBm (-10 dBm, Preamp On (Option 1DS)))		
Reference Level (dBm) – input attenuator setting (dB) + preamp gain (dB)		
-10 dBm to > -60 dBm	±0.3 dB	
60 dBm to >85 dBm	±0.5 dB	
–85 dBm to –90 dBm	±0.7 dB	

	Specifications	Supplemental Information
Display Scale Switching Uncertainty		
Switching between Linear and Log	±0.15 dB at Reference Level	
Log Scale Switching	No error	


	Specifications	Supplemental Information
Display Scale Fidelity		
Log Maximum Cumulative		
0 to –85 dB from Reference Level	±(0.3 dB + 0.01 × dB from Reference Level)	
$RBW \leq 300 Hz$ (Option 1DR)		
Span > 0 Hz		
0 to –98 dB from Reference Level	±(0.3 dB + 0.01 × dB from Reference Level)	
–98 to –120 dB from Reference Level		±2.0 dB, characteristic
$Span = 0 Hz^a$		
0 to –60 dB from Reference Level	$\pm (0.3 \text{ dB} + 0.015 \times \text{ dB from})$ Reference Level)	
–60 to –70 dB from Reference Level	±1.5 dB	
Log Incremental Accuracy		
0 to –80 dB ^b from reference level	±0.4 dB/4 dB	
Linear Accuracy	±2% of Reference Level	

a. or when auto ranging is off: (:DISPlay:WINDow:TRACe:Y[:SCALe]:LOG:RANGe:AUTO OFF) b. 0 to -50 dB for RBWs $\leq 300 \text{ Hz}$ and span = 0 Hz, or when auto ranging is off.

	Specifications	Supplemental Information
Spurious Responses		
Second Harmonic Distortion		
Input Signal		
10 MHz to 500 MHz	< –65 dBc for –30 dBm signal at input mixer ^a	+35 dBm SHI (second harmonic intercept)
500 MHz to 1.5 GHz	< –75 dBc for –30 dBm signal at input mixer ^a	+45 dBm SHI
Preamp On (<i>Option 1DS</i>) 10 MHz to 1.5 GHz		–5 dBm SHI, characteristic
Third Order Intermodulation Distortion		
10 MHz to 100 MHz		+7 dBm TOI (third order intercept), characteristic
100 MHz to 3 GHz	< –82 dBc for two –30 dBm signals at input mixer ^a and >50 kHz separation	+11 dBm TOI +16 dBm TOI, typical, 20 to 30 °C
Preamp On <i>(Option 1DS)</i> 10 MHz to 3 GHz,		–16 dBm TOI, characteristic
Other Input Related Spurious		
>30 kHz offset	< –65 dBc for –20 dBm signal at input mixer ^a	

a. Mixer power level (dBm) = input power (dBm) – input attenuation (dB).

Amplitude

	Specifications	Supplemental Information
Residual Responses (Input terminated and 0 dB attenuation)		
150 kHz to 3 GHz	< -90 dBm	

Options

	Specifications	Supplemental Information
Gate Delay		
Range	1 μs to 400 s	
Accuracy	$\pm (500 \text{ ns} + (0.01\% \times (\text{maximum of gate delay or length})))$	From gate trigger input to positive edge of gate output
Gate Length		
Range	1 μs to 400 s	
Accuracy	$\pm (500 \text{ ns} + (0.01\% \times (\text{maximum of gate delay or length})))$	From positive edge to negative edge of gate output
Resolution	[(maximum of gate delay or length in seconds)/65000] rounded up to nearest µs	Dependent on the greater of gate delay or gate length
Additional Amplitude Error ^a		
Log Scale	±0.2 dB	
Linear Scale	±0.1 % of reference level	х. Х

Time Gated Spectrum Analysis (Option 1D6)

a. While in gate mode.

Tracking Generator (Option 1DN)

The spectrum analyzer tracking generator combination will meet its specification after a cable (8120-5148) and adapter are connected between RF OUT and INPUT and Align Now, TG has been run.

	Specifications	Supplemental Information
Warm-Up	5 minutes	

	Specifications	Supplemental Information
Output Frequency Range	9 kHz to 3.0 GHz	

	Specifications	Supplemental Information
Minimum Resolution BW	1 kHz	Not usable with resolution bandwidths ≤300 Hz (Option 1DR)

	Specifications	Supplemental Information
Output Power Level		
Range	–2 to –66 dBm	
Resolution	0.1 dB	
Absolute Accuracy (at 50 MHz with coupled source attenuator, referenced to -20 dBm)	± 0.75 dB	
Vernier		
Range	8 dB	
Accuracy (with coupled source attenuator, 50 MHz, –20 dBm)		
Incremental	±0.2 dB/dB	
Cumulative	±0.5 dB, total	
Output Attenuator Range	0 to 56 dB in 8 dB steps	

	Specifications	Supplemental Information
Maximum Safe Reverse Level		+30 dBm (1 W), +30 Vdc, characteristic

	Specifications	Supplemental Information
Output Power Sweep		
Range	(–10 dBm to –2 dBm) – (Source Attenuator Setting)	
Resolution	0.1 dB	
Accuracy (zero span)	<1 dB peak-to-peak	

	Specifications	Supplemental Information
Output Flatness		
Referenced to 50 MHz, -20 dBm		
9 kHz to 10 MHz	±3 dB	
10 MHz to 3 GHz	±2 dB	

	Specifications	Supplemental Information
Spurious Outputs		
(–2 dBm output)		
Harmonic Spurs		
TG Output 9 kHz to 20 kHz	≤ –15 dBc	
TG Output 20 kHz to 3 GHz	$\leq -25 \mathrm{ dBc}$	
Non-harmonic Spurs		
TG Output 9 kHz to 2 GHz	≤ <i>–</i> 27 dBc	
TG Output 2 GHz to 3 GHz	≤ –23 dBc	
LO Feedthrough		
LO Frequency 3.921409 to 6.9214 GHz	≤ –16 dBm	

	Specifications	Supplemental Information
Dynamic Range	Maximum Output Power Level – Displayed Average Noise Level	

	Specifications	Supplemental Information
Output Tracking		
Drift		1.5 kHz/5 minute, characteristic
Swept Tracking Error		Usable in 1 kHz RBW after 5 minutes of warm-up

	Specifications	Supplemental Information
RF Power-Off Residuals		
9 kHz to 3 GHz		< –120 dBm, characteristic

	Specifications	Supplemental Information
Output Attenuator Repeatability		
9 kHz to 300 MHz		±0.1 dB, characteristic
300 MHz to 2.0 GHz		± 0.2 dB, characteristic
2.0 GHz to 3 GHz		±0.3 dB, characteristic

	Specifications	Supplemental Information
Output VSWR		
0 dB attenuation		<2.0:1, characteristic
\geq 8 dB attenuation		<1.5:1, characteristic

	Specifications	Supplemental Information
Output Attenuator Accuracy		
0 dB		±0.5 dB, characteristic
8 dB		±0.5 dB, characteristic
16 dB	Reference	
24 dB		±0.5 dB, characteristic
32 dB		±0.6 dB, characteristic
40 dB		±0.8 dB, characteristic
48 dB		±1.0 dB, characteristic
56 dB		±1.1 dB, characteristic

Tracking Generator Output Accuracy	
Relative Accuracy (Referred to –20 dBm) = Output Attenuator Accuracy + Vernier Accuracy + Output Flatness	
Absolute Accuracy = Relative Accuracy (Referred to –20 dBm) + Absolute Accuracy at 50 MHz	

Options

	Specifications	Supplemental Information
Output Power Level		
Range	–2 to –66 dBm	
Resolution	0.1 dB	
Absolute Accuracy (at 50 MHz with coupled source attenuator, referenced to -20 dBm)	± 0.75 dB	
Vernier		
Range	8 dB	
Accuracy (with coupled source attenuator, 50 MHz, –20 dBm)		
Incremental	±0.2 dB/dB	
Cumulative	±0.5 dB, total	
Output Attenuator Range	0 to 56 dB in 8 dB steps	

FM Demodulation (Option BAA)

The FM demodulation characteristics will be met after an Align Now, FM Demod has been run.

	Specifications	Supplemental Information
Input Level		\geq (-60 dBm + attenuator setting – preamp gain), characteristic
Signal Level		0 to –30 dB below reference level, characteristic
FM Deviation		
Range		10 kHz to 1 MHz
Resolution		Provides 1 Hz display annotation resolution
FM Deviation Range		
10 kHz to 40 kHz		12 Hz, characteristic
>40 kHz to 200 kHz		60 Hz, characteristic
>200 kHz to 1 MHz		300 Hz, characteristic
Accuracy ^a FM Rate < FM BW/100, VBW ≥(30 × FM Rate), RBW > the maximum of (30 × FM deviation) or (30 × FM Rate)		< (2% of FM deviation range + $2 \times \text{Resolution}$), characteristic
Offset Error ^a		5% of FM Deviation Range + 300 Hz, characteristic
FM Bandwidth (-3 dB)		
FM Deviation Range		
10 kHz to 40 kHz		$7.5 \times FM$ deviation range, characteristic
>40 kHz to 200 kHz		$1.3 \times FM$ deviation range, characteristic
>200 kHz to 1 MHz		$0.3 \times FM$ deviation range, characteristic

a. In time domain sweeps (span = 0 Hz).

	Specifications	Supplemental Information
TV Trigger and Picture On Screen		TV Trigger initiates a sweep of the analyzer after the sync pulse of a selected line of a TV video field. Picture On Screen displays the TV picture on the analyzer display.
Amplitude Requirements TV Source: SA		Top 50% of linear display, characteristic
TV Source: EXT VIDEO IN		500 mVp–p to 2 Vp–p, characteristic
Compatible Standards	NTSC-M, NTSC-Japan, PAL-M, PAL-B,D,G,H,I, PAL-N, PAL-N Combination, SECAM-L	
Field Selection	Entire frame, even, odd	
Sync Polarity	Positive or negative	
TV Trigger		
Line Selection	1 to 525, or 1 to 625, standard dependent	

TV Trigger and Picture On Screen (Option B7B)

General

	Specifications	Supplemental Information
Temperature Range		
Operating	0 to 55 °C	Floppy disk 10 to 40 $^{\circ}\mathrm{C}$
Storage	–40 to +75 °C	

	Specifications	Supplemental Information
Audible Noise (ISO 7779)		
Sound Pressure at 25 °C		<40 dBa, (<4.6 Bels power)

	Specifications	Supplemental Information
Military Specification	Has been type tested to the environmental specifications of MIL-PRF-28800F class 3.	

	Specifications	Supplemental Information
EMI Compatibility	Conducted and radiated emission is in compliance with CISPR Pub. 11/1990 Group 1 Class A.	

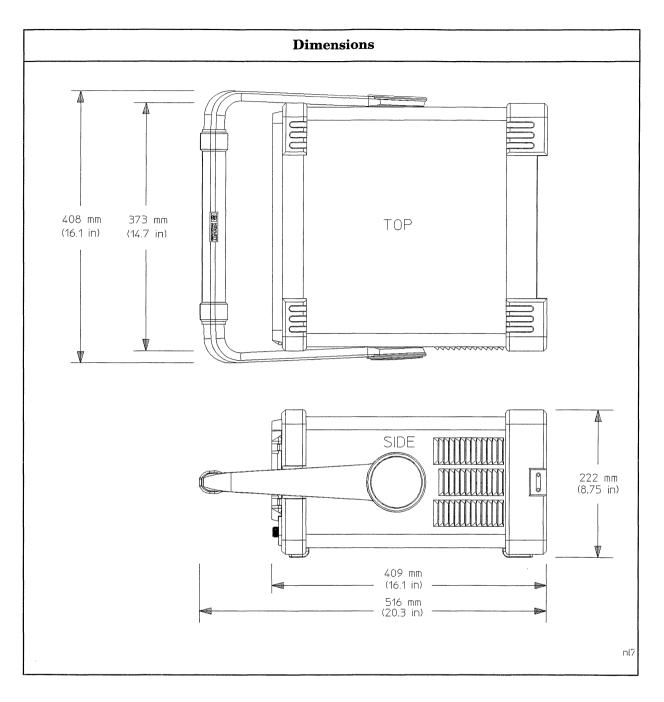
	Specifications	Supplemental Information
Immunity Testing		
Radiated Immunity		Testing was done at 3 V/m according to IEC 801-3/1984. When the analyzer tuned frequency is identical to the immunity test signal frequency there may be signals of up to -60 dBm displayed on the screen.
Electrostatic Discharge		Air discharges of up to 8 kV were applied according to IEC 801-2/1991. Discharges to center pins of any of the connectors may cause damage to the associated circuitry.

	Specifications	Supplemental Information
Power Requirements		Uses CUKonverter® topology in the power supply.
ac Operation		
Voltage, frequency	90 to 132 V rms, 47 to 440 Hz	
	195 to 250 V rms, 47 to 66 Hz	
Power Consumption, On	<300 W	
Power Consumption, Standby	<5 W	
dc Operation		
Voltage	12 to 20 Vdc	
Power Consumption	<200 W	

	Specifications	Supplemental Information
Measurement Speed		
Local Measurement and Display Update rate ^a		\geq 28/s, characteristic
Remote Measurement and HP-IB Transfer Rate ^b (Option A4H)		≥ 19/s, characteristic

a. Auto align off, 5 ms sweep time, fixed center frequency.

b. Auto align off, 5 ms sweep time, fixed center frequency, 401 point trace, display off (DISPlay:ENABle off), and 32-bit integer data format (FORMat:DATA INT,32).


	Specifications	Supplemental Information
Data Storage		
Internal		200 Traces or States
External (10 to 40 °C) 3.5" 1.44 MB, MS-DOS® compatible floppy disk		200 Traces or States

	Specifications	Supplemental Information
Downloadable Program Memory		2 MB available memory
(Option B72)		10 MB available memory

	Specifications	Supplemental Information
Demod Tune Listen		
AM FM (Option BAA)		Internal speaker, front-panel earphone jack and front-panel volume control.
(Option A4J, AYX, or BAA)		An uncalibrated demodulated signal is available on the AUX VIDEO OUT or EXT VIDEO OUT connectors at the rear panel.

	Specifications	Supplemental Information
Weight (without options)		
Net		14.9 kg (32.9 lb), characteristic
Shipping		29.5 kg (65 lb), characteristic

General

Inputs and Outputs

Front Panel

	Specifications	Supplemental Information
INPUT 50 Ω		
Connector	Type-N female	
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
RF OUT 50 Ω, (Option 1DN)		
Connector	Type-N female	
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
AMPTD REF OUT ^a		Amplitude Reference
Connector	BNC Female	
Impedance		50 Ω, nominal
Frequency		50 MHz
Frequency Accuracy		Frequency reference error ^b
50 Ω Amplitude ^c		–20 dBm, nominal

a. Turn the amplitude reference on/off by pressing the keys: Input, Amptd Ref Out.

b. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

c. The internal amplitude reference actual power is stored internally.

	Specifications	Supplemental Information
PROBE POWER		
Voltage/Current		+15 Vdc, ±7% at 150 mA max., characteristic -12.6 Vdc ±10% at 150 mA max., characteristic

	Specifications	Supplemental Information
EXT KEYBOARD		Feature not implemented.
Connector	6-pin mini-DIN	

	Specifications	Supplemental Information
Speaker		Front panel knob controls volume

	Specifications	Supplemental Information
Headphone		Front panel knob controls volume
Connector	3.5 mm (1/8 inch) miniature audio jack	
Power Output		0.2 W into 4Ω , characteristic

Rear Panel

	Specifications	Supplemental Information
10 MHz REF OUT		
Connector	BNC female	
Impedance		50 Ω, nominal
Output Amplitude		>0 dBm, characteristic

	Specifications	Supplemental Information
10 MHz REF IN		
Connector	BNC female	Note: Analyzer noise sidebands and spurious response performance may be affected by the quality of the external reference used.
Impedance		50 Ω, nominal
Input Amplitude Range		–15 to +10 dBm, characteristic
Frequency		10 MHz, nominal

	Specifications	Supplemental Information
GATE TRIG/EXT TRIG IN		
Connector	BNC female	
External Trigger Input		
Trigger Level		Selectable positive or negative edge initiates sweep in EXT TRIG mode (5 V TTL)
Gate Trigger Input (Option 1D6)		
Minimum Pulse Width		>30 ns (5 V TTL)

	Specifications	Supplemental Information
GATE/HI SWP OUT		
Connector	BNC female	
High Sweep Output		
Level		High = sweep; Low = retrace (5 V TTL)
Gate Output (Option 1D6)		
Level		High = gate on; Low = gate off (5 V TTL)

	Specifications	Supplemental Information
VGA OUTPUT		
Connector	VGA compatible, 15-pin mini D-SUB	
Format		VGA (31.5 kHz horizontal, 60 Hz vertical sync rates, non-interlaced) Analog RGB
Resolution	640×480	

	Specifications	Supplemental Information
AUX IF OUT (Option A4J or AYX)		RBW≥1 kHz
Connector	BNC female	
Frequency		21.4 MHz, nominal
Amplitude Range (for signal at reference level and for reference levels – input attenuation + preamp gain of -10 to -70 dBm)		–10 dBm (uncorrected), characteristic
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
AUX VIDEO OUT (Option A4J or AYX)		RBW≥1 kHz
Connector	BNC female	
Amplitude Range (into >10 $k\Omega$)		0 to 1 V (uncorrected), characteristic

	Specifications	Supplemental Information
HI SWP IN (Option A4J or AYX)		
Connector	BNC female	
Input		Open collector, low stops sweep (5 V TTL)

	Specifications	Supplemental Information
HI SWP OUT (Option A4J or AYX)		
Connector	BNC female	
Output		High = sweep, Low = retrace (5 V TTL)

	Specifications	Supplemental Information
SWP OUT (Option A4J or AYX)		
Connector	BNC female	
Amplitude		0 to +10 V ramp, characteristic

	Specifications	Supplemental Information
HP-IB Interface (Option A4H)		
Connector	IEEE-488 bus connector	
HP-IB Codes		SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and C28

	Specifications	Supplemental Information
Serial Interface (Option 1AX)		
Connector	9-pin D-SUB male	RS-232

	Specifications	Supplemental Information
Parallel Interface (Option A4H or 1AX)		Printer port only
Connector	25-pin D-SUB female	

	Specifications	Supplemental Information
EXT VIDEO IN/TV TRIG OUT^a (Option B7B or BAA)		EXT VIDEO IN is the Baseband composite video input for TV trigger and picture on screen. TV TRIG OUT is the TV trigger output.
Connector	BNC Female (75 Ω)	
Impedance		75 Ω, characteristic.
(Option BAA without Option B7B)		Feature not implemented.
(Option BAA with Option B7B)		
External Video Input Video Amplitude		1 Vp–p, nominal, characteristic
TV Trigger Output		Positive edge indicates start of selected TV line after sync. pulse.
Amplitude		TTL (0 V and 3.4 V with 75 Ω series resistance), characteristic

a. This connector is labelled EXT VIDEO IN on older spectrum analyzers and EXT VIDEO IN/TV TRIG OUT on newer spectrum analyzers.

	Specifications	Supplemental Information
EXT VIDEO OUT (Option B7B or BAA)		Baseband video output RBW ≥ 1 kHz
Connector	BNC Female (75 Ω)	
Impedance	·	75 Ω, characteristic.
Amplitude (Option BAA without Option B7B)		0 to 1 V (uncorrected), characteristic
Amplitude (Option BAA with Option B7B)		
TV Source: SA		0 to 1 V (uncorrected), characteristic
TV Source and EXT VIDEO IN		Same as level at EXT VIDEO IN/TV TRIG OUT, characteristic

Regulatory Information

CAUTION This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 1010 and 664 respectively.

NOTE This product has been designed and tested in accordance with IEC Publication 1010, Safety Requirements for Electronic Measuring Apparatus, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.

The CE mark is a registered trademark of the European Community (if accompanied by a year, it is the year when the design was proven).

The CSA mark is the Canadian Standards Association safety mark.

Œ

ISM 1-A

This is a symbol of an Industrial Scientific and Medical Group 1 Class A product. (CISPR 11, Clause 4)

Declaration of Conformity

DECLARATION OF CONFORMITY According to ISO/IEC Guide 22 and EN 45014			
Manufacturer's Name:	Hewlett-Packard Co.		
Manufacturer's Address:	1400 Fountaingrove Parkway Santa Rosa, CA 95403-1799 USA		
Declares that the products			
Product Name:	Spectrum Analyzer		
Model Number:	HP E4401B, HP E4402B, HP E4403B, HP E4404B, HP E4405B, HP E4407B, HP E4408B, HP E4411B		
Product Options:	This declaration covers all options of the above products.		
Conform to the following Product s	pecifications:		
Safety: IEC 61010-1:1990 / EN 6 CAN/CSA-C22.2 No. 101			
EMC: CISPR 11:1990/EN 55011:1991 Group 1, Class A IEC 801-2:1984/EN 50082-1:1992 4 kV CD, 8 kV AD IEC 801-3:1984/EN 50082-1:1992 3 V/m, 27-500 MHz IEC 801-4:1988/EN 50082-1:1992 0.5 kV sig. lines, 1 kV power lines			
Supplementary Information:			
	The products herewith comply with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC and carry the CE-marking accordingly.		
	Hey Pleith		
Santa Rosa, CA, USA 7 Jan. 1999	Greg Pfeiffer/Quality Engineering Manager		
European Contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH Department HQ- TRE, Herreneberger Strasse 130, D71034 Boblingen, Germany (FAX +49-7031-14-3143)			

6 HP E4403B Specifications and Characteristics

About This Chapter

This chapter contains specifications and characteristics for the HP E4403B spectrum analyzer. The distinction between specifications and characteristics is described as follows.

- Specifications describe the performance of parameters covered by the product warranty. (The temperature range is 0 °C to 55 °C, unless otherwise noted.)
- Characteristics describe product performance that is useful in the application of the product, but is not covered by the product warranty.
- Typical performance describes additional product performance information that is not covered by the product warranty. It is performance beyond an indicated specification, that most units will exhibit.
- Nominal values indicate the expected, but not warranted, value of a parameter.

The following conditions must be met for the analyzer to meet its specifications.

- **□** The analyzer is within the one year calibration cycle.
- □ If Auto Align All is selected:
 - After 2 hours of storage within the operating temperature range.
 - 5 minutes after the analyzer is turned on with sweep times less than 4 seconds.
 - After the front-panel amplitude reference is connected to the INPUT, and Align Now RF has been run, after the analyzer is turned on. And, once every 24 hours, or if ambient temperature changes more than 30 °C.
- □ If Auto Align Off is selected:
 - When the analyzer is at a constant temperature, within the operating temperature range, for a minimum of 90 minutes,
 - After the analyzer is turned on for a minimum of 90 minutes, the front panel amplitude reference has been connected to the INPUT, and Align Now All has been run.
 - When Align Now All is run:
 - Every hour
 - If the ambient temperature changes more than 3 °C
 - If the 10 MHz reference changes

- When Align Now RF is run (with the front-panel amplitude reference connected to the INPUT):
 - Every 24 hours
 - If the ambient temperature changes more than 30 $^{\circ}C$
- □ If Auto Align All but RF is selected:
 - When the analyzer is at a constant temperature, within the operating temperature range, for a minimum of 90 minutes.
 - After the analyzer is turned on for a minimum of 90 minutes, the front panel amplitude reference has been connected to the INPUT, and Align Now RF has been run.
 - When Align Now RF is run (with the front-panel amplitude reference connected to the INPUT):
 - Every hour
 - If the ambient temperature changes more than 3 °C

Frequency

	Specifications	Supplemental Information
Frequency Range		
	9 kHz to 3 GHz	

	Specifications	Supplemental Information
Frequency Reference		
Aging Rate	$\pm 2 imes 10^{-6}$ /year	$\pm 1.0 imes 10^{-7}$ /day, characteristic
Settability	$\pm 5 imes 10^{-7}$	
Temperature Stability	$\pm 5 imes 10^{-6}$	

	Specifications	Supplemental Information
Frequency Readout Accuracy		
(Start, Stop, Center, Marker)	±(frequency indication × frequency reference error ^a + span accuracy + 15% of RBW + 10 Hz)	

a. Frequency reference error = (aging rate \times period of time since adjustment + settability + temperature stability).

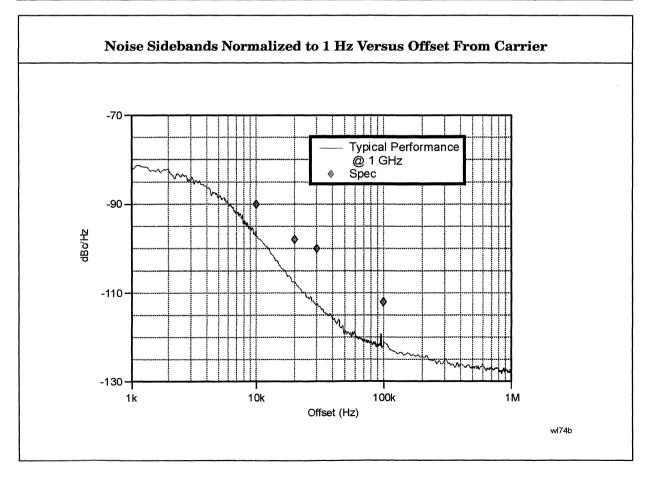
	Specifications	Supplemental Information
Marker Frequency Counter		
Resolution	Selectable from 1 Hz to 100 kHz	
Accuracy ^a	±(marker frequency × frequency reference error ^b + counter resolution)	

a. Marker level to displayed noise level > 25 dB, RBW/ Span \ge 0.002, frequency offset = 0 Hz.

b. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

	Specifications	Supplemental Information
Frequency Span		
Range	0 Hz (zero span), 100 Hz to 3 GHz	
Resolution	2 Hz	
Accuracy	±1% of span	

	Specifications	Supplemental Information
Sweep Time		
Range	5 ms to 2000 s	50 ms is the minimum sweep time with the tracking generator in operation (Option 1DN)
Accuracy		
Span = 0 Hz 5 ms to 2000 s	±1%	
Sweep Trigger ^a	Free Run, Single, Line, Video, External, Delayed	
Delayed Trigger ^b		
Range	1 µs to 400 s	
Resolution	[(delay in seconds)/65000] rounded up to nearest µs	
Accuracy	±(500 ns +(0.01% of delay))	


a. Auto align is suspended in video, external, gate, and delayed trigger modes while waiting for a trigger event to occur.b. Delayed trigger is available with line and external trigger.

Frequency

	Specifications	Supplemental Information
Resolution Bandwidth (RBW)		
Range		
–3 dB bandwidth	1 kHz to 3 MHz, in 1-3-10 sequence, 5 MHz	
–6 dB bandwidth (EMI)	9 kHz and 120 kHz	
Accuracy		
1 kHz to 3 MHz RBW	±15%	
5 MHz RBW	±30%	
Shape		
1 kHz to 5 MHz RBW		Synchronously tuned four poles, approximately Gaussian shape
Selectivity (60 dB/3 dB bandwidth ratio)		
1 kHz to 5 MHz RBW		<15:1, characteristic

	Specifications	Supplemental Information
Video Bandwidth (VBW) (–3 dB)		
Range	30 Hz to 1 MHz in 1-3-10 sequence	3 MHz, characteristic
Accuracy		±30%, characteristic
Shape		Post detection, single pole low- pass filter used to average displayed noise

	Specifications	Supplemental Information
Stability		
Noise Sidebands, offset from CW signal with 1 kHz RBW, 30 Hz VBW and sample detector		
≥10 kHz	\leq –90 dBc/Hz	
≥20 kHz	\leq -98 dBc/Hz	
≥30 kHz	\leq -100 dBc/Hz	
≥100 kHz	\leq -112 dBc/Hz	
Residual FM		
1 kHz RBW, 1 kHz VBW	≤150 Hz p–p in 100 ms	
System-Related Sidebands, offset from CW signal		
≥30 kHz	≤ -65 dBc	

Amplitude

Amplitude specifications do not apply for the negative peak detector mode.

	Specifications	Supplemental Information
Measurement Range	Displayed Average Noise Level to Maximum Safe Input Level	
Input Attenuator Range	0 to 65 dB, in 5 dB steps	

	Specifications	Supplemental Information
Maximum Safe Input Level		
Average Continuous Power	+30 dBm (1 W)	
Input attenuator setting ≥5 dB		
Peak Pulse Power for <10 μsec pulse width, <1% duty cycle, and input attenuation ≥30 dB	+50 dBm (100 W)	
dc	100 Vdc	

	Specifications	Supplemental Information
1 dB Gain Compression		
Total power at input mixer ^{ab}		
50 MHz to 3.0 GHz	0 dBm	

a. Mixer power level (dBm) = input power (dBm) - input attenuation (dB).

b. For resolution bandwidths 1 kHz to 30 kHz, the maximum input signal amplitude must be \leq reference level +10 dB.

	Specifications	Supplemental Information
Displayed Average Noise Level		
(Input terminated, 0 dB attenuation, sample detector, Reference Level = -70 dBm)		
	1 kHz RBW 30 Hz VBW	1 kHz RBW 30 Hz VBW
1 MHz to 10 MHz		≤–117 dBm, characteristic
10 MHz to 1.0 GHz	≤ –117 dBm	
1.0 GHz to 2.0 GHz	≤ –116 dBm	
2.0 GHz to 3.0 GHz	≤–114 dBm	

	Specifications	Supplemental Information
Display Range		
Log Scale	Ten divisions displayed; 0.1, 0.2, 0.5 dB/division and 1 to 20 dB/division in 1 dB steps Calibrated 0 to -85 dB from Reference Level	
Linear Scale	Ten divisions	
Scale Units	dBm, dBmV, dBµV, V and W	

	Specifications	Supplemental Information
Marker Readout Resolution		
Log scale		
0 to –85 dB from ref level	0.04 dB	
Linear scale	0.01% of Reference Level	

	Specifications	Supplemental Information
Frequency Response		
50 Ω, Absolute ^a /Relative		
9 kHz to 3.0 GHz		
10 dB attenuation		
20 to 30 °C	±0.5 dB	
0 to 55 °C	±1.0 dB	

a. Absolute flatness values are referenced to the amplitude at 50 MHz.

	Specifications	Supplemental Information
Input Attenuation Switching Uncertainty at 50 MHz		
Attenuator Setting		
0 dB to 5 dB	±0.3 dB	
10 dB	Reference	
15 dB	±0.3 dB	
20 to 65 dB	\pm (0.1 dB + 0.01 × Attenuator Setting)	

Attenuation Accuracy Relative to the 10 dB Attenuator Setting, Characteristic		
	Frequency Range	
Attenuation, dB	dc-3.0 GHz, (± dB)	
0	0.3	
5	0.3	
10 (Reference)	Reference	
15	0.4	
20	0.4	
25	0.5	
30	0.5	
35	0.6	
40	0.6	
45	0.7	
50	0.7	
55	0.9	
60	0.9	
65	1.0	

	Specifications	Supplemental Information
Absolute Amplitude Accuracy		
At reference settings ^a	±0.4 dB	
Overall Amplitude Accuracy ^b		
20 to 30 °C	± (0.6 dB + Absolute Frequency Response)	

a. Settings are: reference level -20 dBm; input attenuation 10 dB; center frequency 50 MHz; RBW 1 kHz; VBW 1 kHz; scale linear or log; span 2 kHz; sweep time coupled, signal at reference level.

b. For reference level 0 to -50 dBm; input attenuation 10 dB; RBW 1 kHz; VBW 1 kHz; scale log, log range 0 to 50 dB from reference level; sweep time coupled; signal input 0 to -50 dBm; span ≤20 kHz.

	Specifications	Supplemental Information
RF Input VSWR (at tuned frequency)		
Attenuator setting 0 dB		
100 kHz to 3 GHz		3.0:1, characteristic
Attenuator setting 5 dB		
100 kHz to 3 GHz		1.6:1, characteristic
Attenuator setting 10 to $65~\mathrm{dB}$		
9 kHz to 100 kHz		2.0:1, characteristic
100 kHz to 3 GHz		1.4:1, characteristic

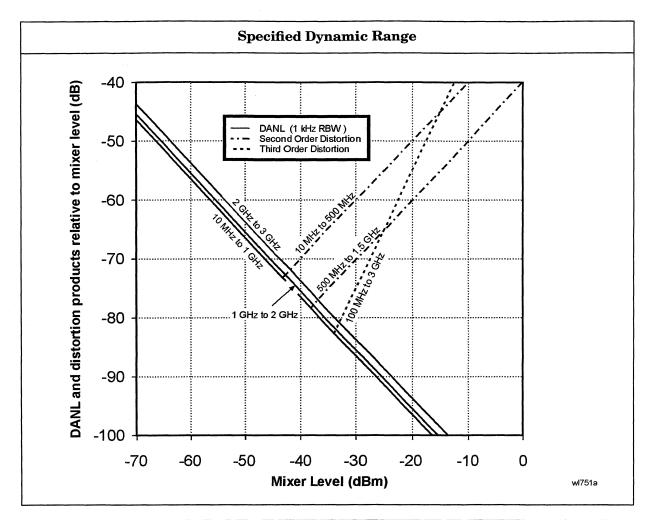
	Specifications	Supplemental Information
Auto Alignment ^a		
Sweep-to-sweep variation		±0.1 dB, characteristic

a. Set $\ensuremath{\text{Auto}}\xspace$ Align to $\ensuremath{\text{Off}}\xspace$ and $\ensuremath{\text{use}}\xspace$ Align $\ensuremath{\text{Now}}\xspace$ Align $\ensuremath{\text{Now}}\xspace$ Align $\ensuremath{\text{Auto}}\xspace$ Align $\ensuremath{\text{Now}}\xspace$ Align \ens

	Specifications	Supplemental Information
Resolution Bandwidth Switching Uncertainty (at Reference Level)		
1 kHz RBW	Reference	
3 kHz to 3 MHz RBW	±0.3 dB	
5 MHz RBW	±0.6 dB	

	Specifications	Supplemental Information
Reference Level		
Range	Adjustable over Amplitude Measurement Range	
Resolution		
Log Scale	±0.1 dB	
Linear Scale	±0.12% of Reference Level	
Accuracy (at a fixed frequency, a fixed attenuator, and referenced to -30 dBm)		
Reference Level (dBm) – input attenuator setting (dB)		
-10 dBm to > -60 dBm	±0.3 dB	
–60 dBm to > –85 dBm	±0.5 dB	
–85 dBm to –90 dBm	±0.7 dB	

	Specifications	Supplemental Information
Display Scale Switching Uncertainty		
Switching between Linear and Log	±0.15 dB at Reference Level	
Log Scale Switching	No error	


	Specifications	Supplemental Information
Display Scale Fidelity		
Log Maximum Cumulative		
0 to –85 dB from Reference Level	±(0.3 dB + 0.01 × dB from Reference Level)	
Log Incremental Accuracy		
0 to -80 dB ^a from reference level	±0.4 dB/4 dB	
Linear Accuracy	±2% of Reference Level	

a. 0 to –50 dB for RBWs \leq 300 Hz and span = 0 Hz, or when auto ranging is off.

	Specifications	Supplemental Information
Spurious Responses		
Second Harmonic Distortion		
Input Signal		
10 MHz to 500 MHz	< –60 dBc for –30 dBm signal at input mixer ^a	+30 dBm SHI (second harmonic intercept)
500 MHz to 1.5 GHz	< –70 dBc for –30 dBm signal at input mixer ^a	+40 dBm SHI
Third Order Intermodulation Distortion		
10 MHz to 100 MHz		+5 dBm TOI (third order intercept), characteristic
100 MHz to 3 GHz	< –75 dBc for two –30 dBm signals at input mixer ^a and >50 kHz separation	+7.5 dBm TOI
Other Input Related Spurious		
>30 kHz offset	< -65 dBc for -20 dBm signal at input mixer ^a	

a. Mixer power level (dBm) = input power (dBm - input attentuation (dB)

Amplitude

	Specifications	Supplemental Information
Residual Responses (Input terminated and 0 dB attenuation)		
150 kHz to 3 GHz	< -90 dBm	

Options

Tracking Generator (Option 1DN)

The spectrum analyzer tracking generator combination will meet its specification after a cable (8120-5148) and adapter are connected between RF OUT and INPUT and Align Now, TG has been run.

	Specifications	Supplemental Information
Warm-Up	5 minutes	

	Specifications	Supplemental Information
Output Frequency Range	9 kHz to 3.0 GHz	

	Specifications	Supplemental Information
Output Power Level		
Range	–2 to –66 dBm	
Resolution	0.1 dB	
Absolute Accuracy (at 50 MHz with coupled source attenuator, referenced to -20 dBm)	± 0.75 dB	
Vernier		
Range	8 dB	
Accuracy (with coupled source attenuator, 50 MHz, -20 dBm)		
Incremental	±0.2 dB/dB	
Cumulative	± 0.5 dB, total	
Output Attenuator Range	0 to 56 dB in 8 dB steps	

	Specifications	Supplemental Information
Maximum Safe Reverse Level		+30 dBm (1 W), +30 Vdc, characteristic

Options

	Specifications	Supplemental Information
Output Power Sweep		
Range	(-10 dBm to -2 dBm) - (Source Attenuator Setting)	
Resolution	0.1 dB	
Accuracy (zero span)	<1 dB peak-to-peak	

	Specifications	Supplemental Information
Output Flatness		
Referenced to 50 MHz, –20 dBm		
9 kHz to 10 MHz	±3 dB	
10 MHz to 3 GHz	±2 dB	

	Specifications	Supplemental Information
Spurious Outputs		
(–2 dBm output)		
Harmonic Spurs		
TG Output 9 kHz to 20 kHz	≤ –15 dBc	
TG Output 20 kHz to 3 GHz	≤ –25 dBc	
Non-harmonic Spurs		
TG Output 9 kHz to 2 GHz	≤–27 dBc	
TG Output 2 GHz to 3 GHz	≤ –23 dBc	
LO Feedthrough		
LO Frequency 3.921409 to 6.9214 GHz	≤ –16 dBm	

	Specifications	Supplemental Information
Dynamic Range	Maximum Output Power Level – Displayed Average Noise Level	

	Specifications	Supplemental Information
Output Tracking		
Drift		1.5 kHz/5 minute, characteristic
Swept Tracking Error		Usable in 1 kHz RBW after 5 minutes of warm-up

	Specifications	Supplemental Information
RF Power-Off Residuals		
9 kHz to 3 GHz		< –120 dBm, characteristic

	Specifications	Supplemental Information
Output Attenuator Repeatability		
9 kHz to 300 MHz		±0.1 dB, characteristic
300 MHz to 2.0 GHz		±0.2 dB, characteristic
2.0 GHz to 3 GHz		±0.3 dB, characteristic

	Specifications	Supplemental Information
Output VSWR		
0 dB attenuation		<2.0:1, characteristic
\geq 8 dB attenuation		<1.5:1, characteristic

	Specifications	Supplemental Information
Output Attenuator Accuracy		
0 dB		±0.5 dB, characteristic
8 dB		±0.5 dB, characteristic
16 dB	Reference	
24 dB		± 0.5 dB, characteristic
32 dB		±0.6 dB, characteristic
40 dB		±0.8 dB, characteristic
48 dB		±1.0 dB, characteristic
56 dB		±1.1 dB, characteristic

Options

Tracking Generator Output Accuracy

Relative Accuracy (Referred to -20 dBm) = Output Attenuator Accuracy + Vernier Accuracy + Output Flatness

Absolute Accuracy = Relative Accuracy (Referred to -20 dBm) + Absolute Accuracy at 50 MHz

	Specifications	Supplemental Information
Output Power Level		
Range	2 to66 dBm	
Resolution	0.1 dB	
Absolute Accuracy (at 50 MHz with coupled source attenuator, referenced to -20 dBm)	± 0.75 dB	
Vernier		
Range	8 dB	
Accuracy (with coupled source attenuator, 50 MHz, –20 dBm)		
Incremental	±0.2 dB/dB	
Cumulative	±0.5 dB, total	
Output Attenuator Range	0 to 56 dB in 8 dB steps	

General

	Specifications	Supplemental Information
Temperature Range		
Operating	0 to 55 °C	Floppy disk 10 to 40 $^{\circ}\mathrm{C}$
Storage	40 to +75 °C	

	Specifications	Supplemental Information
Audible Noise (ISO 7779)		
Sound Pressure at 25 °C		<40 dBa, (<4.6 Bels power)

	Specifications	Supplemental Information
Military Specification	Has been type tested to the environmental specifications of MIL-PRF-28800F class 3.	

	Specifications	Supplemental Information
EMI Compatibility	Conducted and radiated emission is in compliance with CISPR Pub. 11/1990 Group 1 Class A.	

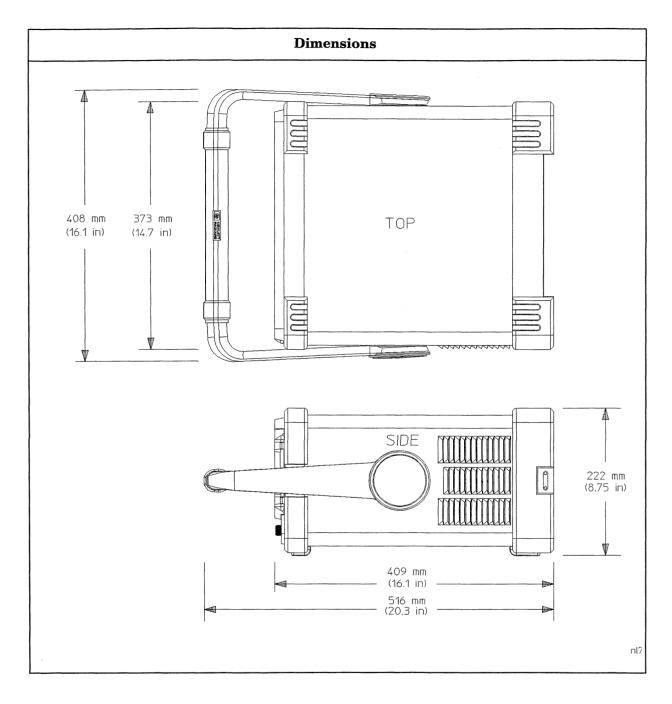
	Specifications	Supplemental Information
Immunity Testing		
Radiated Immunity		Testing was done at 3 V/m according to IEC 801-3/1984. When the analyzer tuned frequency is identical to the immunity test signal frequency there may be signals of up to -60 dBm displayed on the screen.
Electrostatic Discharge		Air discharges of up to 8 kV were applied according to IEC 801-2/1991. Discharges to center pins of any of the connectors may cause damage to the associated circuitry.

	Specifications	Supplemental Information
Power Requirements		Uses CUKonverter® topology in the power supply.
ac Operation		
Voltage, frequency	90 to 132 V rms, 47 to 440 Hz	
	195 to 250 V rms, 47 to 66 Hz	
Power Consumption, On	<300 W	
Power Consumption, Standby	<5 W	
dc Operation		
Voltage	12 to 20 Vdc	
Power Consumption	<200 W	

	Specifications	Supplemental Information
Measurement Speed		
Local Measurement and Display Update rate ^a		\geq 28/s, characteristic
Remote Measurement and HP-IB Transfer Rate ^b (Option A4H)		\geq 19/s, characteristic

a. Auto align off, 5 ms sweep time, fixed center frequency.

b. Auto align off, 5 ms sweep time, fixed center frequency, 401 point trace, display off (DISPlay:ENABle off), and 32-bit integer data format (FORMat:DATA INT,32).


	Specifications	Supplemental Information
Data Storage		
Internal		200 Traces or States
External (10 to 40 °C) 3.5" 1.44 MB, MS-DOS® compatible floppy disk		200 Traces or States

General

	Specifications	Supplemental Information
Demod Tune Listen		
AM		Internal speaker, front-panel earphone jack and front-panel volume control.
(Option A4J)		An uncalibrated demodulated signal is available on the AUX VIDEO OUT connector at the rear panel.

	Specifications	Supplemental Information
Weight (without options)		
Net		14.9 kg (32.9 lb), characteristic
Shipping		29.5 kg (65 lb), characteristic

General

Inputs and Outputs

Front Panel

	Specifications	Supplemental Information
INPUT 50 Ω		
Connector	Type-N female	
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
RF OUT 50 Ω, (Option 1DN)		
Connector	Type-N female	
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
AMPTD REF OUT ^a		Amplitude Reference
Connector	BNC Female	
Impedance		50 Ω, nominal
Frequency		50 MHz
Frequency Accuracy		Frequency reference error ^b
50 Ω Amplitude ^c		–20 dBm, nominal

a. Turn the amplitude reference on/off by pressing the keys: Input, Amptd Ref Out.

b. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

c. The internal amplitude reference actual power is stored internally.

	Specifications	Supplemental Information
PROBE POWER		
Voltage/Current		+15 Vdc, ±7% at 150 mA max., characteristic -12.6 Vdc ±10% at 150 mA max., characteristic

	Specifications	Supplemental Information
EXT KEYBOARD		Feature not implemented.
Connector	6-pin mini-DIN	

	Specifications	Supplemental Information
Speaker		Front panel knob controls volume

.

	Specifications	Supplemental Information
Headphone		Front panel knob controls volume
Connector	3.5 mm (1/8 inch) miniature audio jack	
Power Output		0.2 W into 4 Ω, characteristic

Rear Panel

	Specifications	Supplemental Information
10 MHz REF OUT		
Connector	BNC female	
Impedance		50 Ω, nominal
Output Amplitude		>0 dBm, characteristic

	Specifications	Supplemental Information
10 MHz REF IN		
Connector	BNC female	Note: Analyzer noise sidebands and spurious response performance may be affected by the quality of the external reference used.
Impedance		50 Ω, nominal
Input Amplitude Range		–15 to +10 dBm, characteristic
Frequency		10 MHz, nominal

	Specifications	Supplemental Information
GATE TRIG/EXT TRIG IN		
Connector	BNC female	
External Trigger Input		
Trigger Level		Selectable positive or negative edge initiates sweep in EXT TRIG mode (5 V TTL)

	Specifications	Supplemental Information
GATE/HI SWP OUT		
Connector	BNC female	
High Sweep Output		
Level		High = sweep; Low = retrace (5 V TTL)

	Specifications	Supplemental Information
VGA OUTPUT		
Connector	VGA compatible, 15-pin mini D-SUB	
Format		VGA (31.5 kHz horizontal, 60 Hz vertical sync rates, non-interlaced) Analog RGB
Resolution	640×480	

	Specifications	Supplemental Information
AUX IF OUT (Option A4J)		
Connector	BNC female	
Frequency		21.4 MHz, nominal
Amplitude Range (for signal at reference level and for reference levels – input attenuation of –10 to –70 dBm)		–10 dBm (uncorrected), characteristic
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
AUX VIDEO OUT (Option A4J)		
Connector	BNC female	
Amplitude Range (into >10 $k\Omega$)		0 to 1 V (uncorrected), characteristic

	Specifications	Supplemental Information
HI SWP IN (Option A4J)		
Connector	BNC female	
Input		Open collector, low stops sweep (5 V TTL)

	Specifications	Supplemental Information
HI SWP OUT (Option A4J)		
Connector	BNC female	
Output		High = sweep, Low = retrace (5 V TTL)

	Specifications	Supplemental Information
SWP OUT (Option A4J)		
Connector	BNC female	
Amplitude		0 to +10 V ramp, characteristic

	Specifications	Supplemental Information
HP-IB Interface (Option A4H)		
Connector	IEEE-488 bus connector	
HP-IB Codes		SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and C28

	Specifications	Supplemental Information
Serial Interface (Option 1AX)		
Connector	9-pin D-SUB male	RS-232
	Specifications	Supplemental Information

Parallel Interface (Option A4H or 1AX)		Printer port only
Connector	25-pin D-SUB female	

Regulatory Information

CAUTION	This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 1010 and 664 respectively.
NOTE	This product has been designed and tested in accordance with IEC Publication 1010, Safety Requirements for Electronic Measuring Apparatus, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.
Œ	The CE mark is a registered trademark of the European Community (if accompanied by a year, it is the year when the design was proven).
(Fr	The CSA mark is the Canadian Standards Association safety mark.
ISM 1-A	This is a symbol of an Industrial Scientific and Medical Group 1 Class A product. (CISPR 11, Clause 4)

Declaration of Conformity

DECLARATION OF CONFORMITY According to ISO/IEC Guide 22 and EN 45014		
Manufacturer's Name:	Hewlett-Packard Co.	
Manufacturer's Address:	1400 Fountaingrove Parkway Santa Rosa, CA 95403-1799 USA	
Declares that the products		
Product Name:	Spectrum Analyzer	
Model Number:	HP E4401B, HP E4402B, HP E4403B, HP E4404B, HP E4405B, HP E4407B, HP E4408B, HP E4411B	
Product Options:	This declaration covers all options of the above products.	
Conform to the following Product	specifications:	
Safety: IEC 61010-1:1990 / EN 6 CAN/CSA-C22.2 No. 10		
EMC: CISPR 11:1990/EN 55011:1991 Group 1, Class A IEC 801-2:1984/EN 50082-1:1992 4 kV CD, 8 kV AD IEC 801-3:1984/EN 50082-1:1992 3 V/m, 27-500 MHz IEC 801-4:1988/EN 50082-1:1992 0.5 kV sig. lines, 1 kV power lines		
Supplementary Information:		
The products herewith comply with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC and carry the CE-marking accordingly.		
they Pleith		
Santa Rosa, CA, USA 7 Jan. 1999 Greg Pfeiffer/Quality Engineering Manager		
European Contact: Your local Hewlett-Packard S TRE, Herreneberger Strasse 130, D71034 Boblin	Gales and Service Office or Hewlett-Packard GmbH Department HQ- Igen, Germany (FAX +49-7031-14-3143)	

7 HP E4404B Specifications and Characteristics

About This Chapter

This chapter contains specifications and characteristics for the HP E4404B spectrum analyzer. The distinction between specifications and characteristics is described as follows.

- Specifications describe the performance of parameters covered by the product warranty. (The temperature range is 0 °C to 55 °C, unless otherwise noted.)
- Characteristics describe product performance that is useful in the application of the product, but is not covered by the product warranty.
- Typical performance describes additional product performance information that is not covered by the product warranty. It is performance beyond an indicated specification, that most units will exhibit.
- Nominal values indicate the expected, but not warranted, value of a parameter.

The following conditions must be met for the analyzer to meet its specifications.

- **□** The analyzer is within the one year calibration cycle.
- □ If Auto Align All is selected:
 - After 2 hours of storage within the operating temperature range.
 - 5 minutes after the analyzer is turned on with sweep times less than 4 seconds.
 - After the front-panel amplitude reference is connected to the INPUT, and Align Now RF has been run, after the analyzer is turned on. And, once every 24 hours, or if ambient temperature changes more than 30 $^{\circ}$ C¹.
- **If Auto Align Off** is selected:
 - --- When the analyzer is at a constant temperature, within the operating temperature range, for a minimum of 90 minutes,
 - After the analyzer is turned on for a minimum of 90 minutes, the front panel amplitude reference has been connected to the INPUT, and Align Now All has been run.
 - When Align Now All is run:
 - Every hour
 - 1. 10 $^{\circ}\mathrm{C}$ if Option 1DS is active.

- If the ambient temperature changes more than 3 °C
- If the 10 MHz reference changes
- When Align Now RF is run (with the front-panel amplitude reference connected to the INPUT):
 - Every 24 hours
 - If the ambient temperature changes more than 30 $^{\circ}C^{1}$
- □ If Auto Align All but RF is selected:
 - When the analyzer is at a constant temperature, within the operating temperature range, for a minimum of 90 minutes.
 - After the analyzer is turned on for a minimum of 90 minutes, the front panel amplitude reference has been connected to the INPUT, and Align Now RF has been run.
 - When Align Now RF is run (with the front-panel amplitude reference connected to the INPUT):
 - Every hour
 - If the ambient temperature changes more than 3 °C

1. 10 °C if Option 1DS is active.

Frequency

	Specifications	Supplemental Information
Frequency Range		
dc Coupled	9 kHz to 6.7 GHz	
ac Coupled	100 kHz to 6.7 GHz	
Band		
0	9 kHz to 3.0 GHz	
1	2.85 GHz to 6.7 GHz	
Preamp On (Option 1DS)	1 MHz to 3 GHz	

	Specifications	Supplemental Information
Frequency Reference		
Aging Rate	$\pm 2 imes 10^{-6}$ /year	$\pm 1.0 imes 10^{-7}$ /day, characteristic
Settability	$\pm 5 imes 10^{-7}$	
Temperature Stability	$\pm 5 imes 10^{-6}$	

	Specifications	Supplemental Information
High Stability Frequency Reference (Option 1D5)		
Aging Rate	$\pm 1 \times 10^{-7}$ /year	$\pm5 imes10^{-10}$ /day, 7-day average after being powered on for 7 days, characteristic
Settability	$\pm 1 \times 10^{-8}$	
Temperature Stability		
20 to 30 °C	$\pm 1 \times 10^{-8}$	
0 to 55 °C	$\pm 5 imes 10^{-8}$	
Warm-Up (Internal frequency reference selected)		
After 5 minutes		$<\pm1\times10^{-7}$ of final frequency, ^a characteristic
After 15 minutes		$<\pm1\times10^{-8}$ of final frequency, ^a characteristic

a. Final frequency is defined as frequency 60 minutes after power-on with analyzer set to internal frequency reference.

	Specifications	Supplemental Information
Frequency Readout Accuracy		
(Start, Stop, Center, Marker)	±(frequency indication × frequency reference error ^a + span accuracy + 15% of RBW + 10 Hz)	

a. Frequency reference error = (aging rate \times period of time since adjustment + settability + temperature stability).

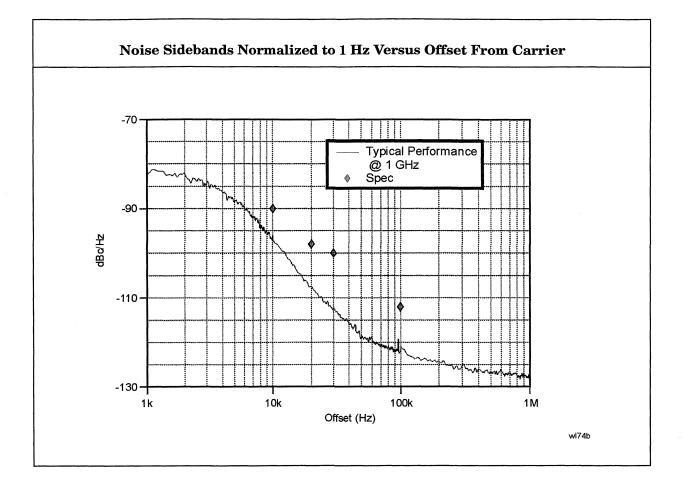
	Specifications	Supplemental Information
Marker Frequency Counter		
Resolution	Selectable from 1 Hz to 100 kHz	
Accuracy ^a	±(marker frequency × frequency reference error ^b + counter resolution)	For RBW ≥ 1 kHz

a. Marker level to displayed noise level > 25 dB, RBW/ Span ≥ 0.002, frequency offset = 0 Hz.
b. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

	Specifications	Supplemental Information
Frequency Span		
Range	0 Hz (zero span), 100 Hz to 6.7 GHz	
Resolution	2 Hz	
Accuracy	±1% of span	

	Specifications	Supplemental Information
Sweep Time		
Range	5 ms to 2000 s	50 ms is the minimum sweep time with the tracking generator in operation (Option 1DN)
(Option AYX)	20 µs to 2000 s	For Span = 0 Hz, RBW \geq 1 kHz
Accuracy		
Span = 0 Hz 5 ms to 2000 s	±1%	
20 µs to < 5ms (Option AYX)	±1%	
Sweep Trigger ^{ab}	Free Run, Single, Line, Video, External, Delayed, Gate (Option 1D6), TV (Option B7B)	
Delayed Trigger ^{ac}		
Range	1 µs to 400 s	
Resolution	[(delay in seconds)/65000] rounded up to nearest μs	
Accuracy	±(500 ns +(0.01% of delay))	

a. Gate cannot be used simultaneously with delayed or TV trigger.


b. Auto align is suspended in video, external, gate, and delayed trigger modes while waiting for a trigger event to occur.

c. Delayed trigger is available with line, external, and TV trigger (Option B7B).

	Specifications	Supplemental Information
Resolution Bandwidth (RBW)		
Range		
–3 dB bandwidth	1 kHz to 3 MHz, in 1-3-10 sequence, 5 MHz	
–6 dB bandwidth (EMI)	9 kHz and 120 kHz	
(Option 1DR)		Only available in spans
–3 dB bandwidth	Adds 10, 30, 100, 300 Hz	\leq 5 MHz, sweep times \geq 5 ms, and not usable with tracking
–6 dB bandwidth (EMI)	Add 200 Hz	generator in operation (Option 1DN)
Accuracy		
1 kHz to 3 MHz RBW	±15%	
5 MHz RBW	±30%	
10 Hz to 300 Hz RBW (Option 1DR)	±10%	
Shape		
1 kHz to 5 MHz RBW		Synchronously tuned four poles, approximately Gaussian shape
10 Hz to 300 Hz RBW (Option 1DR)		Digital, approximately Gaussian shape
Selectivity (60 dB/3 dB bandwidth ratio)		
1 kHz to 5 MHz RBW		<15:1, characteristic
10 Hz to 300 Hz RBW (Option 1DR)		<5:1, characteristic

	Specifications	Supplemental Information
Video Bandwidth (VBW) (-3 dB)		
Range	30 Hz to 1 MHz in 1-3-10 sequence	3 MHz, characteristic
(Option 1DR)	Adds 1, 3, 10 Hz for RBW's <1 kHz	
Accuracy		±30%, characteristic
Shape		Post detection, single pole low- pass filter used to average displayed noise
		Video bandwidths below 30 Hz are digital bandwidths with anti-aliasing filtering.

	Specifications	Supplemental Information
Stability		
Noise Sidebands, offset from CW signal with 1 kHz RBW, 30 Hz VBW and sample detector		
≥10 kHz	\leq -90 dBc/Hz	
≥20 kHz	≤ –98 dBc/Hz	
≥30 kHz	\leq -100 dBc/Hz	
≥100 kHz	\leq –112 dBc/Hz	
Residual FM		
1 kHz RBW, 1 kHz VBW	≤150 Hz p–p in 100 ms	
(Option 1D5)	≤100 Hz p–p in 100 ms	
10 Hz RBW, 10 Hz VBW (Option 1DR and 1D5)	≤2 Hz p–p in 20 ms	
10 Hz RBW, 10 Hz VBW (Option 1DR)		≤10 Hz p–p in 20 ms, characteristic
System-Related Sidebands, offset from CW signal		
≥30 kHz	≤ –65 dBc	
Line-Related Sidebands, offset from CW signal (Option 1DR)		
<300 Hz		≤ –50 dBc, characteristic
>300 Hz to 30 kHz		\leq –55 dBc, characteristic

Amplitude

Amplitude specifications do not apply for the negative peak detector mode. $% \left({{{\bf{n}}_{{\rm{s}}}}} \right)$

	Specifications	Supplemental Information
Measurement Range	Displayed Average Noise Level to Maximum Safe Input Level	
Input Attenuator Range	0 to 65 dB, in 5 dB steps	

	Specifications	Supplemental Information
Maximum Safe Input Level		
Average Continuous Power	+30 dBm (1 W)	
Input attenuator setting ≥5 dB		
Peak Pulse Power for <10 µsec pulse width, <1% duty cycle, and input attenuation ≥30 dB	+50 dBm (100 W)	
dc		
dc Coupled	0 Vdc	
ac Coupled	50 Vdc	

	Specifications	Supplemental Information
1 dB Gain Compression		
Total power at input mixer ^{ab}		
50 MHz to 3.0 GHz	0 dBm	
3.0 GHz to 6.7 GHz	0 dBm	
Preamp On (Option 1DS) Total power at the preamp ^c		–20 dBm, characteristic

a. Mixer power level (dBm) = input power (dBm) – input attenuation (dB).

b. For resolution bandwidths 1 kHz to 30 kHz, the maximum input signal amplitude must be \leq reference level +10 dB.

c. Total power at the preamp (dBm) = total power at the input (dBm) - input attenuation (dB).

Amplitude

	Specifications		Supplemental Information	
Displayed Average Noise Level				
(Input terminated, 0 dB attenuation, sample detector, Reference Level = -70 dBm)				
	1 kHz RBW 30 Hz VBW	10 Hz RBW 1 Hz VBW (Option 1DR)	1 kHz RBW 30 Hz VBW	10 Hz RBW 1 Hz VBW (Option 1DR)
1 MHz to 10 MHz			≤–116 dBm, characteristic	≤ –134 dBm, characteristic
10 MHz to 1.0 GHz	≤–116 dBm	≤–135 dBm		
1.0 GHz to 2.0 GHz	\leq –115 dBm	≤–134 d Bm		
2.0 GHz to 3.0 GHz	≤ –112 dBm	≤ –131 dBm		
3.0 GHz to 6.0 GHz	≤ –112 dBm	≤ –131 dBm		
6.0 GHz to 6.7 GHz	≤ –110 dBm	≤ –129 dBm		
Preamp On (Option 1DS)	1 kHz RBW 30 Hz VBW	10 Hz RBW 1 Hz VBW (Option 1DR)	1 kHz RBW 30 Hz VBW	10 kHz RBW 1 Hz VBW (Option 1DR)
0 to 55 °C				
1 MHz to 10 MHz			≤ –131 dBm, characteristic	≤–149 dBm, characteristic
10 MHz to 1.0 GHz	≤–131 dBm	≤ –149 dBm		
1.0 GHz to 2.0 GHz	≤–129 dBm	≤–147 dBm		
2.0 GHz to 3.0 GHz	≤ –127 dBm	≤ –145 dBm		
20 to 30 °C				
10 MHz to 1.0 GHz	≤ –132 dBm	≤ –150 dBm		
1.0 GHz to 2.0 GHz	≤ –131 dBm	≤ –149 dBm		
2.0 GHz to 3.0 GHz	≤ –130 dBm	≤ –148 dBm		

	Specifications	Supplemental Information
Display Range		
Log Scale	Ten divisions displayed; 0.1, 0.2, 0.5 dB/division and 1 to 20 dB/division in 1 dB steps	
RBW≥1 kHz	Calibrated 0 to –85 dB from Reference Level	
$RBW \leq 300 Hz$ (Option 1DR)	Calibrated 0 to –120 dB ^a from Reference Level	
Linear Scale	Ten divisions	
Scale Units	dBm, dBmV, dBµV, V,W and Hz (Option BAA)	

a. 0 to -70 dB range when span = 0 Hz, or when auto ranging is off: (:DISPlay:WINDow:TRACe:Y[:SCALe]:LOG:RANGe:AUTO OFF).

	Specifications	Supplemental Information
Marker Readout Resolution		
Log scale		
$RBW \ge 1 kHz$		
0 to –85 dB from ref level	0.04 dB	
$RBW \le 300 Hz$		
0 to –120 dB from ref level	0.04 dB	
Linear scale	0.01% of Reference Level	
Fast Sweep Times for Zero Span		
20 µs to <5 ms (Option AYX)		
Log		
0 to –85 dB from ref level	0.3 dB	
Linear	0.3% of Reference Level for linear scale	

	Specifications	Supplemental Information
Frequency Response		
50 Ω, Absolute ^a /Relative		
10 dB attenuation	9 kHz to 3.0 GHz (dc coupled)	100 kHz to 3.0 GHz (ac coupled)
20 to 30 °C	±0.5 dB	±0.5 dB, characteristic
0 to 55 °C	±1.0 dB	±1.0 dB, characteristic
50 Ω, Absolute ^a /Relative Preamp On (<i>Option 1DS</i>)		
1 MHz to 3.0 GHz	(dc coupled)	(ac coupled)
0 dB attenuation	±2.0 dB	±2.0 dB
Preselector centered for frequency >3.0 GHz		
3.0 GHz to 6.7 GHz	(dc coupled)	(ac coupled)
10 dB attenuation		
Absolute ^a		
20 to 30 °C	±1.5 dB	±1.5 dB, characteristic
0 to 55 °C	±2.5 dB	±2.5 dB, characteristic
Relative		
20 to 30 °C	±1.3 dB	±1.3 dB, characteristic
0 to 55 °C	±1.5 dB	±1.5 dB, characteristic

a. Absolute flatness values are referenced to the amplitude at 50 MHz.

	Specifications	Supplemental Information
Input Attenuation Switching Uncertainty at 50 MHz		
Attenuator Setting		
0 dB to 5 dB	±0.3 dB	
10 dB	Reference	
15 dB	±0.3 dB	
20 to 65 dB	$\pm (0.1 \text{ dB} + 0.01 \times \text{Attenuator})$ Setting)	

	Specifications	Supplemental Information
Preamp (Option 1DS)		
Gain		+20 dB, nominal ^a
Noise figure		5 dB, characteristic

a. Amplifier is between the input attenuator and the input mixer.

Attenuation Accuracy Relative to the 10 dB Attenuator Setting, Characteristic		
	Frequency Range	
Attenuation, dB	dc-3.0 GHz (± dB)	3.0-6.7 GHz (± dB)
0	0.3	0.5
5	0.3	0.5
10 (Reference)	Reference	Reference
15	0.4	0.5
20	0.4	0.5
25	0.5	0.6
30	0.5	0.6
35	0.6	0.7
40	0.6	0.7
45	0.7	1.0
50	0.7	1.0
55	0.9	1.1
60	0.9	1.1
65	1.0	1.6

	Specifications	Supplemental Information
Absolute Amplitude Accuracy		
At reference settings ^a	±0.34 dB	
Preamp On ^b (Option 1DS)	±0.5 dB	
Overall Amplitude Accuracy ^c		
20 to 30 °C	± (0.54 dB + Absolute Frequency Response)	

a. Settings are: reference level -20 dBm; input attenuation 10 dB; center frequency 50 MHz; RBW 1 kHz; VBW 1 kHz; scale linear or log; span 2 kHz; sweep time coupled, sample detector, signal at reference level.

b. Settings are: reference level -30 dBm; input attenuation 0 dB; center frequency 50 MHz; RBW 1 kHz; VBW 1 kHz; scale linear or log; span 2 kHz; sweep time coupled, signal at reference level.

c. For reference level 0 to -50 dBm; input attenuation 10 dB; RBW 1 kHz; VBW 1 kHz; scale log, log range 0 to 50 dB from reference level; sweep time coupled; signal input 0 to -50 dBm; span ≤20 kHz.

	Specifications	Supplementa	l Information
RF Input VSWR (at tuned frequency)		characteristic	characteristic
Attenuator setting 0 dB		(dc coupled)	(ac coupled)
9 kHz to 100 kHz		3.0:1	
100 kHz to 6.7 GHz		3.0:1	3.0:1
Attenuator setting 5 dB		(dc coupled)	(ac coupled)
9 kHz to 100 kHz		2.0:1	
100 kHz to 300 kHz		1.4:1	2.3:1
300 kHz to 1.0 MHz		1.4:1	1.6:1
1.0 MHz to 3.0 GHz		1.4:1	1.4:1
3.0 GHz to 6.7 GHz		1.4:1	1.7:1
Attenuator setting 10 to 65 dB		(dc coupled)	(ac coupled)
9 kHz to 100 kHz		2.0:1	
100 kHz to 300 kHz		1.3:1	2.1:1
300 kHz to 1.0 MHz		1.3:1	1.5:1
1.0 MHz to 3.0 GHz		1.3:1	1.3:1
3.0 GHz to 6.7 GHz		1.3:1	1.5:1

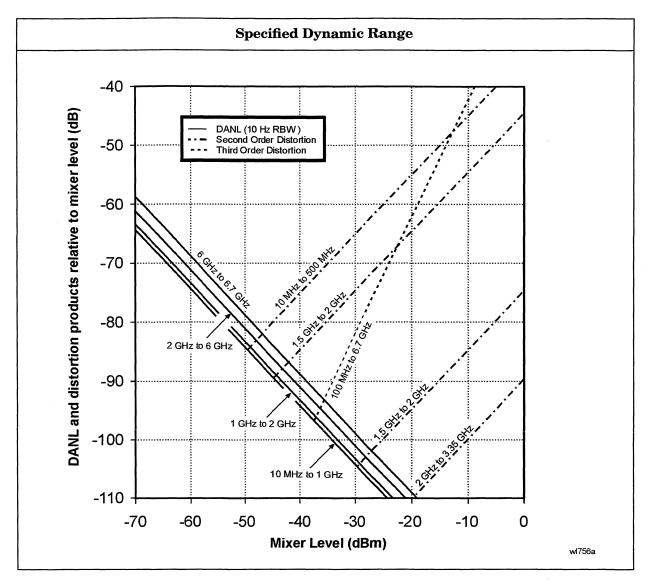
	Specifications	Supplemental Information
Auto Alignment ^a		
Sweep-to-sweep variation		± 0.1 dB, characteristic

a. Set Auto Align to Off and use Align Now, All to eliminate this variation.

	Specifications	Supplemental Information
Resolution Bandwidth Switching Uncertainty (at Reference Level)		
1 kHz RBW	Reference	
3 kHz to 3 MHz RBW	±0.3 dB	
5 MHz RBW	±0.6 dB	
10 Hz to 300 Hz RBW (Option 1DR)	±0.3 dB	

	Specifications	Supplemental Information
Reference Level		
Range	Adjustable over Amplitude Measurement Range	
Resolution		
Log Scale	±0.1 dB	
Linear Scale	±0.12% of Reference Level	
Accuracy (at a fixed frequency, a fixed attenuator, and referenced to -30 dBm (-10 dBm, Preamp On (Option 1DS)))		
Reference Level (dBm) – input attenuator setting (dB) + preamp gain (dB)		
-10 dBm to > -60 dBm	±0.3 dB	
-60 dBm to > -85 dBm	±0.5 dB	
-85 dBm to -90 dBm	±0.7 dB	

	Specifications	Supplemental Information
Display Scale Switching Uncertainty		
Switching between Linear and Log	±0.15 dB at Reference Level	
Log Scale Switching	No error	


	Specifications	Supplemental Information
Display Scale Fidelity		
Log Maximum Cumulative		
0 to –85 dB from Reference Level	±(0.3 dB + 0.01 × dB from Reference Level)	
$RBW \leq 300 \text{ Hz} (Option \ 1DR).$		
Span > 0 Hz		
0 to –98 dB from Reference Level	±(0.3 dB + 0.01 × dB from Reference Level)	
–98 to –120 dB from Reference Level		±2.0 dB, characteristic
Span = 0 Hz ^a		
0 to –60 dB from Reference Level	$\pm (0.3 \text{ dB} + 0.015 \times \text{dB} \text{ from})$ Reference Level)	
–60 to –70 dB from Reference Level	±1.5 dB	
Log Incremental Accuracy		
0 to -80 dB ^b from reference level	±0.4 dB/4 dB	
Linear Accuracy	±2% of Reference Level	

a. or when auto ranging is off: (:DISPlay:WINDow:TRACe:Y[:SCALe]:LOG:RANGe:AUTO OFF) b. 0 to -50 dB for RBWs $\leq 300 \text{ Hz}$ and span = 0 Hz, or when auto ranging is off.

	Specifications	Supplemental Information
Spurious Responses		
Second Harmonic Distortion		
Input Signal		
10 MHz to 500 MHz	< –65 dBc for –30 dBm signal at input mixer ^a	+35 dBm SHI (second harmonic intercept)
500 MHz to 1.5 GHz	< –75 dBc for –30 dBm signal at input mixer ^a	+45 dBm SHI
1.5 GHz to 2.0 GHz	< -85 dBc for -10 dBm signal at input mixer ^a	+75 dBm SHI
2.0 GHz to 3.35 GHz	< –100 dBc ^b for –10 dBm signal at input mixer ^a	+90 dBm SHI
Preamp On <i>(Option 1DS)</i> 10 MHz to 1.5 GHz		–5 dBm SHI, characteristic
Third Order Intermodulation Distortion		
10 MHz to 100 MHz		+7 dBm TOI (third order intercept), characteristic
100 MHz to 3 GHz	< –82 dBc for two –30 dBm signals at input mixer ^a and >50 kHz separation	+11 dBm TOI +16 dBm TOI, typical, 20 to 30 °C
3.0 GHz to 6.7 GHz	< –82 dBc for two –30 dBm signals at input mixer ^a and >50 kHz separation	+11 dBm TOI +18 dBm TOI, typical, 20 to 30 °C
Preamp On <i>(Option 1DS)</i> 10 MHz to 3 GHz,		–16 dBm TOI, characteristic
Other Input Related Spurious		
Inband Responses		
>30 kHz offset	< –65 dBc for –20 dBm signal at input mixer ^a	
Out-of-band Responses	< –80 dBc for –10 dBm signal at input mixer ^a	

a. Mixer power level (dBm) = input power (dBm) – input attenuation (dB). b. or signal below displayed average noise level.

Amplitude

	Specifications	Supplemental Information
Residual Responses (Input terminated and 0 dB attenuation)		
150 kHz to 6.7 GHz	< -90 dBm	

Options

Time Gated Spectrum Analysis (Option 1D6)

	Specifications	Supplemental Information
Gate Delay		
Range	1 µs to 400 s	
Accuracy	\pm (500 ns + (0.01% \times (maximum of gate delay or length)))	From gate trigger input to positive edge of gate output
Gate Length		
Range	1 μs to 400 s	
Accuracy	$\pm(500 \text{ ns} + (0.01\% \times (\text{maximum of gate delay or length})))$	From positive edge to negative edge of gate output
Resolution	[(maximum of gate delay or length in seconds)/65000] rounded up to nearest µs	Dependent on the greater of gate delay or gate length
Additional Amplitude Error ^a		
Log Scale	±0.2 dB	
Linear Scale	±0.1 % of reference level	

a. While in gate mode.

Tracking Generator (Option 1DN)

The spectrum analyzer tracking generator combination will meet its specification after a cable (8120-5148) and adapter are connected between RF OUT and INPUT and Align Now, TG has been run.

	Specifications	Supplemental Information
Warm-Up	5 minutes	

	Specifications	Supplemental Information
Output Frequency Range	9 kHz to 3.0 GHz	

	Specifications	Supplemental Information
Minimum Resolution BW	1 kHz	Not usable with resolution bandwidths ≤300 Hz (Option 1DR)

	Specifications	Supplemental Information
Output Power Level		
Range	–2 to –66 dBm	
Resolution	0.1 dB	
Absolute Accuracy (at 50 MHz with coupled source attenuator, referenced to -20 dBm)	$\pm 0.75 dB$	
Vernier		
Range	8 dB	
Accuracy (with coupled source attenuator, 50 MHz, -20 dBm)		
Incremental	±0.2 dB/dB	
Cumulative	±0.5 dB, total	
Output Attenuator Range	0 to 56 dB in 8 dB steps	

	Specifications	Supplemental Information
Maximum Safe Reverse Level		+30 dBm (1 W), +30 Vdc, characteristic

	Specifications	Supplemental Information
Output Power Sweep		
Range	(–10 dBm to –2 dBm) – (Source Attenuator Setting)	
Resolution	0.1 dB	
Accuracy (zero span)	<1 dB peak-to-peak	

	Specifications	Supplemental Information
Output Flatness		
Referenced to 50 MHz, –20 dBm		
9 kHz to 10 MHz	±3 dB	
10 MHz to 3 GHz	±2 dB	

	Specifications	Supplemental Information
Spurious Outputs		
(–2 dBm output)		
Harmonic Spurs		
TG Output 9 kHz to 20 kHz	≤ –15 dBc	
TG Output 20 kHz to 3 GHz	≤ –25 dBc	
Non-harmonic Spurs		
TG Output 9 kHz to 2 GHz	≤-27 dBc	
TG Output 2 GHz to 3 GHz	≤ –23 dBc	
LO Feedthrough		
LO Frequency 3.921409 to 6.9214 GHz	≤ –16 dBm	

	Specifications	Supplemental Information
Dynamic Range	Maximum Output Power Level – Displayed Average Noise Level	

	Specifications	Supplemental Information
Output Tracking		
Drift		1.5 kHz/5 minute, characteristic
Swept Tracking Error		Usable in 1 kHz RBW after 5 minutes of warm-up

	Specifications	Supplemental Information
RF Power-Off Residuals		
9 kHz to 3 GHz		< –120 dBm, characteristic

	Specifications	Supplemental Information
Output Attenuator Repeatability		
9 kHz to 300 MHz		±0.1 dB, characteristic
300 MHz to 2.0 GHz		±0.2 dB, characteristic
2.0 GHz to 3 GHz		± 0.3 dB, characteristic

	Specifications	Supplemental Information
Output VSWR		
0 dB attenuation		<2.0:1, characteristic
$\geq 8 \text{ dB}$ attenuation		<1.5:1, characteristic

	Specifications	Supplemental Information
Output Attenuator Accuracy		
0 dB		±0.5 dB, characteristic
8 dB		±0.5 dB, characteristic
16 dB	Reference	
24 dB		±0.5 dB, characteristic
32 dB		±0.6 dB, characteristic
40 dB		±0.8 dB, characteristic
48 dB		±1.0 dB, characteristic
56 dB		±1.1 dB, characteristic

Tracking Generator Output Accuracy	
Relative Accuracy (Referred to -20 dBm) = Output Attenuator Accuracy + Vernier Accuracy + Output Flatness	
Absolute Accuracy = Relative Accuracy (Referred to –20 dBm) + Absolute Accuracy at 50 MHz	

Options

	Specifications	Supplemental Information
Output Power Level		
Range	–2 to –66 dBm	
Resolution	0.1 dB	
Absolute Accuracy (at 50 MHz with coupled source attenuator, referenced to -20 dBm)	$\pm 0.75 \mathrm{dB}$	
Vernier		
Range	8 dB	
Accuracy (with coupled source attenuator, 50 MHz, –20 dBm)		
Incremental	±0.2 dB/dB	
Cumulative	±0.5 dB, total	
Output Attenuator Range	0 to 56 dB in 8 dB steps	

FM Demodulation (Option BAA)

The FM demodulation characteristics will be met after an Align Now, FM Demod has been run.

	Specifications	Supplemental Information
Input Level		\geq (-60 dBm + attenuator setting – preamp gain), characteristic
Signal Level		0 to -30 dB below reference level, characteristic
FM Deviation		
Range		10 kHz to 1 MHz
Resolution		Provides 1 Hz display annotation resolution
FM Deviation Range		
10 kHz to 40 kHz		12 Hz, characteristic
>40 kHz to 200 kHz		60 Hz, characteristic
>200 kHz to 1 MHz		300 Hz, characteristic
Accuracy ^a FM Rate < FM BW/100, VBW ≥(30 × FM Rate), RBW > the maximum of (30 × FM deviation) or (30 × FM Rate)		< (2% of FM deviation range + 2 × Resolution), characteristic
Offset Error ^a		5% of FM Deviation Range + 300 Hz, characteristic
FM Bandwidth (–3 dB)		
FM Deviation Range		
10 kHz to 40 kHz		$7.5 \times FM$ deviation range, characteristic
>40 kHz to 200 kHz		$1.3 \times FM$ deviation range, characteristic
>200 kHz to 1 MHz		$0.3 \times FM$ deviation range, characteristic

a. In time domain sweeps (span = 0 Hz).

	Specifications	Supplemental Information
TV Trigger and Picture On Screen		TV Trigger initiates a sweep of the analyzer after the sync pulse of a selected line of a TV video field. Picture On Screen displays the TV picture on the analyzer display.
Amplitude Requirements		
TV Source: SA		Top 50% of linear display, characteristic
TV Source: EXT VIDEO IN		500 mVp–p to 2 Vp–p, characteristic
Compatible Standards	NTSC–M, NTSC–Japan, PAL–M, PAL–B,D,G,H,I, PAL–N, PAL–N Combination, SECAM-L	
Field Selection	Entire frame, even, odd	
Sync Polarity	Positive or negative	
TV Trigger		
Line Selection	1 to 525, or 1 to 625, standard dependent	

TV Trigger and Picture On Screen (Option B7B)

General

	Specifications	Supplemental Information
Temperature Range		
Operating	0 to 55 °C	Floppy disk 10 to 40 °C
Storage	–40 to +75 °C	

	Specifications	Supplemental Information
Audible Noise (ISO 7779)		
Sound Pressure at 25 °C		<40 dBa, (<4.6 Bels power)

	Specifications	Supplemental Information
Military Specification	Has been type tested to the environmental specifications of MIL-PRF-28800F class 3.	

	Specifications	Supplemental Information
EMI Compatibility	Conducted and radiated emission is in compliance with CISPR Pub. 11/1990 Group 1 Class A.	

	Specifications	Supplemental Information
Immunity Testing		
Radiated Immunity		Testing was done at 3 V/m according to IEC 801-3/1984. When the analyzer tuned frequency is identical to the immunity test signal frequency there may be signals of up to -60 dBm displayed on the screen.
Electrostatic Discharge		Air discharges of up to 8 kV were applied according to IEC 801-2/1991. Discharges to center pins of any of the connectors may cause damage to the associated circuitry.

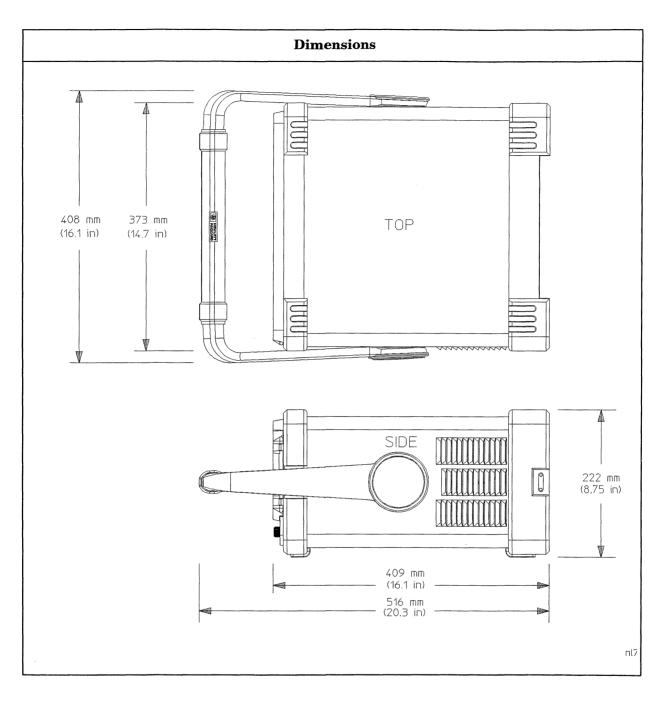
General

	Specifications	Supplemental Information
Power Requirements		Uses CUKonverter® topology in the power supply.
ac Operation		
Voltage, frequency	90 to 132 V rms, 47 to 440 Hz	
	195 to 250 V rms, 47 to 66 Hz	
Power Consumption, On	<300 W	
Power Consumption, Standby	<5 W	
dc Operation		
Voltage	12 to 20 Vdc	
Power Consumption	<200 W	

	Specifications	Supplemental Information
Measurement Speed		
Local Measurement and Display Update rate ^a		\geq 28/s, characteristic
Remote Measurement and HP-IB Transfer Rate ^b (Option A4H)		≥ 19/s, characteristic

a. Auto align off, 5 ms sweep time, fixed center frequency.

b. Auto align off, 5 ms sweep time, fixed center frequency, 401 point trace, display off (DISPlay:ENABle off), and 32-bit integer data format (FORMat:DATA INT,32).


	Specifications	Supplemental Information
Data Storage		
Internal		200 Traces or States
External (10 to 40 °C) 3.5" 1.44 MB, MS-DOS® compatible floppy disk		200 Traces or States

	Specifications	Supplemental Information
Downloadable Program Memory		2 MB available memory
(Option B72)		10 MB available memory

	Specifications	Supplemental Information
Demod Tune Listen		
АМ		Internal speaker, front-panel earphone jack and front-panel volume control.
FM (Option BAA)		
(Option A4J, AYX, or BAA)		An uncalibrated demodulated signal is available on the AUX VIDEO OUT or EXT VIDEO OUT connectors at the rear panel.

	Specifications	Supplemental Information
Weight (without options)		
Net		16.2 kg (35.6 lb), characteristic
Shipping		31.0 kg (68 lb), characteristic

General

Inputs and Outputs

Front Panel

	Specifications	Supplemental Information
INPUT 50 Ω		
Connector	Type-N female	
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
RF OUT 50 Ω, (Option 1DN)		
Connector	Type-N female	
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
AMPTD REF OUT ^a		Amplitude Reference
Connector	BNC Female	
Impedance		50 Ω, nominal
Frequency		50 MHz
Frequency Accuracy		Frequency reference error ^b
50 Ω Amplitude ^c		–20 dBm, nominal

a. Turn the amplitude reference on/off by pressing the keys: Input, Amptd Ref Out.

b. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

c. The internal amplitude reference actual power is stored internally.

	Specifications	Supplemental Information
PROBE POWER		
Voltage/Current		+15 Vdc, ±7% at 150 mA max., characteristic
		–12.6 Vdc ±10% at 150 mA max., characteristic

	Specifications	Supplemental Information
EXT KEYBOARD		Feature not implemented.
Connector	6-pin mini-DIN	

	Specifications	Supplemental Information
Speaker		Front panel knob controls volume

	Specifications	Supplemental Information
Headphone		Front panel knob controls volume
Connector	3.5 mm (1/8 inch) miniature audio jack	
Power Output		0.2 W into 4 Ω , characteristic

Rear Panel

	Specifications	Supplemental Information
10 MHz REF OUT		
Connector	BNC female	
Impedance		50 Ω, nominal
Output Amplitude		>0 dBm, characteristic

	Specifications	Supplemental Information
10 MHz REF IN		
Connector	BNC female	Note: Analyzer noise sidebands and spurious response performance may be affected by the quality of the external reference used.
Impedance		50 Ω, nominal
Input Amplitude Range		–15 to +10 dBm, characteristic
Frequency		10 MHz, nominal

	Specifications	Supplemental Information
GATE TRIG/EXT TRIG IN		
Connector	BNC female	
External Trigger Input		
Trigger Level		Selectable positive or negative edge initiates sweep in EXT TRIG mode (5 V TTL)
Gate Trigger Input (Option 1D6)		
Minimum Pulse Width		>30 ns (5 V TTL)

	Specifications	Supplemental Information
GATE/HI SWP OUT		· · · · · · · · · · · · · · · · · · ·
Connector	BNC female	
High Sweep Output		
Level		High = sweep; Low = retrace (5 V TTL)
Gate Output (Option 1D6)		
Level		High = gate on; Low = gate off (5 V TTL)

	Specifications	Supplemental Information
VGA OUTPUT		
Connector	VGA compatible, 15-pin mini D-SUB	
Format		VGA (31.5 kHz horizontal, 60 Hz vertical sync rates, non-interlaced) Analog RGB
Resolution	640 × 480	

	Specifications	Supplemental Information
AUX IF OUT (Option A4J or AYX)		$RBW \ge 1 kHz$
Connector	BNC female	
Frequency		21.4 MHz, nominal
Amplitude Range (for signal at reference level and for reference levels – input attenuation + preamp gain of -10 to -70 dBm)		–10 dBm (uncorrected), characteristic
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
AUX VIDEO OUT (Option A4J or AYX)		RBW≥1 kHz
Connector	BNC female	
Amplitude Range (into >10 $k\Omega$)		0 to 1 V (uncorrected), characteristic

	Specifications	Supplemental Information
HI SWP IN (Option A4J or AYX)		
Connector	BNC female	
Input		Open collector, low stops sweep (5 V TTL)

	Specifications	Supplemental Information
HI SWP OUT (Option A4J or AYX)		
Connector	BNC female	
Output		High = sweep, Low = retrace (5 V TTL)

	Specifications	Supplemental Information
SWP OUT (Option A4J or AYX)		
Connector	BNC female	
Amplitude		0 to +10 V ramp, characteristic

	Specifications	Supplemental Information
PRESEL TUNE OUTPUT		
Connector	BNC female	
Load Impedance (dc coupled)		> 10 kΩ, nominal
Range		0 to +10 V, characteristic
Sensitivity		0.33 V/GHz of tuned frequency > 3 GHz, characteristic

	Specifications	Supplemental Information
HP-IB Interface (Option A4H)		
Connector	IEEE-488 bus connector	
HP-IB Codes		SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and C28

	Specifications	Supplemental Information
Serial Interface (Option 1AX)		
Connector	9-pin D-SUB male	RS-232

	Specifications	Supplemental Information
Parallel Interface (Option A4H or 1AX)		Printer port only
Connector	25-pin D-SUB female	

	Specifications	Supplemental Information
EXT VIDEO IN/TV TRIG OUT^a (Option B7B or BAA)		EXT VIDEO IN is the Baseband composite video input for TV trigger and picture on screen. TV TRIG OUT is the TV trigger output.
Connector	BNC Female (75 Ω)	
Impedance		75 Ω, characteristic.
(Option BAA without Option B7B)		Feature not implemented.
(Option BAA with Option B7B)		
External Video Input Video Amplitude		1 Vp–p, nominal, characteristic
TV Trigger Output		Positive edge indicates start of selected TV line after sync. pulse.
Amplitude		TTL (0 V and 3.4 V with 75 Ω series resistance), characteristic

a. This connector is labelled EXT VIDEO IN on older spectrum analyzers and EXT VIDEO IN/TV TRIG OUT on newer spectrum analyzers.

	Specifications	Supplemental Information
EXT VIDEO OUT (Option B7B or BAA)		Baseband video output RBW ≥ 1 kHz
Connector	BNC Female (75Ω)	
Impedance		75 Ω, characteristic.
Amplitude (Option BAA without Option B7B)		0 to 1 V (uncorrected), characteristic
Amplitude (Option BAA with Option B7B)		
TV Source: SA		0 to 1 V (uncorrected), characteristic
TV Source and EXT VIDEO IN		Same as level at EXT VIDEO IN/TV TRIG OUT, characteristic

Regulatory Information

CAUTION	This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 1010 and 664 respectively.
NOTE	This product has been designed and tested in accordance with IEC Publication 1010, Safety Requirements for Electronic Measuring Apparatus, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.
CE	The CE mark is a registered trademark of the European Community (if accompanied by a year, it is the year when the design was proven).
()	The CSA mark is the Canadian Standards Association safety mark.
ISM 1-A	This is a symbol of an Industrial Scientific and Medical Group 1 Class A product. (CISPR 11, Clause 4)

Declaration of Conformity

DECLARATION OF CONFORMITY According to ISO/IEC Guide 22 and EN 45014		
Manufacturer's Name:	Hewlett-Packard Co.	
Manufacturer's Address:	1400 Fountaingrove Parkway Santa Rosa, CA 95403-1799 USA	
Declares that the products		
Product Name:	Spectrum Analyzer	
Model Number:	HP E4401B, HP E4402B, HP E4403B, HP E4404B, HP E4405B, HP E4407B, HP E4408B, HP E4411B	
Product Options:	This declaration covers all options of the above products.	
Conform to the following Product	specifications:	
Safety: IEC 61010-1:1990 / EN 61010-1:1993 CAN/CSA-C22.2 No. 1010.1-92		
EMC: CISPR 11:1990/EN 55011:1991 Group 1, Class A IEC 801-2:1984/EN 50082-1:1992 4 kV CD, 8 kV AD IEC 801-3:1984/EN 50082-1:1992 3 V/m, 27-500 MHz IEC 801-4:1988/EN 50082-1:1992 0.5 kV sig. lines, 1 kV power lines		
Supplementary Information:		
The products herewith comply with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC and carry the CE-marking accordingly.		
Santa Rosa, CA, USA 7 Jan. 1999 Greg Pfeiffer/Quality Engineering Manager		
European Contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH Department HQ- TRE, Herreneberger Strasse 130, D71034 Boblingen, Germany (FAX +49-7031-14-3143)		

8 HP E4405B Specifications and Characteristics

About This Chapter

This chapter contains specifications and characteristics for the HP E4405B spectrum analyzer. The distinction between specifications and characteristics is described as follows.

- Specifications describe the performance of parameters covered by the product warranty. (The temperature range is 0 °C to 55 °C, unless otherwise noted.)
- Characteristics describe product performance that is useful in the application of the product, but is not covered by the product warranty.
- Typical performance describes additional product performance information that is not covered by the product warranty. It is performance beyond an indicated specification, that most units will exhibit.
- Nominal values indicate the expected, but not warranted, value of a parameter.

The following conditions must be met for the analyzer to meet its specifications.

- **□** The analyzer is within the one year calibration cycle.
- □ If Auto Align All is selected:
 - After 2 hours of storage within the operating temperature range.
 - 5 minutes after the analyzer is turned on with sweep times less than 4 seconds.
 - After the front-panel amplitude reference is connected to the INPUT, and Align Now RF has been run, after the analyzer is turned on. And, once every 24 hours, or if ambient temperature changes more than $30 \, {}^{\circ}\mathrm{C}^{1}$.
- □ If Auto Align Off is selected:
 - When the analyzer is at a constant temperature, within the operating temperature range, for a minimum of 90 minutes,
 - After the analyzer is turned on for a minimum of 90 minutes, the front panel amplitude reference has been connected to the INPUT, and Align Now All has been run.
 - When **Align Now All** is run:
 - Every hour
 - 1. 10 °C if Option 1DS is active

- If the ambient temperature changes more than 3 °C
- If the 10 MHz reference changes
- When Align Now RF is run (with the front-panel amplitude reference connected to the INPUT):
 - Every 24 hours
 - If the ambient temperature changes more than $30 \, {}^{\circ}\mathrm{C}^1$
- □ If Auto Align All but RF is selected:
 - When the analyzer is at a constant temperature, within the operating temperature range, for a minimum of 90 minutes.
 - After the analyzer is turned on for a minimum of 90 minutes, the front panel amplitude reference has been connected to the INPUT, and Align Now RF has been run.
 - When **Align Now RF** is run (with the front-panel amplitude reference connected to the INPUT):
 - Every hour
 - If the ambient temperature changes more than 3 °C

^{1. 10 °}C if Option 1DS is active

Frequ	lency
-------	-------

	Specifications	Supplemental Information
Frequency Range		
dc Coupled	9 kHz to 13.2 GHz	
ac Coupled	100 kHz to 13.2 GHz	
Band		Harmonic Mixing Mode (N ^a)
0	9 kHz to 3.0 GHz	1–
1	2.85 GHz to 6.7 GHz	1–
2	6.2 GHz to 13.2 GHz	2–
Preamp On (Option 1DS)	1 MHz to 3 GHz	

a. N is the harmonic mixing mode. For negative mixing modes (as indicated by the "-"), the desired 1st LO harmonic is higher than the tuned frequency by the 1st IF (3.9214 for the 9 kHz to 3 GHz band, 321.4 MHz for all other bands). For positive mixing modes, the desired 1st LO harmonic is lower than the tuned frequency by 321.4 MHz.

	Specifications	Supplemental Information
Frequency Reference		
Aging Rate	$\pm 2 \times 10^{-6}$ /year	$\pm 1.0 imes 10^{-7}$ /day, characteristic
Settability	$\pm 5 imes 10^{-7}$	
Temperature Stability	$\pm 5 imes 10^{-6}$	

	Specifications	Supplemental Information
High Stability Frequency Reference (Option 1D5)		
Aging Rate	$\pm 1 imes 10^{-7}$ /year	$\pm5 imes10^{-10}$ /day, 7-day average after being powered on for 7 days, characteristic
Settability	$\pm 1 \times 10^{-8}$	
Temperature Stability		
20 to 30 °C	$\pm 1 imes 10^{-8}$	
0 to 55 °C	$\pm 5 imes 10^{-8}$	
Warm-Up (Internal frequency reference selected)		
After 5 minutes		$<\pm1\times10^{-7}$ of final frequency, ^a characteristic
After 15 minutes		$<\pm1\times10^{-8}$ of final frequency, ^a characteristic

a. Final frequency is defined as frequency 60 minutes after power-on with analyzer set to internal frequency reference.

	Specifications	Supplemental Information
Frequency Readout Accuracy		
(Start, Stop, Center, Marker)	\pm (frequency indication \times frequency reference error ^a + span accuracy + 15% of RBW + 10 Hz + 1 Hz \times N ^b)	

a. Frequency reference error = (aging rate \times period of time since adjustment + settability + temperature stability).

b. N is the harmonic mixing mode.

agentic angla ta tay

	Specifications	Supplemental Information
Marker Frequency Counter		
Resolution	Selectable from 1 Hz to 100 kHz	
Accuracy ^a	±(marker frequency × frequency reference error ^b + counter resolution) ^c	For RBW ≥ 1 kHz

a. Marker level to displayed noise level > 25 dB, RBW/ Span \ge 0.002, frequency offset = 0 Hz.

b. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

c. For firmware revisions prior to A.03.00, add 1 Hz x N, where N is the harmonic mixing mode.

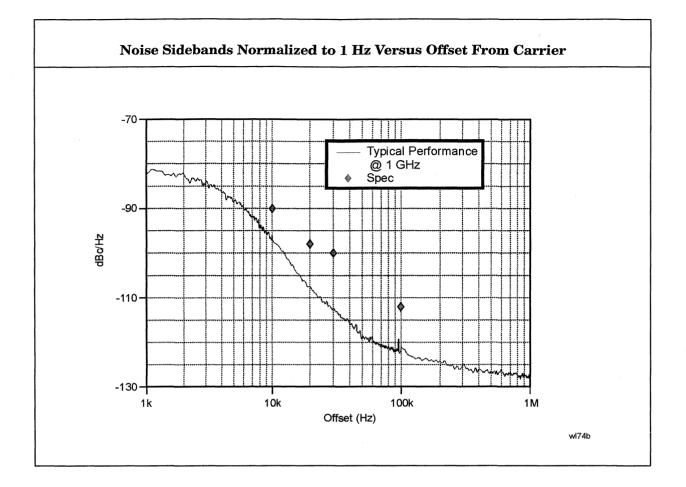
	Specifications	Supplemental Information
Frequency Span		
Range	0 Hz (zero span), 100 Hz to 13.2 GHz	
Resolution	2 Hz x N ^a	
Accuracy	±1% of span	

a. N is the harmonic mixing mode.

	Specifications	Supplemental Information
Sweep Time		
Range	5 ms to 2000 s	50 ms is the minimum sweep time with the tracking generator in operation (Option 1DN)
(Option AYX)	20 µs to 2000 s	For Span = 0 Hz, RBW \geq 1 kHz
Accuracy		
Span = 0 Hz 5 ms to 2000 s	±1%	
$20\mu s$ to < 5ms (Option AYX)	±1%	
Sweep Trigger ^{ab}	Free Run, Single, Line, Video, External, Delayed, Gate (Option 1D6), TV (Option B7B)	
Delayed Trigger ^{ac}		
Range	1 µs to 400 s	
Resolution	[(delay in seconds)/65000] rounded up to nearest µs	
Accuracy	±(500 ns +(0.01% of delay))	

a. Gate cannot be used simultaneously with delayed or TV trigger.

b. Auto align is suspended in video, external, gate, and delayed trigger modes while waiting for a trigger event to occur.


c. Delayed trigger is available with line, external, and TV trigger (Option B7B).

	Specifications	Supplemental Information
Resolution Bandwidth (RBW)		
Range		
–3 dB bandwidth	1 kHz to 3 MHz, in 1-3-10 sequence, 5 MHz	
–6 dB bandwidth (EMI)	9 kHz and 120 kHz	
(Option 1DR)		Only available in spans
–3 dB bandwidth	Adds 10, 30, 100, 300 Hz	≤ 5 MHz, sweep times ≥ 5 ms, and not usable with tracking
–6 dB bandwidth (EMI)	Add 200 Hz	generator in operation (Option 1DN)
Accuracy		
1 kHz to 3 MHz RBW	±15%	
5 MHz RBW	±30%	
10 Hz to 300 Hz RBW (Option 1DR)	±10%	
Shape		
1 kHz to 5 MHz RBW		Synchronously tuned four poles, approximately Gaussian shape
10 Hz to 300 Hz RBW (Option 1DR)		Digital, approximately Gaussian shape
Selectivity (60 dB/3 dB bandwidth ratio)		
1 kHz to 5 MHz RBW		<15:1, characteristic
10 Hz to 300 Hz RBW (Option 1DR)		<5:1, characteristic

	Specifications	Supplemental Information
Video Bandwidth (VBW) (–3 dB)		
Range	30 Hz to 1 MHz in 1-3-10 sequence	3 MHz, characteristic
(Option 1DR)	Adds 1, 3, 10 Hz for RBW's <1 kHz	
Accuracy		±30%, characteristic
Shape		Post detection, single pole low- pass filter used to average displayed noise
		Video bandwidths below 30 Hz are digital bandwidths with anti-aliasing filtering.

	Specifications	Supplemental Information
Stability		
Noise Sidebands, offset from CW signal with 1 kHz RBW, 30 Hz VBW and sample detector		
≥10 kHz	\leq –90 dBc/Hz ^a	
≥20 kHz	\leq -98 dBc/Hz ^a	
≥30 kHz	\leq -100 dBc/Hz ^a	
≥100 kHz	$\leq -112 \text{ dBc/Hz}^{a}$	
Residual FM		
1 kHz RBW, 1 kHz VBW	≤150 Hz × N p–p in 100 ms	
(Option 1D5)	\leq 100 Hz × N p–p in 100 ms	
10 Hz RBW, 10 Hz VBW (Option 1DR and 1D5)	$\leq 2 \text{ Hz} \times \text{N } p-p \text{ in } 20 \text{ ms}$	
10 Hz RBW, 10 Hz VBW (Option 1DR)		≤10 Hz×N p–p in 20 ms, characteristic
System-Related Sidebands, offset from CW signal		
≥30 kHz	\leq -65 dBc ^a	
Line-Related Sidebands, offset from CW signal (Option 1DR)		
<300 Hz		≤–50 dBc ^a , characteristic
>300 Hz to 30 kHz		≤–55 dBc ^a , characteristic

a. Add 20 Log(N) for frequencies > 3 GHz

Amplitude

Amplitude specifications do not apply for the negative peak detector mode.

	Specifications	Supplemental Information
Measurement Range	Displayed Average Noise Level to Maximum Safe Input Level	
Input Attenuator Range	0 to 65 dB, in 5 dB steps	

	Specifications	Supplemental Information
Maximum Safe Input Level		
Average Continuous Power	+30 dBm (1 W)	
Input attenuator setting ≥5 dB		
Peak Pulse Power for <10 μsec pulse width, <1% duty cycle, and input attenuation ≥30 dB	+50 dBm (100 W)	
dc		
dc Coupled	0 Vdc	
ac Coupled	50 Vdc	

	Specifications	Supplemental Information
1 dB Gain Compression		
Total power at input mixer ^{ab}		
50 MHz to 3.0 GHz	0 dBm	
3.0 GHz to 6.7 GHz	0 dBm	
6.7 GHz to 13.2 GHz	–3 dBm	
Preamp On (Option 1DS) Total power at the preamp ^c		–20 dBm, characteristic

a. Mixer power level (dBm) = input power (dBm) - input attenuation (dB).

b. For resolution bandwidths 1 kHz to 30 kHz, the maximum input signal amplitude must be \leq reference level +10 dB.

c. Total power at the preamp (dBm) = total power at the input (dBm) - input attenuation (dB).

	Specifications		Supplemental Information	
Displayed Average Noise Level				
(Input terminated, 0 dB attenuation, sample detector, Reference Level = -70 dBm)				
	1 kHz RBW 30 Hz VBW	10 Hz RBW 1 Hz VBW (Option 1DR)	1 kHz RBW 30 Hz VBW	10 Hz RBW 1 Hz VBW (Option 1DR)
1 MHz to 10 MHz			≤–116 dBm, characteristic	≤–134 dBm, characteristic
10 MHz to 1.0 GHz	≤ - 116 dBm	≤-135 dBm		
1.0 GHz to 2.0 GHz	≤ –115 dBm	≤ –134 dBm		
2.0 GHz to 3.0 GHz	≤ –112 dBm	≤ –131 dBm		
3.0 GHz to 6.0 GHz	≤ -112 dBm	≤–131 dBm		
6.0 GHz to 12 GHz	≤ –110 dBm	≤ –129 dBm		
12 GHz to 13.2 GHz	≤ –107 dBm	≤ –126 dBm		
Preamp On (Option 1DS)	1 kHz RBW 30 Hz VBW	10 Hz RBW 1 Hz VBW (Option 1DR)	1 kHz RBW 30 Hz VBW	10 kHz RBW 1 Hz VBW (Option 1DR)
0 to 55 °C				
1 MHz to 10 MHz			≤–131 dBm, characteristic	≤ –149 dBm, characteristic
10 MHz to 1.0 GHz	≤ –131 dBm	≤–149 dBm		
1.0 GHz to 2.0 GHz	≤ –129 dBm	≤–147 dBm		
2.0 GHz to 3.0 GHz	≤ –127 dBm	≤ –145 dBm		
20 to 30 °C				
10 MHz to 1.0 GHz	≤ -132 dB m	≤ –150 dBm		
1.0 GHz to 2.0 GHz	≤ –131 dBm	≤ –149 dBm		
2.0 GHz to 3.0 GHz	≤ –130 dBm	≤–148 dBm		

	Specifications	Supplemental Information
Display Range		
Log Scale	Ten divisions displayed; 0.1, 0.2, 0.5 dB/division and 1 to 20 dB/division in 1 dB steps	
RBW≥1 kHz	Calibrated 0 to –85 dB from Reference Level	
$RBW \leq 300 \text{ Hz} (Option \ 1DR)$	Calibrated 0 to –120 dB ^a from Reference Level	
Linear Scale	Ten divisions	
Scale Units	dBm, dBmV, dBµV, V,W and Hz (Option BAA)	

a. 0 to -70 dB range when span = 0 Hz, or when auto ranging is off: (:DISPlay:WINDow:TRACe:Y[:SCALe]:LOG:RANGe:AUTO OFF).

	Specifications	Supplemental Information
Marker Readout Resolution		
Log scale		
$RBW \ge 1 \text{ kHz}$		
0 to –85 dB from ref level	0.04 dB	
$RBW \le 300 Hz$		
0 to –120 dB from ref level	0.04 dB	
Linear scale	0.01% of Reference Level	
Fast Sweep Times for Zero Span		
20 µs to <5 ms (Option AYX)		
Log		
0 to –85 dB from ref level	0.3 dB	
Linear	0.3% of Reference Level for linear scale	

	Specifications	Supplemental Information	
Frequency Response			
50 Ω, Absolute ^a /Relative			
10 dB attenuation	9 kHz to 3.0 GHz (dc coupled)	100 kHz to 3.0 GHz (ac coupled)	
20 to 30 °C	±0.5 dB	±0.5 dB, characteristic	
0 to 55 °C	±1.0 dB	±1.0 dB, characteristic	
50 Ω, Absolute ^a /Relative Preamp On (<i>Option 1DS</i>)			
1 MHz to 3.0 GHz	(dc coupled)	(ac coupled)	
0 dB attenuation	±2.0 dB	±2.0 dB	
Preselector centered for frequency >3.0 GHz			
3.0 GHz to 6.7 GHz	(dc coupled)	(ac coupled)	
10 dB attenuation			
Absolute ^a			
20 to 30 °C	±1.5 dB	±1.5 dB, characteristic	
0 to 55 °C	±2.5 dB	±2.5 dB, characteristic	
Relative			
20 to 30 °C	±1.3 dB	±1.3 dB, characteristic	
0 to 55 °C	±1.5 dB	±1.5 dB, characteristic	
6.7 GHz to 13.2 GHz	(dc coupled)	(ac coupled)	
10 dB attenuation			
Absolute ^a			
20 to 30 °C	±2.0 dB	±2.0 dB, characteristic	
0 to 55 °C	±3.0 dB	±3.0 dB, characteristic	
Relative			
20 to 30 °C	±1.8 dB	±1.8 dB, characteristic	
0 to 55 °C	±2.0 dB	±2.0 dB, characteristic	

a. Absolute flatness values are referenced to the amplitude at 50 MHz.

	Specifications	Supplemental Information
Input Attenuation Switching Uncertainty at 50 MHz		
Attenuator Setting		
0 dB to 5 dB	±0.3 dB	
10 dB	Reference	
15 dB	±0.3 dB	
20 to 65 dB	$\pm (0.1 \text{ dB} + 0.01 \times \text{Attenuator})$ Setting)	

	Specifications Supplemental Information	
Preamp (Option 1DS)		
Gain		+20 dB, nominal ^a
Noise figure		5 dB, characteristic

a. Amplifier is between the input attenuator and the input mixer.

Attenuation Accuracy Relative to the 10 dB Attenuator Setting, Characteristic		
	Free	quency Range
Attenuation, dB	dc-3.0 GHz (± dB)	3.0–13.2GHz (± dB)
0	0.3	0.5
5	0.3	0.5
10 (Reference)	Reference	Reference
15	0.4	0.5
20	0.4	0.5
25	0.5	0.6
30	0.5	0.6
35	0.6	0.7
40	0.6	0.7
45	0.7	1.0
50	0.7	1.0
55	0.9	1.1
60	0.9	1.1
65	1.0	1.6

	Specifications	Supplemental Information
Absolute Amplitude Accuracy		
At reference settings ^a	±0.34 dB	
Preamp On ^b (Option 1DS)	±0.5 dB	
Overall Amplitude Accuracy ^c		
20 to 30 °C	± (0.54 dB + Absolute Frequency Response)	

a. Settings are: reference level -20 dBm; input attenuation 10 dB; center frequency 50 MHz; RBW 1 kHz; VBW 1 kHz; scale linear or log; span 2 kHz; sweep time coupled, sample detector, signal at reference level.

b. Settings are: reference level -30 dBm; input attenuation 0 dB; center frequency 50 MHz; RBW 1 kHz; VBW 1 kHz; scale linear or log; span 2 kHz; sweep time coupled, signal at reference level.

c. For reference level 0 to -50 dBm; input attenuation 10 dB; RBW 1 kHz; VBW 1 kHz; scale log, log range 0 to 50 dB from reference level; sweep time coupled; signal input 0 to -50 dBm; span ≤20 kHz.

	Specifications	Supplemental Information	
RF Input VSWR (at tuned frequency)		characteristic	characteristic
Attenuator setting 0 dB		(dc coupled)	(ac coupled)
9 kHz to 100 kHz		3.0:1	
100 kHz to 13.2 GHz		3.0:1	3.0:1
Attenuator setting 5 dB		(dc coupled)	(ac coupled)
9 kHz to 100 kHz		2.0:1	
100 kHz to 300 kHz		1.4:1	2.3:1
300 kHz to 1.0 MHz		1.4:1	1.6:1
1.0 MHz to 3.0 GHz		1.4:1	1.4:1
3.0 GHz to 6.7 GHz		1.4:1	1.7:1
6.7 GHz to 13.2 GHz		1.7:1	1.9:1
Attenuator setting 10 to 65 dB		(dc coupled)	(ac coupled)
9 kHz to 100 kHz		2.0:1	
100 kHz to 300 kHz		1.3:1	2.1:1
300 kHz to 1.0 MHz		1.3:1	1.5:1
1.0 MHz to 3.0 GHz		1.3:1	1.3:1
3.0 GHz to 6.7 GHz		1.3:1	1.5:1
6.7 GHz to 13.2 GHz		1.5:1	1.7:1

	Specifications	Supplemental Information
Auto Alignment ^a		
Sweep-to-sweep variation		±0.1 dB, characteristic

a. Set Auto Align to Off and use Align Now, All to eliminate this variation.

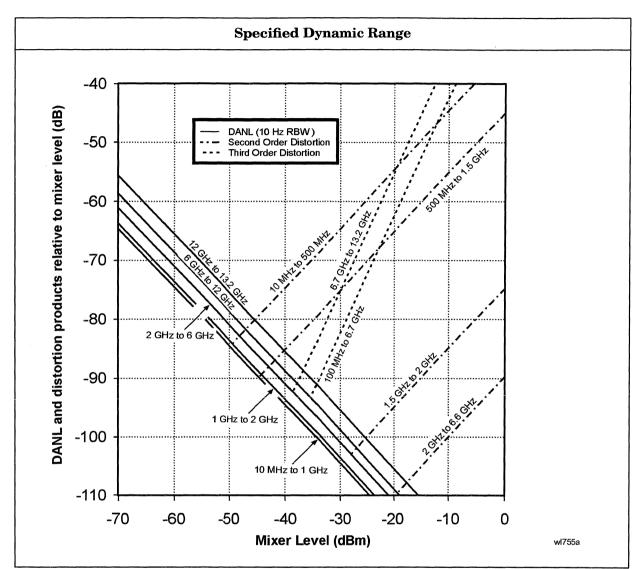
Amplitude

	Specifications	Supplemental Information
Resolution Bandwidth Switching Uncertainty (at Reference Level)		
1 kHz RBW	Reference	
3 kHz to 3 MHz RBW	±0.3 dB	
5 MHz RBW	±0.6 dB	
10 Hz to 300 Hz RBW (Option 1DR)	±0.3 dB	

	Specifications	Supplemental Information
Reference Level		
Range	Adjustable over Amplitude Measurement Range	
Resolution		
Log Scale	±0.1 dB	
Linear Scale	±0.12% of Reference Level	
Accuracy (at a fixed frequency, a fixed attenuator, and referenced to -30 dBm (-10 dBm, Preamp On (Option 1DS)))		
Reference Level (dBm) – input attenuator setting (dB) + preamp gain (dB)		
-10 dBm to > -60 dBm	±0.3 dB	
-60 dBm to > -85 dBm	±0.5 dB	
-85 dBm to -90 dBm	±0.7 dB	

	Specifications	Supplemental Information
Display Scale Switching Uncertainty		
Switching between Linear and Log	$\pm 0.15 \text{ dB}$ at Reference Level	
Log Scale Switching	No error	

	Specifications	Supplemental Information
Display Scale Fidelity		
Log Maximum Cumulative		
0 to –85 dB from Reference Level	$\pm (0.3 \text{ dB} + 0.01 \times \text{dB from})$ Reference Level)	
$RBW \leq 300 Hz$ (Option 1DR)		
Span > 0 Hz		
0 to –98 dB from Reference Level	±(0.3 dB + 0.01 × dB from Reference Level)	
–98 to –120 dB from Reference Level		±2.0 dB, characteristic
$Span = 0 Hz^a$		
0 to –60 dB from Reference Level	±(0.3 dB + 0.015 × dB from Reference Level)	
–60 to –70 dB from Reference Level	±1.5 dB	
Log Incremental Accuracy		
0 to –80 dB ^b from reference level	±0.4 dB/4 dB	
Linear Accuracy	±2% of Reference Level	


a. or when auto ranging is off: (:DISPlay:WINDow:TRACe:Y[:SCALe]:LOG:RANGe:AUTO OFF) b. 0 to -50 dB for RBWs ≤ 300 Hz and span = 0 Hz, or when auto ranging is off.

	Specifications	Supplemental Information
Spurious Responses		
Second Harmonic Distortion		
Input Signal		
10 MHz to 500 MHz	< -65 dBc for -30 dBm signal at input mixer ^a	+35 dBm SHI (second harmonic intercept)
500 MHz to 1.5 GHz	< -75 dBc for -30 dBm signal at input mixer ^a	+45 dBm SHI
1.5 GHz to 2.0 GHz	< –85 dBc for –10 dBm signal at input mixer ^a	+75 dBm SHI
2.0 GHz to 3.35 GHz	< –100 dBc ^b for –10 dBm signal at input mixer ^a	+90 dBm SHI
3.35 GHz to 6.6 GHz	< –100 dBc ^b for –10 dBm signal at input mixer ^a	+90 dBm SHI
Preamp On (Option 1DS) 10 MHz to 1.5 GHz		–5 dBm SHI, characteristic
Third Order Intermodulation Distortion		
10 MHz to 100 MHz		+7 dBm TOI (third order intercept), characteristic
100 MHz to 3 GHz	< –82 dBc for two –30 dBm signals at input mixer ^a and >50 kHz separation	+11 dBm TOI +16 dBm TOI, typical, 20 to 30 °C
3.0 GHz to 6.7 GHz	< –82 dBc for two –30 dBm signals at input mixer ^a and >50 kHz separation	+11 dBm TOI +18 dBm TOI, typical, 20 to 30 °C
6.7 GHz to 13.2 GHz	< –75 dBc for two –30 dBm signals at input mixer ^a and >50 kHz separation	+7.5 dBm TOI +12 dBm TOI, typical, 20 to 30 °C
Preamp On (Option 1DS) 10 MHz to 3 GHz,		–16 dBm TOI, characteristic
Other Input Related Spurious		
Inband Responses		
>30 kHz offset	< -65 dBc for -20 dBm signal at input mixer ^a	
Out-of-band Responses	< –80 dBc for –10 dBm signal at input mixer ^a	

Amplitude

a. Mixer power level (dBm) = input power (dBm) – input attenuation (dB).

b. or signal below displayed average noise level.

	Specifications	Supplemental Information
Residual Responses (Input terminated and 0 dB attenuation)		
150 kHz to 6.7 GHz	< -90 dBm	

	Specifications	Supplemental Information
Gate Delay		
Range	1 µs to 400 s	
Accuracy	$\pm(500 \text{ ns} + (0.01\% \times (\text{maximum of gate delay or length})))$	From gate trigger input to positive edge of gate output
Gate Length		
Range	1 µs to 400 s	
Accuracy	$\pm (500 \text{ ns} + (0.01\% \times (\text{maximum of gate delay or length})))$	From positive edge to negative edge of gate output
Resolution	[(maximum of gate delay or length in seconds)/65000] rounded up to nearest µs	Dependent on the greater of gate delay or gate length
Additional Amplitude Error ^a		
Log Scale	±0.2 dB	
Linear Scale	±0.1 % of reference level	

Time Gated Spectrum Analysis (Option 1D6)

a. While in gate mode.

Tracking Generator (Option 1DN)

The spectrum analyzer tracking generator combination will meet its specification after a cable (8120-5148) and adapter are connected between RF OUT and INPUT and Align Now, TG has been run.

	Specifications	Supplemental Information
Warm-Up	5 minutes	

	Specifications	Supplemental Information
Output Frequency Range	9 kHz to 3.0 GHz	

	Specifications	Supplemental Information
Minimum Resolution BW	1 kHz	Not usable with resolution bandwidths ≤300 Hz (Option 1DR)

	Specifications	Supplemental Information
Output Power Level		
Range	–2 to –66 dBm	
Resolution	0.1 dB	
Absolute Accuracy (at 50 MHz with coupled source attenuator, referenced to -20 dBm)	± 0.75 dB	
Vernier		
Range	8 dB	
Accuracy (with coupled source attenuator, 50 MHz, –20 dBm)		
Incremental	±0.2 dB/dB	
Cumulative	±0.5 dB, total	
Output Attenuator Range	0 to 56 dB in 8 dB steps	

	Specifications	Supplemental Information
Maximum Safe Reverse Level		+30 dBm (1 W), +30 Vdc, characteristic

	Specifications	Supplemental Information
Output Power Sweep		
Range	(–10 dBm to –2 dBm) – (Source Attenuator Setting)	
Resolution	0.1 dB	
Accuracy (zero span)	<1 dB peak-to-peak	

	Specifications	Supplemental Information
Output Flatness		
Referenced to 50 MHz, 20 dBm		
9 kHz to 10 MHz	±3 dB	
10 MHz to 3 GHz	±2 dB	

	Specifications	Supplemental Information
Spurious Outputs		
(-2 dBm output)		
Harmonic Spurs		
TG Output 9 kHz to 20 kHz	≤ –15 dBc	
TG Output 20 kHz to 3 GHz	≤ –25 dBc	
Non-harmonic Spurs		
TG Output 9 kHz to 2 GHz	≤–27 dBc	
TG Output 2 GHz to 3 GHz	≤ –23 dBc	
LO Feedthrough		
LO Frequency 3.921409 to 6.9214 GHz	≤ –16 dBm	

	Specifications	Supplemental Information
Dynamic Range	Maximum Output Power Level – Displayed Average Noise Level	

	Specifications	Supplemental Information
Output Tracking		
Drift		1.5 kHz/5 minute, characteristic
Swept Tracking Error		Usable in 1 kHz RBW after 5 minutes of warm-up

	Specifications	Supplemental Information
RF Power-Off Residuals		
9 kHz to 3 GHz		< –120 dBm, characteristic

	Specifications	Supplemental Information
Output Attenuator Repeatability		
9 kHz to 300 MHz		±0.1 dB, characteristic
300 MHz to 2.0 GHz		±0.2 dB, characteristic
2.0 GHz to 3 GHz		±0.3 dB, characteristic

	Specifications	Supplemental Information
Output VSWR		
0 dB attenuation		<2.0:1, characteristic
$\geq 8 \text{ dB}$ attenuation		<1.5:1, characteristic

	Specifications	Supplemental Information
Output Attenuator Accuracy		
0 dB		±0.5 dB, characteristic
8 dB		±0.5 dB, characteristic
16 dB	Reference	
24 dB		±0.5 dB, characteristic
32 dB		±0.6 dB, characteristic
40 dB		±0.8 dB, characteristic
48 dB		±1.0 dB, characteristic
56 dB		±1.1 dB, characteristic

Tracking Generator Output Accuracy	
Relative Accuracy (Referred to –20 dBm) = Output Attenuator Accuracy + Vernier Accuracy + Output Flatness	
Absolute Accuracy = Relative Accuracy (Referred to –20 dBm) + Absolute Accuracy at 50 MHz	

	Specifications	Supplemental Information
Output Power Level		
Range	–2 to –66 dBm	
Resolution	0.1 dB	
Absolute Accuracy (at 50 MHz with coupled source attenuator, referenced to -20 dBm)	± 0.75 dB	
Vernier		
Range	8 dB	
Accuracy (with coupled source attenuator, 50 MHz, -20 dBm)		
Incremental	±0.2 dB/dB	
Cumulative	±0.5 dB, total	
Output Attenuator Range	0 to 56 dB in 8 dB steps	

FM Demodulation (Option BAA)

The FM demodulation characteristics will be met after an Align Now, FM Demod has been run.

	Specifications	Supplemental Information
Input Level		\geq (-60 dBm + attenuator setting – preamp gain), characteristic
Signal Level		0 to –30 dB below reference level, characteristic
FM Deviation		
Range		10 kHz to 1 MHz
Resolution		Provides 1 Hz display annotation resolution
FM Deviation Range		
10 kHz to 40 kHz		12 Hz, characteristic
>40 kHz to 200 kHz		60 Hz, characteristic
>200 kHz to 1 MHz		300 Hz, characteristic
Accuracy ^a FM Rate < FM BW/100, VBW \geq (30 × FM Rate), RBW > the maximum of (30 × FM deviation) or (30 × FM Rate)		< (2% of FM deviation range + 2 × Resolution), characteristic
Offset Error ^a		5% of FM Deviation Range + 300 Hz, characteristic
FM Bandwidth (-3 dB)		
FM Deviation Range		
10 kHz to 40 kHz		$7.5 \times FM$ deviation range, characteristic
>40 kHz to 200 kHz		$1.3 \times FM$ deviation range, characteristic
>200 kHz to 1 MHz		$0.3 \times FM$ deviation range, characteristic

a. In time domain sweeps (span = 0 Hz).

	Specifications	Supplemental Information
TV Trigger and Picture On Screen		TV Trigger initiates a sweep of the analyzer after the sync pulse of a selected line of a TV video field. Picture On Screen displays the TV picture on the analyzer display.
Amplitude Requirements		
TV Source: SA		Top 50% of linear display, characteristic
TV Source: EXT VIDEO IN		500 mVp–p to 2 Vp–p, characteristic
Compatible Standards	NTSC–M, NTSC–Japan, PAL–M, PAL–B,D,G,H,I, PAL–N, PAL–N Combination, SECAM-L	
Field Selection	Entire frame, even, odd	
Sync Polarity	Positive or negative	
TV TriggerLine Selection		
	1 to 525, or 1 to 625, standard dependent	

TV Trigger and Picture On Screen (Option B7B)

General

	Specifications	Supplemental Information
Temperature Range		
Operating	0 to 55 °C	Floppy disk 10 to 40 $^{\circ}\mathrm{C}$
Storage	–40 to +75 °C	

	Specifications	Supplemental Information
Audible Noise (ISO 7779)		
Sound Pressure at 25 $^\circ\mathrm{C}$		<40 dBa, (<4.6 Bels power)

	Specifications	Supplemental Information
Military Specification	Has been type tested to the environmental specifications of MIL-PRF-28800F class 3.	

	Specifications	Supplemental Information
EMI Compatibility	Conducted and radiated emission is in compliance with CISPR Pub. 11/1990 Group 1 Class A.	

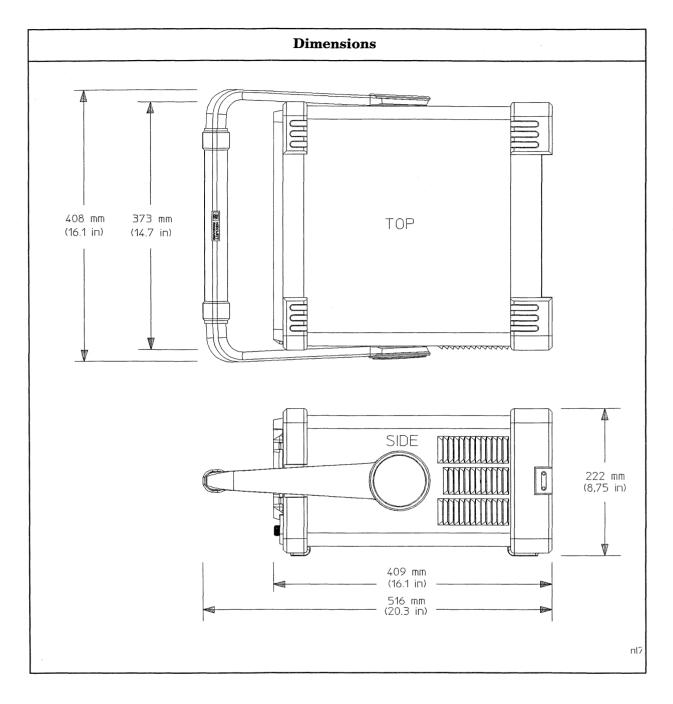
	Specifications	Supplemental Information
Immunity Testing		
Radiated Immunity		Testing was done at 3 V/m according to IEC 801-3/1984. When the analyzer tuned frequency is identical to the immunity test signal frequency there may be signals of up to -60 dBm displayed on the screen.
Electrostatic Discharge		Air discharges of up to 8 kV were applied according to IEC 801-2/1991. Discharges to center pins of any of the connectors may cause damage to the associated circuitry.

	Specifications	Supplemental Information
Power Requirements		Uses CUKonverter® topology in the power supply.
ac Operation		
Voltage, frequency	90 to 132 V rms, 47 to 440 Hz 195 to 250 V rms, 47 to 66 Hz	
Power Consumption, On	<300 W	
Power Consumption, Standby	<5 W	
dc Operation		
Voltage	12 to 20 Vdc	
Power Consumption	<200 W	

	Specifications	Supplemental Information
Measurement Speed		
Local Measurement and Display Update rate ^a		\geq 28/s, characteristic
Remote Measurement and HP-IB Transfer Rate ^b (Option A4H)		≥ 19/s, characteristic

a. Auto align off, 5 ms sweep time, fixed center frequency.

b. Auto align off, 5 ms sweep time, fixed center frequency, 401 point trace, display off (DISPlay:ENABle off), and 32-bit integer data format (FORMat:DATA INT,32).


	Specifications	Supplemental Information
Data Storage		
Internal		200 Traces or States
External (10 to 40 °C) 3.5" 1.44 MB, MS-DOS® compatible floppy disk		200 Traces or States

	Specifications	Supplemental Information
Downloadable Program Memory		2 MB available memory
(Option B72)		10 MB available memory

	Specifications	Supplemental Information
Demod Tune Listen		
АМ		Internal speaker, front-panel earphone jack and front-panel volume control.
FM (Option BAA)		
(Option A4J, AYX, or BAA)		An uncalibrated demodulated signal is available on the AUX VIDEO OUT or EXT VIDEO OUT connectors at the rear panel.

	Specifications	Supplemental Information
Weight (without options)		
Net		16.2 kg (35.6 lb), characteristic
Shipping		31.0 kg (68 lb), characteristic

General

Inputs and Outputs

Front Panel

	Specifications	Supplemental Information
INPUT 50 Ω		
Connector	Type-N female	
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
RF OUT 50 Ω, (Option 1DN)		
Connector	Type-N female	
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
AMPTD REF OUT ^a		Amplitude Reference
Connector	BNC Female	
Impedance		50 Ω, nominal
Frequency		50 MHz
Frequency Accuracy		Frequency reference error ^b
50 Ω Amplitude ^c		–20 dBm, nominal

a. Turn the amplitude reference on/off by pressing the keys: Input, Amptd Ref Out.

b. Frequency reference error = (aging rate \times period of time since adjustment + settability + temperature stability).

c. The internal amplitude reference actual power is stored internally.

	Specifications	Supplemental Information
PROBE POWER		
Voltage/Current		+15 Vdc, ±7% at 150 mA max., characteristic -12.6 Vdc ±10% at 150 mA max., characteristic

	Specifications	Supplemental Information
EXT KEYBOARD		Feature not implemented.
Connector	6-pin mini-DIN	

	Specifications	Supplemental Information
Speaker		Front panel knob controls volume

	Specifications	Supplemental Information
Headphone		Front panel knob controls volume
Connector	3.5 mm (1/8 inch) miniature audio jack	
Power Output		0.2 W into 4 Ω, characteristic

Rear Panel

	Specifications	Supplemental Information
10 MHz REF OUT		
Connector	BNC female	
Impedance		50 Ω, nominal
Output Amplitude		>0 dBm, characteristic

	Specifications	Supplemental Information
10 MHz REF IN		
Connector	BNC female	Note: Analyzer noise sidebands and spurious response performance may be affected by the quality of the external reference used.
Impedance		50 Ω, nominal
Input Amplitude Range		–15 to +10 dBm, characteristic
Frequency		10 MHz, nominal

	Specifications	Supplemental Information
GATE TRIG/EXT TRIG IN		
Connector	BNC female	
External Trigger Input		
Trigger Level		Selectable positive or negative edge initiates sweep in EXT TRIG mode (5 V TTL)
Gate Trigger Input (Option 1D6)		
Minimum Pulse Width		>30 ns (5 V TTL)

	Specifications	Supplemental Information
GATE/HI SWP OUT		
Connector	BNC female	
High Sweep Output		
Level		High = sweep; Low = retrace (5 V TTL)
Gate Output (Option 1D6)		
Level		High = gate on; Low = gate off (5 V TTL)

	Specifications	Supplemental Information
VGA OUTPUT		
Connector	VGA compatible, 15-pin mini D-SUB	
Format		VGA (31.5 kHz horizontal, 60 Hz vertical sync rates, non-interlaced) Analog RGB
Resolution	640 × 480	

	Specifications	Supplemental Information
AUX IF OUT (Option A4J or AYX)		RBW≥1 kHz
Connector	BNC female	
Frequency		21.4 MHz, nominal
Amplitude Range (for signal at reference level and for reference levels – input attenuation + preamp gain of -10 to -70 dBm)		–10 dBm (uncorrected), characteristic
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
AUX VIDEO OUT (Option A4J or AYX)		RBW≥1 kHz
Connector	BNC female	
Amplitude Range (into >10 $k\Omega$)		0 to 1 V (uncorrected), characteristic

	Specifications	Supplemental Information
HI SWP IN (Option A4J or AYX)		
Connector	BNC female	
Input		Open collector, low stops sweep (5 V TTL)

	Specifications	Supplemental Information
HI SWP OUT (Option A4J or AYX)		
Connector	BNC female	
Output		High = sweep, Low = retrace (5 V TTL)

	Specifications	Supplemental Information
SWP OUT (Option A4J or AYX)		
Connector	BNC female	
Amplitude		0 to +10 V ramp, characteristic

	Specifications	Supplemental Information
PRESEL TUNE OUTPUT		
Connector	BNC female	
Load Impedance (dc coupled)		> 10 kQ nominal
Range		0 to +10 V, characteristic
Sensitivity		0.33 V/GHz of tuned frequency > 3 GHz, characteristic

	Specifications	Supplemental Information
HP-IB Interface (Option A4H)		
Connector	IEEE-488 bus connector	
HP-IB Codes		SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and C28

	Specifications	Supplemental Information
Serial Interface (Option 1AX)		
Connector	9-pin D-SUB male	RS-232

	Specifications	Supplemental Information
Parallel Interface (Option A4H or 1AX)		Printer port only
Connector	25-pin D-SUB female	

	Specifications	Supplemental Information
EXT VIDEO IN/TV TRIG OUT^a (Option B7B or BAA)		EXT VIDEO IN is the Baseband composite video input for TV trigger and picture on screen. TV TRIG OUT is the TV trigger output.
Connector	BNC Female (75 Ω)	
Impedance		75 Ω, characteristic.
(Option BAA without Option B7B)		Feature not implemented.
(Option BAA with Option B7B)		
External Video Input Video Amplitude		1 Vp–p, nominal, characteristic
TV Trigger Output		Positive edge indicates start of selected TV line after sync. pulse.
Amplitude		TTL (0 V and 3.4 V with 75 Ω series resistance), characteristic

a. This connector is labelled EXT VIDEO IN on older spectrum analyzers and EXT VIDEO IN/TV TRIG OUT on newer spectrum analyzers.

	Specifications	Supplemental Information
EXT VIDEO OUT (Option B7B or BAA)		Baseband video output RBW ≥ 1 kHz
Connector	BNC Female (75 Ω)	
Impedance		75 Ω, characteristic.
Amplitude (Option BAA without Option B7B)		0 to 1 V (uncorrected), characteristic
Amplitude (Option BAA with Option B7B)		
TV Source: SA		0 to 1 V (uncorrected), characteristic
TV Source and EXT VIDEO IN		Same as level at EXT VIDEO IN/TV TRIG OUT, characteristic

Regulatory Information

CAUTION This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 1010 and 664 respectively.

NOTE This product has been designed and tested in accordance with IEC Publication 1010, Safety Requirements for Electronic Measuring Apparatus, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.

The CE mark is a registered trademark of the European Community (if accompanied by a year, it is the year when the design was proven).

The CSA mark is the Canadian Standards Association safety mark.

SP.

Œ

ISM 1-A

This is a symbol of an Industrial Scientific and Medical Group 1 Class A product. (CISPR 11, Clause 4)

Declaration of Conformity

DECLARATION OF CONFORMITY According to ISO/IEC Guide 22 and EN 45014				
Manufacturer's Name:	Hewlett-Packard Co.			
Manufacturer's Address:	1400 Fountaingrove Parkway Santa Rosa, CA 95403-1799 USA			
Declares that the products				
Product Name:	Spectrum Analyzer			
Model Number:	HP E4401B, HP E4402B, HP E4403B, HP E4404B, HP E4405B, HP E4407B, HP E4408B, HP E4411B			
Product Options:	This declaration covers all options of the above products.			
Conform to the following Product specifications:				
Safety: IEC 61010-1:1990 / EN 61010-1:1993 CAN/CSA-C22.2 No. 1010.1-92				
EMC: CISPR 11:1990/EN 55011:1991 Group 1, Class A IEC 801-2:1984/EN 50082-1:1992 4 kV CD, 8 kV AD IEC 801-3:1984/EN 50082-1:1992 3 V/m, 27-500 MHz IEC 801-4:1988/EN 50082-1:1992 0.5 kV sig. lines, 1 kV power lines				
Supplementary Information:				
The products herewith comply with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC and carry the CE-marking accordingly.				
Santa Rosa, CA, USA 7 Jan. 1999	Greg Pfeiffer/Quality Engineering Manager			
European Contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH Department HQ- TRE, Herreneberger Strasse 130, D71034 Boblingen, Germany (FAX +49-7031-14-3143)				

9 HP E4407B Specifications and Characteristics

About This Chapter

This chapter contains specifications and characteristics for the HP E4407B spectrum analyzer. The distinction between specifications and characteristics is described as follows.

- Specifications describe the performance of parameters covered by the product warranty. (The temperature range is 0 °C to 55 °C, unless otherwise noted.)
- Characteristics describe product performance that is useful in the application of the product, but is not covered by the product warranty.
- Typical performance describes additional product performance information that is not covered by the product warranty. It is performance beyond an indicated specification, that most units will exhibit.
- Nominal values indicate the expected, but not warranted, value of a parameter.

The following conditions must be met for the analyzer to meet its specifications.

- \Box The analyzer is within the one year calibration cycle.
- **If Auto Align All** is selected:
 - After 2 hours of storage within the operating temperature range.
 - 5 minutes after the analyzer is turned on with sweep times less than 4 seconds.
 - After the front-panel amplitude reference is connected to the INPUT, and Align Now RF has been run, after the analyzer is turned on. And, once every 24 hours, or if ambient temperature changes more than $30 \, {}^{\circ}\mathrm{C}^{1}$.
- **If Auto Align Off** is selected:
 - When the analyzer is at a constant temperature, within the operating temperature range, for a minimum of 90 minutes,
 - After the analyzer is turned on for a minimum of 90 minutes, the front panel amplitude reference has been connected to the INPUT, and Align Now All has been run.
 - ---- When Align Now All is run:
 - Every hour

1. $^{\circ}10$ C if Option 1DS is active.

- If the ambient temperature changes more than 3 °C
- If the 10 MHz reference changes
- When Align Now RF is run (with the front-panel amplitude reference connected to the INPUT):
 - Every 24 hours
 - If the ambient temperature changes more than 30 $^{\circ}C^{1}$
- □ If Auto Align All but RF is selected:
 - When the analyzer is at a constant temperature, within the operating temperature range, for a minimum of 90 minutes.
 - After the analyzer is turned on for a minimum of 90 minutes, the front panel amplitude reference has been connected to the INPUT, and Align Now RF has been run.
 - When Align Now RF is run (with the front-panel amplitude reference connected to the INPUT):
 - Every hour
 - If the ambient temperature changes more than 3 °C

^{1. 10 °}C if Option 1DS is active.

Frequenc	у
----------	---

	Specifications	Supplemental Information	
Frequency Range			
	9 kHz to 26.5 GHz		
Band		Harmonic Mixing Mode (N ^a)	
0	9 kHz to 3.0 GHz	1–	
1	2.85 GHz to 6.7 GHz	1–	
2	6.2 GHz to 13.2 GHz	2–	
3	12.8 GHz to 19.2 GHz	4-	
4	18.7 GHz to 26.5 GHz	4-	
Preamp On (Option 1DS)	1 MHz to 3 GHz		
External Mixing (Option AYZ)	18 GHz to 325 GHz		
		Harmonic Mixing Mode (N ^a)	
Band		Preselected	Unpreselected
K	18.0 GHz to 26.5 GHz	n/a	6—
А	26.5 GHz to 40.0 GHz	8+	8–
Q	33.0 GHz to 50.0 GHz	10+	10–
U	40.0 GHz to 60.0 GHz	10+	10–
v	50.0 GHz to 75.0 GHz	14+	14–
Е	60.0 GHz to 90.0 GHz	n/a	16—
W	75.0 GHz to 110.0 GHz	n/a	18
т	90.0 GHz to 140.0 GHz	n/a	20–
D	110.0 GHz to 170.0 GHz	n/a	24
G	140.0 GHz to 220.0 GHz	n/a	32–
Y	170.0 GHz to 260.0 GHz	n/a	38
J	220.0 GHz to 325.0 GHz	n/a	46

a. N is the harmonic mixing mode. For negative mixing modes (as indicated by the "-"), the desired 1st LO harmonic is higher than the tuned frequency by the 1st IF (3.9214 for the 9 kHz to 3 GHz band, 321.4 MHz for all other bands) For positive mixing modes, the desired 1st LO harmonic is lower than the tuned frequency by 321.4 MHz.

	Specifications	Supplemental Information
Frequency Reference		
Aging Rate	$\pm 2 imes 10^{-6}$ /year	$\pm 1.0 imes 10^{-7}$ /day, characteristic
Settability	$\pm 5 \times 10^{-7}$	
Temperature Stability	$\pm 5 imes 10^{-6}$	

	Specifications	Supplemental Information
High Stability Frequency Reference (Option 1D5)		
Aging Rate	$\pm 1 \times 10^{-7}$ /year	$\pm5 imes10^{-10}$ /day, 7-day average after being powered on for 7 days, characteristic
Settability	$\pm 1 \times 10^{-8}$	
Temperature Stability		50
20 to 30 °C	$\pm 1 imes 10^{-8}$	
0 to 55 °C	$\pm 5 \times 10^{-8}$	
Warm-Up (Internal frequency reference selected)		
After 5 minutes		$<\pm1\times10^{-7}$ of final frequency, ^a characteristic
After 15 minutes		$<\pm1\times10^{-8}$ of final frequency, ^a characteristic

a. Final frequency is defined as frequency 60 minutes after power-on with analyzer set to internal frequency reference.

	Specifications	Supplemental Information
Frequency Readout Accuracy		
(Start, Stop, Center, Marker)	\pm (frequency indication \times frequency reference error ^a + span accuracy + 15% of RBW + 10 Hz + 1 Hz \times N ^b)	

a. Frequency reference error = (aging rate \times period of time since adjustment + settability + temperature stability).

b. N is the harmonic mixing mode.

	Specifications	Supplemental Information
Marker Frequency Counter		
Resolution	Selectable from 1 Hz to 100 kHz	
Accuracy ^a	±(marker frequency × frequency reference error ^b + counter resolution) ^c	For RBW ≥ 1 kHz

a. Marker level to displayed noise level > 25 dB, RBW/ Span \ge 0.002, frequency offset = 0 Hz.

b. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

c. For firmware revisions prior to A.03.00, add 1 Hz x N, where N is the harmonic mixing mode.

	Specifications	Supplemental Information
Frequency Span		
Range		
Internal Mixing	0 Hz (zero span), 100 Hz to 26.5 GHz	
External Mixing (Option AYZ)	0 Hz (zero span), Minimum span = 100 Hz	
Resolution	2 Hz x N ^a	
Accuracy	±1% of span	

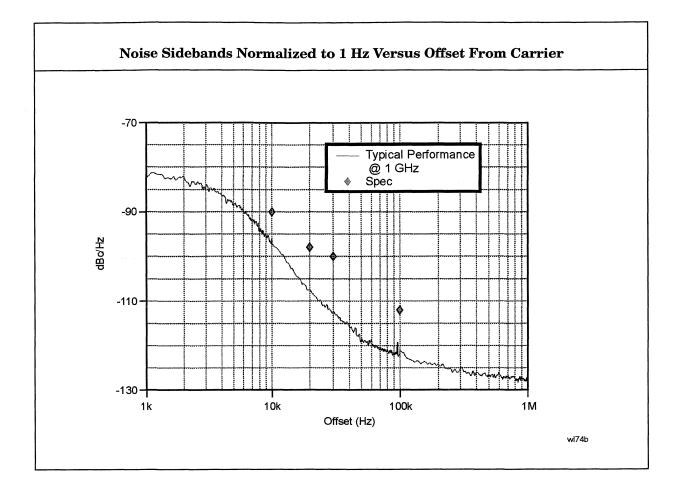
a. N is the harmonic mixing mode.

	Specifications	Supplemental Information
Sweep Time		
Range	5 ms to 2000 s	50 ms is the minimum sweep time with the tracking generator in operation (Option 1DN)
(Option AYX)	20 µs to 2000 s	For Span = 0 Hz, RBW \geq 1 kHz
Accuracy		
Span = 0 Hz 5 ms to 2000 s	±1%	
$20\mu s$ to < 5ms (Option AYX)	±1%	
Sweep Trigger ^{ab}	Free Run, Single, Line, Video, External, Delayed, Gate (<i>Option 1D6</i>), TV (<i>Option</i> <i>B7B</i>)	
Delayed Trigger ^{ac}		
Range	1 µs to 400 s	
Resolution	[(delay in seconds)/65000] rounded up to nearest μs	
Accuracy	±(500 ns +(0.01% of delay))	

a. Gate cannot be used simultaneously with delayed or TV trigger.

b. Auto align is suspended in video, external, gate, and delayed trigger modes while waiting for a trigger event to occur.

c. Delayed trigger is available with line, external, and TV trigger (Option B7B).


Frequency

	Specifications	Supplemental Information
Resolution Bandwidth (RBW)		
Range		
–3 dB bandwidth	1 kHz to 3 MHz, in 1-3-10 sequence, 5 MHz	
–6 dB bandwidth (EMI)	9 kHz and 120 kHz	
(Option 1DR)		Only available in spans
–3 dB bandwidth	Adds 10, 30, 100, 300 Hz	≤ 5 MHz, sweep times ≥ 5 ms, and not usable with tracking
–6 dB bandwidth (EMI)	Add 200 Hz	generator in operation (Option 1DN)
Accuracy		
1 kHz to 3 MHz RBW	±15%	
5 MHz RBW	±30%	
10 Hz to 300 Hz RBW (Option 1DR)	±10%	
Shape		
1 kHz to 5 MHz RBW		Synchronously tuned four poles, approximately Gaussian shape
10 Hz to 300 Hz RBW (Option 1DR)		Digital, approximately Gaussian shape
Selectivity (60 dB/3 dB bandwidth ratio)		
1 kHz to 5 MHz RBW		<15:1, characteristic
10 Hz to 300 Hz RBW (Option 1DR)		<5:1, characteristic

	Specifications	Supplemental Information
Video Bandwidth (VBW) (–3 dB)		
Range	30 Hz to 1 MHz in 1-3-10 sequence	3 MHz, characteristic
(Option 1DR)	Adds 1, 3, 10 Hz for RBW's <1 kHz	
Accuracy		±30%, characteristic
Shape		Post detection, single pole low- pass filter used to average displayed noise
		Video bandwidths below 30 Hz are digital bandwidths with anti-aliasing filtering.

	Specifications	Supplemental Information
Stability		
Noise Sidebands, offset from CW signal with 1 kHz RBW, 30 Hz VBW and sample detector		
≥10 kHz	\leq -90 dBc/Hz ^a	
≥20 kHz	\leq -98 dBc/Hz ^a	
≥30 kHz	\leq –100 dBc/Hz ^a	
≥100 kHz	\leq -112 dBc/Hz ^a	
Residual FM		
1 kHz RBW, 1 kHz VBW	\leq 150 Hz × N p–p in 100 ms	
(Option 1D5)	\leq 100 Hz × N p–p in 100 ms	
10 Hz RBW, 10 Hz VBW (Option 1DR)	≤ 2 Hz \times N p–p in 20 ms	
10 Hz RBW, 10 Hz VBW (Option 1DR)		≤10 Hz×N p–p in 20 ms, characteristic
System-Related Sidebands, offset from CW signal		
≥30 kHz	$\leq -65 \mathrm{dBc}^{\mathrm{a}}$	
Line-Related Sidebands, offset from CW signal (Option 1DR)		
<300 Hz		\leq –50 dBc ^a , characteristic
>300 Hz to 30 kHz		≤ –55 dBc ^a , characteristic

a. Add 20 Log(N) for frequencies > 3 GHz

Amplitude

Amplitude specifications do not apply for the negative peak detector mode.

	Specifications	Supplemental Information
Measurement Range	Displayed Average Noise Level to Maximum Safe Input Level	
Input Attenuator Range	0 to 65 dB, in 5 dB steps	

	Specifications	Supplemental Information
Maximum Safe Input Level		
Average Continuous Power	+30 dBm (1 W)	
Input attenuator setting ≥5 dB		
Peak Pulse Power for <10 µsec pulse width, <1% duty cycle, and input attenuation ≥30 dB	+50 dBm (100 W)	
dc	0 Vdc	

	Specifications	Supplemental Information
1 dB Gain Compression		
Total power at input mixer ^{ab}		
50 MHz to 3.0 GHz	0 dBm	
3.0 GHz to 6.7 GHz	0 dBm	
6.7 GHz to 13.2 GHz	3 dBm	
13.2 GHz to 26.5 GHz	–5 dBm	
Preamp On (Option 1DS)		
Total power at the preamp ^c		–20 dBm, characteristic

a. Mixer power level (dBm) = input power (dBm) – input attenuation (dB).

b. For resolution bandwidths 1 kHz to 30 kHz, the maximum input signal amplitude must be \leq reference level +10 dB.

c. Total power at the preamp (dBm) = total power at the input (dBm) - input attenuation (dB).

	Specifications		Supplemental Information	
Displayed Average Noise Level	·			
(Input terminated, 0 dB attenuation, sample detector, Reference Level = -70 dBm)				
	1 kHz RBW 30 Hz VBW	10 Hz RBW 1 Hz VBW (Option 1DR)	1 kHz RBW 30 Hz VBW	10 Hz RBW 1 Hz VBW (Option 1DR)
1 MHz to 10 MHz			≤ –116 dBm, characteristic	≤ -134 dBm, characteristic
10 MHz to 1.0 GHz	≤ –116 dBm	$\leq -135 \text{ dBm}$		
1.0 GHz to 2.0 GHz	$\leq -115 \text{ dBm}$	≤ –134 dBm		
2.0 GHz to 3.0 GHz	≤ –112 dBm	≤ –131 dBm		
3.0 GHz to 6.0 GHz	≤ –112 dBm	≤ –131 dBm		
6.0 GHz to 12 GHz	≤ –110 dBm	≤ –129 dBm		
12 GHz to 22 GHz	≤ –107 dBm	≤ –126 dBm		
22 GHz to 26.5 GHz	≤ –101 dBm	≤ –120 dBm		
Preamp On (Option 1DS)	1 kHz RBW 30 Hz VBW	10 Hz RBW 1 Hz VBW (Option 1DR)	1 kHz RBW 30 Hz VBW	10 kHz RBW 1 Hz VBW (Option 1DR)
0 to 55 °C				
1 MHz to 10 MHz			≤ –131 dBm, characteristic	≤-149 dBm, characteristic
10 MHz to 1.0 GHz	≤ –131 dBm	≤ –149 dBm		
1.0 GHz to 2.0 GHz	≤ –129 dBm	≤-147 dBm		
2.0 GHz to 3.0 GHz	≤ –127 dBm	≤-145 dBm		
20 to 30 °C				
10 MHz to 1.0 GHz	≤ –132 dBm	≤ –150 dBm		
1.0 GHz to 2.0 GHz	≤131 dBm	≤ –149 dBm		
2.0 GHz to 3.0 GHz	≤ –130 dBm	≤ –148 dBm		

	Specifications	Supplemental Information
External Mixer (Option AYZ)		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

	Specifications	Supplemental Information
Display Range		
Log Scale	Ten divisions displayed; 0.1, 0.2, 0.5 dB/division and 1 to 20 dB/division in 1 dB steps	
RBW≥1 kHz	Calibrated 0 to –85 dB from Reference Level	
$RBW \leq 300 Hz$ (Option 1DR)	Calibrated 0 to –120 dB ^a from Reference Level	
Linear Scale	Ten divisions	
Scale Units	dBm, dBmV, dBµV, V,W and Hz (Option BAA)	

a. 0 to -70 dB range when span = 0 Hz, or when auto ranging is off: (:DISPlay:WINDow:TRACe:Y[:SCALe]:LOG:RANGe:AUTO OFF).

	Specifications	Supplemental Information
Marker Readout Resolution		
Log scale		
$RBW \ge 1 \text{ kHz}$		
0 to –85 dB from ref level	0.04 dB	
$RBW \le 300 Hz$		
0 to –120 dB from ref level	0.04 dB	
Linear scale	0.01% of Reference Level	
Fast Sweep Times for Zero Span		
20 μ s to <5 ms (Option AYX)		
Log		
0 to -85 dB from ref level	0.3 dB	
Linear	0.3% of Reference Level for linear scale	

Amplitude

	Specifications	Supplemental Information
Frequency Response		
50 Ω, Absolute ^a /Relative		
9 kHz to 3.0 GHz		
10 dB attenuation		
20 to 30 °C	$\pm 0.5 \text{ dB}$	
0 to 55 $^{\circ}\mathrm{C}$	±1.0 dB	
50 Ω, Absolute ^a /Relative Preamp On (<i>Option 1DS</i>)		
1 MHz to 3.0 GHz		
0 dB attenuation	±2.0 dB	
Preselector centered for frequency >3.0 GHz		
3.0 GHz to 6.7 GHz		
10 dB attenuation		
$Absolute^{a}$		
20 to 30 °C	±1.5 dB	
0 to 55 $^{\circ}\mathrm{C}$	$\pm 2.5 \text{ dB}$	
Relative		
20 to 30 °C	±1.3 dB	
0 to 55 °C	±1.5 dB	
6.7 GHz to 13.2 GHz		
10 dB attenuation		
Absolute ^a		
20 to 30 °C	±2.0 dB	
0 to 55 °C	±3.0 dB	
Relative		
20 to 30 °C	±1.8 dB	
0 to 55 °C	±2.0 dB	

	Specifications	Supplemental Information
13.2 GHz to 26.5 GHz		
10 dB attenuation		
Absolute ^a		
20 to 30 °C	±2.0 dB	
0 to 55 °C	±3.0 dB	
Relative		
20 to 30 °C	±1.8 dB	
0 to 55 °C	±2.0 dB	

a. Absolute flatness values are referenced to the amplitude at 50 MHz.

	Specifications	Supplemental Information
Input Attenuation Switching Uncertainty at 50 MHz		
Attenuator Setting		
0 dB to 5 dB	±0.3 dB	
10 dB	Reference	
15 dB	±0.3 dB	
20 to 65 dB	±(0.1 dB + 0.01 × Attenuator Setting)	

	Specifications	Supplemental Information
Preamp (Option 1DS)		
Gain		+20 dB, nominal ^a
Noise figure		5 dB, characteristic

a. Amplifier is between the input attenuator and the input mixer.

Attenuation Accuracy Relative to the 10 dB Attenuator Setting, Characteristic					
	Frequency Range				
Attenuation, dB	dc-3.0 GHz (± dB)	3.0–13.2 GHz (± dB)	13.2–19 GHz (± dB)	19–22 GHz (± dB)	22–26.5 GHz (± dB)
0	0.3	0.5	0.8	0.9	1.0
5	0.3	0.5	0.8	0.9	1.0
10 (Reference)	Reference	Reference	Reference	Reference	Reference
15	0.4	0.5	0.8	1.0	1.5
20	0.4	0.5	0.8	1.0	1.5
25	0.5	0.6	0.8	1.2	2.0
30	0.5	0.6	0.8	1.2	2.0
35	0.6	0.7	1.0	1.8	3.0
40	0.6	0.7	1.0	1.8	3.0
45	0.7	1.0	1.3	2.2	3.4
50	0.7	1.0	1.3	2.2	3.4
55	0.9	1.1	1.6	2.7	3.5
60	0.9	1.1	1.6	2.7	3.5
65	1.0	1.6	2.0	3.2	3.8

	Specifications	Supplemental Information
Absolute Amplitude Accuracy		
At reference settings ^a	±0.34 dB	
Preamp On ^b (Option 1DS)	±0.5 dB	
External Mixer (Option AYZ)	IF INPUT absolute amplitude accuracy + external mixer conversion loss accuracy ^c	
Overall Amplitude Accuracy ^d		
20 to 30 °C	± (0.54 dB + Absolute Frequency Response)	

a. Settings are: reference level -20 dBm; input attenuation 10 dB; center frequency 50 MHz; RBW 1 kHz; VBW 1 kHz; scale linear or log; span 2 kHz; sweep time coupled, sample detector, signal at reference level.

b. Settings are: reference level -30 dBm; input attenuation 0 dB; center frequency 50 MHz; RBW 1 kHz; VBW 1 kHz; scale linear or log; span 2 kHz; sweep time coupled, signal at reference level.

c. Preselector centered with HP 11974-Series mixers.

d. For reference level 0 to -50 dBm; input attenuation 10 dB; RBW 1 kHz; VBW 1 kHz; scale log, log range 0 to 50 dB from reference level; sweep time coupled; signal input 0 to -50 dBm; span ≤20 kHz; internal mixing.

	Specifications	Supplemental Information
RF Input VSWR (at tuned frequency)		
Attenuator setting 0 dB		
9 kHz to 26.5 GHz		3.0:1, characteristic
Attenuator setting 5 dB		
9 kHz to 100 kHz		2.0:1, characteristic
100 kHz to 6.7 GHz		1.4:1, characteristic
6.7 GHz to 13.2 GHz		1.7:1, characteristic
13.2 GHz to 22.0 GHz		2.3:1, characteristic
22.0 GHz to 26.5 GHz		2.6:1, characteristic
Attenuator setting 10 to 65 dB		
9 kHz to 6.7 GHz		1.3:1, characteristic
6.7 GHz to 13.2 GHz		1.5:1, characteristic
13.2 GHz to 22.0 GHz		2.0:1, characteristic
22.0 GHz to 26.5 GHz		2.2:1, characteristic

	Specifications	Supplemental Information
Auto Alignment ^a		
Sweep-to-sweep variation		±0.1 dB, characteristic

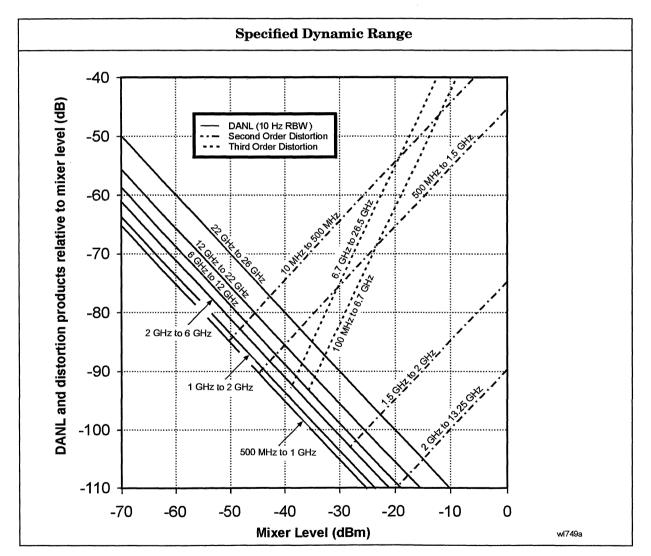
a. Set $\ensuremath{\text{Auto}}\xspace$ Align to $\ensuremath{\text{Off}}\xspace$ and use $\ensuremath{\text{Align}}\xspace$ Now, $\ensuremath{\text{All}}\xspace$ to eliminate this variation.

	Specifications	Supplemental Information
Resolution Bandwidth Switching Uncertainty (at Reference Level)		
1 kHz RBW	Reference	
3 kHz to 3 MHz RBW	±0.3 dB	
5 MHz RBW	±0.6 dB	
10 Hz to 300 Hz RBW (Option 1DR)	±0.3 dB	

	Specifications	Supplemental Information
Reference Level		
Range	Adjustable over Amplitude Measurement Range	
Resolution		
Log Scale	±0.1 dB	
Linear Scale	±0.12% of Reference Level	
Accuracy (at a fixed frequency, a fixed attenuator, and referenced to -30 dBm (-10 dBm, Preamp On (Option 1DS)))		
Reference Level (dBm) – input attenuator setting (dB) + preamp gain (dB)		
-10 dBm to > -60 dBm	±0.3 dB	
60 dBm to >85 dBm	±0.5 dB	
-85 dBm to -90 dBm	±0.7 dB	

	Specifications	Supplemental Information
Display Scale Switching Uncertainty		
Switching between Linear and Log	±0.15 dB at Reference Level	
Log Scale Switching	No error	

	Specifications	Supplemental Information
Display Scale Fidelity		
Log Maximum Cumulative		
0 to -85 dB from Reference Level	±(0.3 dB + 0.01 × dB from Reference Level)	
$RBW \leq 300 \text{ Hz} (Option \ 1DR)$		
Span > 0 Hz		
0 to –98 dB from Reference Level	±(0.3 dB + 0.01 × dB from Reference Level)	
–98 to –120 dB from Reference Level		±2.0 dB, characteristic
$Span = 0 Hz^a$		
0 to –60 dB from Reference Level	±(0.3 dB + 0.015 × dB from Reference Level)	
–60 to –70 dB from Reference Level	±1.5 dB	
Log Incremental Accuracy		
0 to -80 dB ^b from reference level	±0.4 dB/4 dB	
Linear Accuracy	±2% of Reference Level	


a. or when auto ranging is off: (:DISPlay:WINDow:TRACe:Y[:SCALe]:LOG:RANGe:AUTO OFF) b. 0 to -50 dB for RBWs $\leq 300 \text{ Hz}$ and span = 0 Hz, or when auto ranging is off.

	Specifications	Supplemental Information
Spurious Responses		
Second Harmonic Distortion		
Input Signal		
10 MHz to 500 MHz	< -65 dBc for -30 dBm signal at input mixer ^a	+35 dBm SHI (second harmonic intercept)
500 MHz to 1.5 GHz	<-75 dBc for -30 dBm signal at input mixer ^a	+45 dBm SHI
1.5 GHz to 2.0 GHz	< -85 dBc for -10 dBm signal at input mixer ^a	+75 dBm SHI
2.0 GHz to 3.35 GHz	< –100 dBc ^b for –10 dBm signal at input mixer ^a	+90 dBm SHI
3.35 GHz to 6.6 GHz	< –100 dBc ^b for –10 dBm signal at input mixer ^a	+90 dBm SHI
6.6 GHz to 13.25 GHz	< –100 dBc ^b for –10 dBm signal at input mixer ^a	+90 dBm SHI
Preamp On <i>(Option 1DS)</i> 10 MHz to 1.5 GHz		–5 dBm SHI, characteristic
Third Order Intermodulation Distortion		
10 MHz to 100 MHz		+7 dBm TOI (third order intercept), characteristic
100 MHz to 3 GHz	< –82 dBc for two –30 dBm signals at input mixer ^a and >50 kHz separation	+11 dBm TOI +16 dBm TOI, typical, 20 to 30 °C
3.0 GHz to 6.7 GHz	< –82 dBc for two –30 dBm signals at input mixer ^a and >50 kHz separation	+11 dBm TOI +18 dBm TOI, typical, 20 to 30 °C
6.7 GHz to 13.2 GHz	< –75 dBc for two –30 dBm signals at input mixer ^a and >50 kHz separation	+7.5 dBm TOI +12 dBm TOI, typical, 20 to 30 °C
13.2 GHz to 26.5 GHz	< –75 dBc for two –30 dBm signals at input mixer ^a and >50 kHz separation	+7.5 dBm TOI +11 dBm TOI, typical, 20 to 30 °C
Preamp On (Option 1DS) 10 MHz to 3 GHz,		–16 dBm TOI, characteristic

	Specifications	Supplemental Information
Other Input Related Spurious	•	
Inband Responses		
>30 kHz offset	< -65 dBc for -20 dBm signal at input mixer ^a	
Out-of-band Responses	< –80 dBc for –10 dBm signal at input mixer ^a	

a. Mixer power level (dBm) = input power (dBm) – input attenuation (dB).

b. or signal below displayed average noise level.

	Specifications	Supplemental Information
Residual Responses (Input terminated and 0 dB attenuation)		
150 kHz to 6.7 GHz	< -90 dBm	

	Specifications	Supplemental Information
Gate Delay		
Range	1 µs to 400 s	
Accuracy	$\pm(500 \text{ ns} + (0.01\% \times (\text{maximum of gate delay or length})))$	From gate trigger input to positive edge of gate output
Gate Length		
Range	1 µs to 400 s	
Accuracy	$\pm(500 \text{ ns} + (0.01\% \times (\text{maximum of gate delay or length})))$	From positive edge to negative edge of gate output
Resolution	[(maximum of gate delay or length in seconds)/65000] rounded up to nearest µs	Dependent on the greater of gate delay or gate length
Additional Amplitude Error ^a		
Log Scale	±0.2 dB	
Linear Scale	±0.1 % of reference level	

Time Gated Spectrum Analysis (Option 1D6)

a. While in gate mode.

Tracking Generator (Option 1DN)

The spectrum analyzer tracking generator combination will meet its specification after a cable (8120-5148) and adapter are connected between RF OUT and INPUT and Align Now, TG has been run.

	Specifications	Supplemental Information
Warm-Up	5 minutes	

	Specifications	Supplemental Information
Output Frequency Range	9 kHz to 3.0 GHz	

	Specifications	Supplemental Information
Minimum Resolution BW	1 kHz	Not usable with resolution bandwidths ≤300 Hz (Option 1DR)

	Specifications	Supplemental Information
Output Power Level		
Range	–2 to –66 dBm	
Resolution	0.1 dB	
Absolute Accuracy (at 50 MHz with coupled source attenuator, referenced to -20 dBm)	$\pm 0.75 \mathrm{dB}$	
Vernier		,
Range	8 dB	
Accuracy (with coupled source attenuator, 50 MHz, –20 dBm)		
Incremental	±0.2 dB/dB	
Cumulative	±0.5 dB, total	
Output Attenuator Range	0 to 56 dB in 8 dB steps	

	Specifications	Supplemental Information
Maximum Safe Reverse Level		+30 dBm (1 W), +30 Vdc, characteristic

	Specifications	Supplemental Information
Output Power Sweep		
Range	(–10 dBm to –2 dBm) – (Source Attenuator Setting)	
Resolution	0.1 dB	
Accuracy (zero span)	<1 dB peak-to-peak	

	Specifications	Supplemental Information
Output Flatness		
Referenced to 50 MHz, –20 dBm		
9 kHz to 10 MHz	±3 dB	
10 MHz to 3 GHz	±2 dB	

	Specifications	Supplemental Information
Spurious Outputs		
(–2 dBm output)		
Harmonic Spurs		
TG Output 9 kHz to 20 kHz	≤ –15 dBc	
TG Output 20 kHz to 3 GHz	≤ –25 dBc	
Non-harmonic Spurs		
TG Output 9 kHz to 2 GHz	≤–27 dBc	
TG Output 2 GHz to 3 GHz	≤ –23 dBc	
LO Feedthrough		
LO Frequency 3.921409 to 6.9214 GHz	≤ –16 dBm	

	Specifications	Supplemental Information
Dynamic Range	Maximum Output Power Level – Displayed Average Noise Level	

	Specifications	Supplemental Information
Output Tracking		
Drift		1.5 kHz/5 minute, characteristic
Swept Tracking Error		Usable in 1 kHz RBW after 5 minutes of warm-up

	Specifications	Supplemental Information
RF Power-Off Residuals		
9 kHz to 3 GHz		< –120 dBm, characteristic

	Specifications	Supplemental Information
Output Attenuator Repeatability		
9 kHz to 300 MHz		±0.1 dB, characteristic
300 MHz to 2.0 GHz		± 0.2 dB, characteristic
2.0 GHz to 3 GHz		±0.3 dB, characteristic

	Specifications	Supplemental Information
Output VSWR		
0 dB attenuation		<2.0:1, characteristic
$\geq 8 \text{ dB}$ attenuation		<1.5:1, characteristic

	Specifications	Supplemental Information
Output Attenuator Accuracy		
0 dB		± 0.5 dB, characteristic
8 dB		± 0.5 dB, characteristic
16 dB	Reference	
24 dB		± 0.5 dB, characteristic
32 dB		± 0.6 dB, characteristic
40 dB		±0.8 dB, characteristic
48 dB		±1.0 dB, characteristic
56 dB		±1.1 dB, characteristic

Tracking Generator Output Accuracy	
Relative Accuracy (Referred to –20 dBm) = Output Attenuator Accuracy + Vernier Accuracy + Output Flatness	
Absolute Accuracy = Relative Accuracy (Referred to –20 dBm) + Absolute Accuracy at 50 MHz	

	Specifications	Supplemental Information
Output Power Level		
Range	–2 to –66 dBm	
Resolution	0.1 dB	
Absolute Accuracy (at 50 MHz with coupled source attenuator, referenced to -20 dBm)	± 0.75 dB	
Vernier		
Range	8 dB	
Accuracy (with coupled source attenuator, 50 MHz, -20 dBm)		
Incremental	±0.2 dB/dB	
Cumulative	±0.5 dB, total	
Output Attenuator Range	0 to 56 dB in 8 dB steps	

External Mixing	(Option AYZ)
------------------------	--------------

	Specifications		Supplemental Information
LO OUTPUT			
Frequency Range	2.9 to 7.1 GHz		
Power			
2.9 to 6.1 GHz			
20 to 30°C	15.5 to 17 dBm		When connected to external mixers with an HP 5061-5458 cable, provides 14.5 to 16 dBm at the mixer, characteristic.
0 to 55°C	15 to 17.5 dBm		
2.9 to 7.1 GHz	13 to 17.5 dBm		
VSWR			<1.9:1, characteristic
IF INPUT			
Frequency Range			321.4 MHz ±5 MHz, characteristic
Maximum Safe Input Level			
ac			10 dBm, characteristic
dc			±10 V, characteristic
VSWR			<1.9:1, characteristic
Absolute Amplitude Accuracy ^a			
For Reference Levels from –10 to –60 dB			
Amplitude Corrections	20 to 30 °C	0 to 55 °C	
$15 ext{ to } 30 ext{ dB}$	$\pm 1.0 \ dB$	±1.5 dB	
>30 to 50 dB	±1.2 dB	±1.7 dB	
>50 to 60 dB	±1.4 dB	±1.9 dB	
1 dB Gain Compression Level ^b			-20 dBm, characteristic with -10 dBm reference level

	Specifications	Supplemental Information
Mixer Bias (IF INPUT)		
Voltage		
Maximum Range		±3.3 V, characteristic
Linear Compliant Range		±2 V, characteristic
Current (0 Ω load)		
Range	±10 mA	
Resolution		< 20 µA, characteristic
Accuracy		±(3% + Resolution), characteristic
Output Impedance		490 Ω characteristic

a. Settings are: RBW 1 kHz; VBW 1 kHz; scale linear or log; span 2 kHz; sweep time coupled, sample detector, signal at reference level.

b. With amplitude corrections 0 dB. $\,$

FM Demodulation (Option BAA)

The FM demodulation characteristics will be met after an Align Now, FM Demod has been run.

	Specifications	Supplemental Information
Input Level		≥ (-60 dBm + attenuator setting – preamp gain), characteristic
Signal Level		0 to –30 dB below reference level, characteristic
FM Deviation		
Range		10 kHz to 1 MHz
Resolution		Provides 1 Hz display annotation resolution
FM Deviation Range		
10 kHz to 40 kHz		12 Hz, characteristic
>40 kHz to 200 kHz		60 Hz, characteristic
>200 kHz to 1 MHz		300 Hz, characteristic
Accuracy ^a FM Rate < FM BW/100, VBW \geq (30 × FM Rate), RBW > the maximum of (30 × FM deviation) or (30 × FM Rate)		< (2% of FM deviation range + 2 × Resolution), characteristic
Offset Error ^a		5% of FM Deviation Range + 300 Hz, characteristic
FM Bandwidth ($-3 dB$)		
FM Deviation Range		
10 kHz to 40 kHz		$7.5 \times FM$ deviation range, characteristic
>40 kHz to 200 kHz		$1.3 \times FM$ deviation range, characteristic
>200 kHz to 1 MHz		$0.3 \times FM$ deviation range, characteristic

a. In time domain sweeps (span = 0 Hz).

	Specifications	Supplemental Information
TV Trigger and Picture On Screen		TV Trigger initiates a sweep of the analyzer after the sync pulse of a selected line of a TV video field. Picture On Screen displays the TV picture on the analyzer display.
Amplitude Requirements		
TV Source: SA		Top 50% of linear display, characteristic
TV Source: EXT VIDEO IN		500 mVp–p to 2 Vp–p, characteristic
Compatible Standards	NTSC–M, NTSC–Japan, PAL–M, PAL–B,D,G,H,I, PAL–N, PAL–N Combination, SECAM-L	
Field Selection	Entire frame, even, odd	
Sync Polarity	Positive or negative	
TV Trigger		
Line Selection	1 to 525, or 1 to 625, standard dependent	

TV Trigger and Picture On Screen (Option B7B)

General

	Specifications	Supplemental Information
Temperature Range		
Operating	0 to 55 °C	Floppy disk 10 to 40 $^{\circ}\mathrm{C}$
Storage	–40 to +75 °C	

	Specifications	Supplemental Information
Audible Noise (ISO 7779)		
Sound Pressure at $25~^\circ\mathrm{C}$		<40 dBa, (<4.6 Bels power)

	Specifications	Supplemental Information
Military Specification	Has been type tested to the environmental specifications of MIL-PRF-28800F class 3.	

	Specifications	Supplemental Information
EMI Compatibility	Conducted and radiated emission is in compliance with CISPR Pub. 11/1990 Group 1 Class A.	

	Specifications	Supplemental Information
Immunity Testing		
Radiated Immunity		Testing was done at 3 V/m according to IEC 801-3/1984. When the analyzer tuned frequency is identical to the immunity test signal frequency there may be signals of up to -60 dBm displayed on the screen.
Electrostatic Discharge		Air discharges of up to 8 kV were applied according to IEC 801-2/1991. Discharges to center pins of any of the connectors may cause damage to the associated circuitry.

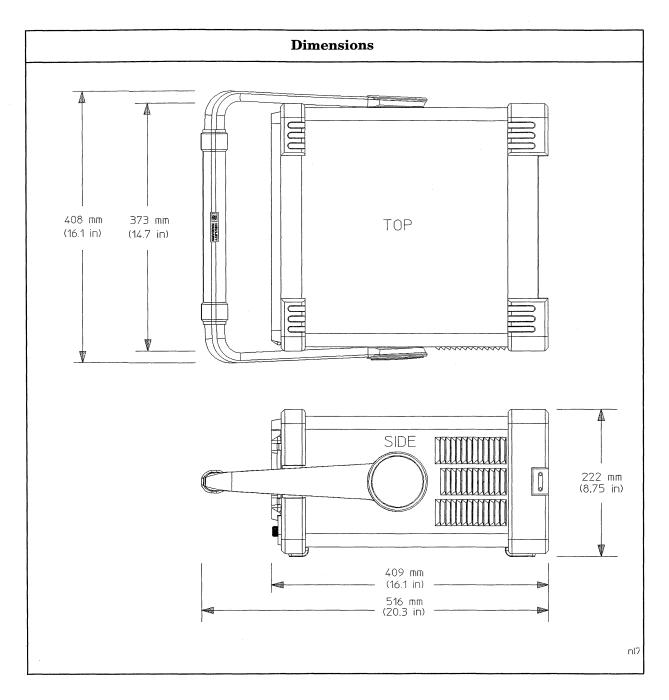
General

	Specifications	Supplemental Information
Power Requirements		Uses CUKonverter® topology in the power supply.
ac Operation		
Voltage, frequency	90 to $132 \mathrm{V} \mathrm{rms}$, 47 to 440 Hz	
	195 to 250 V rms, 47 to 66 Hz	
Power Consumption, On	<300 W	
Power Consumption, Standby	<5 W	
dc Operation		
Voltage	12 to 20 Vdc	
Power Consumption	<200 W	

	Specifications	Supplemental Information
Measurement Speed		
Local Measurement and Display Update rate ^a		\geq 28/s, characteristic
Remote Measurement and HP-IB Transfer Rate ^b (Option A4H)		≥ 19/s, characteristic

a. Auto align off, 5 ms sweep time, fixed center frequency.

b. Auto align off, 5 ms sweep time, fixed center frequency, 401 point trace, display off (DISPlay:ENABle off), and 32-bit integer data format (FORMat:DATA INT,32).


	Specifications	Supplemental Information
Data Storage		
Internal		200 Traces or States
External (10 to 40 °C) 3.5" 1.44 MB, MS-DOS® compatible floppy disk		200 Traces or States

	Specifications	Supplemental Information
Downloadable Program Memory		2 MB available memory
(Option B72)		10 MB available memory

	Specifications	Supplemental Information
Demod Tune Listen		
AM		Internal speaker, front-panel earphone jack and front-panel volume control.
FM (Option BAA)		
(Option A4J, AYX, or BAA)		An uncalibrated demodulated signal is available on the AUX VIDEO OUT or EXT VIDEO OUT connectors at the rear panel.

	Specifications	Supplemental Information
Weight (without options)		
Net		16.2 kg (35.6 lb), characteristic
Shipping		31.0 kg (68 lb), characteristic

General

Inputs and Outputs

Front Panel

	Specifications	Supplemental Information
INPUT 50 Ω		
Connector	Type-N female	
(Option BAB)	APC 3.5 male	
Impedance		50 Ω nominal

	Specifications	Supplemental Information
RF OUT 50 Ω, (Option 1DN)		
Connector	Type-N female	
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
AMPTD REF OUT ^a		Amplitude Reference
Connector	BNC Female	
Impedance		50 Ω, nominal
Frequency		$50 \mathrm{~MHz}$
Frequency Accuracy		Frequency reference error ^b
50 Ω Amplitude ^c		–20 dBm, nominal

a. Turn the amplitude reference on/off by pressing the keys: Input, Amptd Ref Out.

b. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

c. The internal amplitude reference actual power is stored internally.

	Specifications	Supplemental Information
PROBE POWER		
Voltage/Current		+15 Vdc, ±7% at 150 mA max., characteristic
		–12.6 Vdc ±10% at 150 mA max., characteristic

	Specifications	Supplemental Information
EXT KEYBOARD		Feature not implemented.
Connector	6-pin mini-DIN	

	Specifications	Supplemental Information
Speaker		Front panel knob controls volume

	Specifications	Supplemental Information
Headphone		Front panel knob controls volume
Connector	3.5 mm (1/8 inch) miniature audio jack	
Power Output		0.2 W into 4 Ω, characteristic

Rear Panel

	Specifications	Supplemental Information
10 MHz REF OUT		
Connector	BNC female	
Impedance		50 Ω, nominal
Output Amplitude		>0 dBm, characteristic

	Specifications	Supplemental Information
10 MHz REF IN		
Connector	BNC female	Note: Analyzer noise sidebands and spurious response performance may be affected by the quality of the external reference used.
Impedance		50 Ω, nominal
Input Amplitude Range		–15 to +10 dBm, characteristic
Frequency		10 MHz, nominal

	Specifications	Supplemental Information
GATE TRIG/EXT TRIG IN		
Connector	BNC female	
External Trigger Input		
Trigger Level		Selectable positive or negative edge initiates sweep in EXT TRIG mode (5 V TTL)
Gate Trigger Input (Option 1D6)		
Minimum Pulse Width		>30 ns (5 V TTL)

	Specifications	Supplemental Information
GATE/HI SWP OUT		
Connector	BNC female	
High Sweep Output		
Level		High = sweep; Low = retrace (5 V TTL)
Gate Output (Option 1D6)		
Level		High = gate on; Low = gate off (5 V TTL)

	Specifications	Supplemental Information
VGA OUTPUT		
Connector	VGA compatible, 15-pin mini D-SUB	
Format		VGA (31.5 kHz horizontal, 60 Hz vertical sync rates, non-interlaced) Analog RGB
Resolution	640 × 480	

	Specifications	Supplemental Information
AUX IF OUT (Option A4J or AYX)		RBW≥1 kHz
Connector	BNC female	
Frequency		21.4 MHz, nominal

	Specifications	Supplemental Information
Amplitude Range (for signal at reference level and for reference levels – input attenuation + preamp gain of -10 to -70 dBm)		–10 dBm (uncorrected), characteristic
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
AUX VIDEO OUT (Option A4J or AYX)		RBW≥1 kHz
Connector	BNC female	
Amplitude Range (into >10 $k\Omega$)		0 to 1 V (uncorrected), characteristic

	Specifications	Supplemental Information
HI SWP IN (Option A4J or AYX)		
Connector	BNC female	
Input		Open collector, low stops sweep (5 V TTL)

	Specifications	Supplemental Information
HI SWP OUT (Option A4J or AYX)		
Connector	BNC female	
Output		High = sweep, Low = retrace (5 V TTL)

	Specifications	Supplemental Information
SWP OUT (Option A4J or AYX)		
Connector	BNC female	
Amplitude		0 to +10 V ramp, characteristic

	Specifications	Supplemental Information
PRESEL TUNE OUTPUT		
Connector	BNC female	
Load Impedance (dc coupled)		> 10 kΩ, nominal
Range		0 to +10 V, characteristic
Sensitivity		
Internal Mixer		0.33 V/GHz of tuned frequency > 3 GHz, characteristic
External Mixer (Option AYZ)		1.5 V/GHz of tuned L.O. frequency, characteristic

	Specifications	Supplemental Information
HP-IB Interface (Option A4H)		
Connector	IEEE-488 bus connector	
HP-IB Codes		SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and C28

	Specifications	Supplemental Information
Serial Interface (Option 1AX)		
Connector	9-pin D-SUB male	RS-232

	Specifications	Supplemental Information
Parallel Interface (Option A4H or 1AX)		Printer port only
Connector	25-pin D-SUB female	

	Specifications	Supplemental Information
EXT VIDEO IN/TV TRIG OUT^a (Option B7B or BAA)		EXT VIDEO IN is the Baseband composite video input for TV trigger and picture on screen. TV TRIG OUT is the TV trigger output.
Connector	BNC Female (75 Ω)	
Impedance		75 Ω, characteristic.

	Specifications	Supplemental Information
(Option BAA without Option B7B)		Feature not implemented.
(Option BAA with Option B7B)		
External Video Input Video Amplitude		1 Vp–p, nominal, characteristic
TV Trigger Output		Positive edge indicates start of selected TV line after sync. pulse.
Amplitude		TTL (0 V and 3.4 V with 75 Ω series resistance), characteristic

a. This connector is labelled EXT VIDEO IN on older spectrum analyzers and EXT VIDEO IN/TV TRIG OUT on newer spectrum analyzers.

	Specifications	Supplemental Information
EXT VIDEO OUT (Option B7B or BAA)		Baseband video output RBW ≥ 1 kHz
Connector	BNC Female (75 Ω)	
Impedance		75 Ω, characteristic
Amplitude (Option BAA without Option B7B)		0 to 1 V (uncorrected), characteristic
Amplitude (Option BAA with Option B7B)		
TV Source: SA		0 to 1 V (uncorrected), characteristic
TV Source and EXT VIDEO IN		Same as level at EXT VIDEO IN/TV TRIG OUT, characteristic

Regulatory Information

CAUTION This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 1010 and 664 respectively.

NOTE This product has been designed and tested in accordance with IEC Publication 1010, Safety Requirements for Electronic Measuring Apparatus, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.

The CE mark is a registered trademark of the European Community (if accompanied by a year, it is the year when the design was proven).

The CSA mark is the Canadian Standards Association safety mark.

ISM 1-A

Œ

This is a symbol of an Industrial Scientific and Medical Group 1 Class A product. (CISPR 11, Clause 4)

Declaration of Conformity

DECLARATION OF CONFORMITY According to ISO/IEC Guide 22 and EN 45014		
Manufacturer's Name:	Hewlett-Packard Co.	
Manufacturer's Address:	1400 Fountaingrove Parkway Santa Rosa, CA 95403-1799 USA	
Declares that the products		
Product Name:	Spectrum Analyzer	
Model Number:	HP E4401B, HP E4402B, HP E4403B, HP E4404B, HP E4405B, HP E4407B, HP E4408B, HP E4411B	
Product Options:	This declaration covers all options of the above products.	
Conform to the following Product spe	cifications:	
Safety: IEC 61010-1:1990 / EN 610 CAN/CSA-C22.2 No. 1010.		
EMC: CISPR 11:1990/EN 55011:1991 Group 1, Class A IEC 801-2:1984/EN 50082-1:1992 4 kV CD, 8 kV AD IEC 801-3:1984/EN 50082-1:1992 3 V/m, 27-500 MHz IEC 801-4:1988/EN 50082-1:1992 0.5 kV sig. lines, 1 kV power lines		
Supplementary Information:		
The products herewith comply with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC and carry the CE-marking accordingly.		
Santa Rosa, CA, USA 7 Jan. 1999 Greg Pfeiffer/Quality Engineering Manager		
European Contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH Department HQ- TRE, Herreneberger Strasse 130, D71034 Boblingen, Germany (FAX +49-7031-14-3143)		

10 HP E4408B Specifications and Characteristics

About This Chapter

This chapter contains specifications and characteristics for the HP E4408B spectrum analyzer. The distinction between specifications and characteristics is described as follows.

- Specifications describe the performance of parameters covered by the product warranty. (The temperature range is 0 °C to 55 °C, unless otherwise noted.)
- Characteristics describe product performance that is useful in the application of the product, but is not covered by the product warranty.
- Typical performance describes additional product performance information that is not covered by the product warranty. It is performance beyond an indicated specification, that most units will exhibit.
- Nominal values indicate the expected, but not warranted, value of a parameter.

The following conditions must be met for the analyzer to meet its specifications.

- **□** The analyzer is within the one year calibration cycle.
- □ If Auto Align All is selected:
 - After 2 hours of storage within the operating temperature range.
 - 5 minutes after the analyzer is turned on with sweep times less than 4 seconds.
 - After the front-panel amplitude reference is connected to the INPUT, and Align Now RF has been run, after the analyzer is turned on. And, once every 24 hours, or if ambient temperature changes more than 30 °C.
- □ If Auto Align Off is selected:
 - When the analyzer is at a constant temperature, within the operating temperature range, for a minimum of 90 minutes,
 - After the analyzer is turned on for a minimum of 90 minutes, the front panel amplitude reference has been connected to the INPUT, and Align Now All has been run.
 - When Align Now All is run:
 - Every hour
 - If the ambient temperature changes more than 3 $^{\circ}\mathrm{C}$
 - If the 10 MHz reference changes

- When Align Now RF is run (with the front-panel amplitude reference connected to the INPUT):
 - Every 24 hours
 - If the ambient temperature changes more than 30 $^{\circ}\mathrm{C}^{1}$
- □ If Auto Align All but RF is selected:
 - When the analyzer is at a constant temperature, within the operating temperature range, for a minimum of 90 minutes.
 - After the analyzer is turned on for a minimum of 90 minutes, the front panel amplitude reference has been connected to the INPUT, and Align Now RF has been run.
 - When Align Now RF is run (with the front-panel amplitude reference connected to the INPUT):
 - Every hour
 - If the ambient temperature changes more than 3 °C

^{1. 10 °}C if Option 1DS is active.

Frequency

	Specifications	Supplemental Information
Frequency Range		
	9 kHz to 26.5 GHz	
Band		Harmonic Mixing Mode (N ^a)
0	9 kHz to 3.0 GHz	1–
1	2.85 GHz to 6.7 GHz	1-
2	6.2 GHz to 13.2 GHz	2–
3	12.8 GHz to 19.2 GHz	4
4	18.7 GHz to 26.5 GHz	4-

a. N is the harmonic mixing mode. For negative mixing modes (as indicated by the "-"), the desired 1st LO harmonic is higher than the tuned frequency by the 1st IF (3.9214 for the 9 kHz to 3 GHz band, 321.4 MHz for all other bands) For positive mixing modes, the desired 1st LO harmonic is lower than the tuned frequency by 321.4 MHz

	Specifications	Supplemental Information
Frequency Reference	(
Aging Rate	$\pm 2 imes 10^{-6}$ /year	$\pm 1.0 imes 10^{-7}$ /day, characteristic
Settability	$\pm 5 imes 10^{-7}$	
Temperature Stability	$\pm5 imes10^{-6}$	

	Specifications	Supplemental Information
Frequency Readout Accuracy		
(Start, Stop, Center, Marker)	\pm (frequency indication \times frequency reference error ^a + span accuracy + 15% of RBW + 10 Hz + 1 Hz \times N ^b)	

a. Frequency reference error = (aging rate \times period of time since adjustment + settability + temperature stability).

b. N is the harmonic mixing mode.

Frequency

	Specifications	Supplemental Information
Marker Frequency Counter		
Resolution	Selectable from 1 Hz to 100 kHz	
Accuracy ^a	\pm (marker frequency \times frequency reference error ^b + counter resolution) ^c	

a. Marker level to displayed noise level > 25 dB, RBW/ Span \ge 0.002, frequency offset = 0 Hz.

b. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

c. For firmware revisions prior to A.03.00, add 1 Hz x N, where N is the harmonic mixing mode.

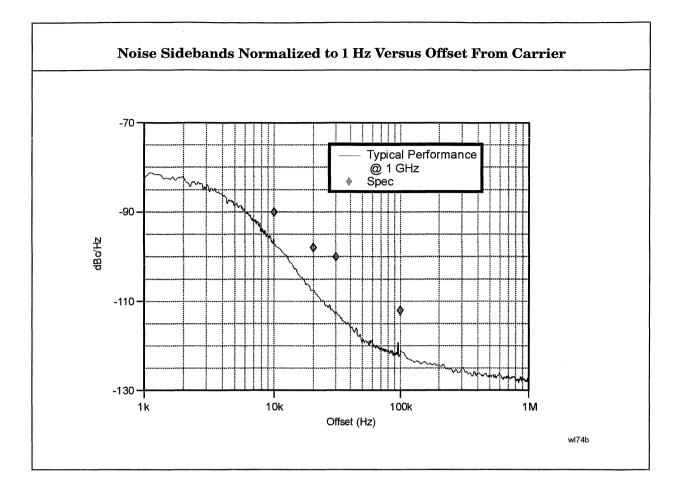
	Specifications	Supplemental Information
Frequency Span		
Range	0 Hz (zero span), 100 Hz to 26.5 GHz	
Resolution	2 Hz x N ^a	
Accuracy	±1% of span	

a. N is the harmonic mixing mode.

	Specifications	Supplemental Information
Sweep Time		
Range	5 ms to 2000 s	50 ms is the minimum sweep time with the tracking generator in operation (Option 1DN)
Accuracy		
Span = 0 Hz 5 ms to 2000 s	±1%	
Sweep Trigger ^a	Free Run, Single, Line, Video, External	
Delayed Trigger ^b		
Range	1 µs to 400 s	
Resolution	[(delay in seconds)/65000] rounded up to nearest µs	
Accuracy	±(500 ns +(0.01% of delay))	

a. Auto align is suspended in video, external, and delayed trigger modes while waiting for a trigger event to occur.

b. Delayed trigger is available with line and external trigger.


	Specifications	Supplemental Information
Resolution Bandwidth (RBW)		
Range		
–3 dB bandwidth	1 kHz to 3 MHz, in 1-3-10 sequence, 5 MHz	
–6 dB bandwidth (EMI)	9 kHz and 120 kHz	
Accuracy		
1 kHz to 3 MHz RBW	±15%	
5 MHz RBW	±30%	
Shape		
1 kHz to 5 MHz RBW		Synchronously tuned four poles, approximately Gaussian shape
Selectivity (60 dB/3 dB bandwidth ratio)		
1 kHz to 5 MHz RBW		<15:1, characteristic

	Specifications	Supplemental Information
Video Bandwidth (VBW) (–3 dB)		
Range	30 Hz to 1 MHz in 1-3-10 sequence	3 MHz, characteristic
Accuracy		±30%, characteristic
Shape		Post detection, single pole low- pass filter used to average displayed noise

	Specifications	Supplemental Information
Stability		
Noise Sidebands, offset from CW signal with 1 kHz RBW, 30 Hz VBW and sample detector		
≥10 kHz	\leq -90 dBc/Hz ^a	
≥20 kHz	\leq -98 dBc/Hz ^a	
≥30 kHz	$\leq -100 \text{ dBc/Hz}^{a}$	
≥100 kHz	$\leq -112 \text{ dBc/Hz}^{a}$	
Residual FM		29
1 kHz RBW, 1 kHz VBW	≤150 Hz×N p–p in 100 ms	
System-Related Sidebands, offset from CW signal		
≥30 kHz	$\leq -65 \mathrm{dBc}^{\mathrm{a}}$	

a. Add 20 Log(N) for frequencies > 3 GHz

Frequency

Amplitude

Amplitude specifications do not apply for the negative peak detector mode.

	Specifications	Supplemental Information
Measurement Range	Displayed Average Noise Level to Maximum Safe Input Level	
Input Attenuator Range	0 to 65 dB, in 5 dB steps	

	Specifications	Supplemental Information
Maximum Safe Input Level		
Average Continuous Power	+30 dBm (1 W)	
Input attenuator setting ≥5 dB		
Peak Pulse Power for <10 µsec pulse width, <1% duty cycle, and input attenuation ≥30 dB	+50 dBm (100 W)	
dc	0 Vdc	· · · ·

	Specifications	Supplemental Information
1 dB Gain Compression		
Total power at input mixer ^{ab}		
50 MHz to 3.0 GHz	0 dBm	
3.0 GHz to 6.7 GHz	0 dBm	
6.7 GHz to 13.2 GHz	–3 dBm	
13.2 GHz to 26.5 GHz	–5 dBm	

a. Mixer power level (dBm) = input power (dBm) – input attenuation (dB).

b. For resolution bandwidths 1 kHz to 30 kHz, the maximum input signal amplitude must be \leq reference level +10 dB.

	Specifications	Supplemental Information
Displayed Average Noise Level		
(Input terminated, 0 dB attenuation, sample detector, Reference Level = -70 dBm)		
	1 kHz RBW 30 Hz VBW	1 kHz RBW 30 Hz VBW
1 MHz to 10 MHz		≤–116 dBm, characteristic
10 MHz to 1.0 GHz	≤ –116 dBm	
1.0 GHz to 2.0 GHz	≤ –115 dBm	
2.0 GHz to 3.0 GHz	\leq -112 dBm	
3.0 GHz to 6.0 GHz	\leq -112 dBm	
6.0 GHz to 12 GHz	≤ -110 dBm	
12 GHz to 22 GHz	≤ –107 dBm	
22 GHz to 26.5 GHz	≤ -101 dBm	

	Specifications	Supplemental Information
Display Range		
Log Scale	Ten divisions displayed; 0.1, 0.2, 0.5 dB/division and 1 to 20 dB/division in 1 dB steps Calibrated 0 to -85 dB from	
	Reference Level	
Linear Scale	Ten divisions	
Scale Units	dBm, dBmV, dB μ V, V and W	

	Specifications	Supplemental Information
Marker Readout Resolution		
Log scale		
0 to85 dB from ref level	0.04 dB	
Linear scale	0.01% of Reference Level	

10-10

	Specifications	Supplemental Information
Frequency Response		·····
50 Ω, Absolute ^a /Relative		
9 kHz to 3.0 GHz		
10 dB attenuation		
20 to 30 °C	$\pm 0.5 \text{ dB}$	
0 to 55 °C	±1.0 dB	
Preselector centered for frequency >3.0 GHz		
3.0 GHz to 6.7 GHz		
10 dB attenuation		
Absolute ^a		
20 to 30 °C	±1.5 dB	
0 to 55 °C	±2.5 dB	
Relative		
20 to 30 °C	±1.3 dB	
0 to 55 °C	±1.5 dB	
6.7 GHz to 13.2 GHz		2*
10 dB attenuation		
Absolute ^a		
20 to 30 °C	±2.0 dB	
0 to 55 °C	±3.0 dB	
Relative		
20 to 30 °C	±1.8 dB	
0 to 55 °C	±2.0 dB	
13.2 GHz to 26.5 GHz		
10 dB attenuation		
Absolute ^a		
20 to 30 °C	±2.0 dB	
0 to 55 °C	±3.0 dB	
Relative		

	Specifications	Supplemental Information
20 to 30 °C	±1.8 dB	
0 to 55 $^{\circ}\mathrm{C}$	±2.0 dB	

a. Absolute flatness values are referenced to the amplitude at 50 MHz.

	Specifications	Supplemental Information
Input Attenuation Switching Uncertainty at 50 MHz		
Attenuator Setting		
0 dB to 5 dB	±0.3 dB	
10 dB	Reference	
15 dB	±0.3 dB	
20 to 65 dB	$\pm (0.1 \text{ dB} + 0.01 \times \text{Attenuator})$ Setting)	

Attenuation Accuracy Relative to the 10 dB Attenuator Setting, Characteristic					
	Frequency Range				
Attenuation, dB	dc-3.0 GHz (± dB)	3.0–13.2 GHz (± dB)	13.2–19 GHz (± dB)	19–22 GHz (± dB)	22–26.5 GHz (± dB)
0	0.3	0.5	0.8	0.9	1.0
5	0.3	0.5	0.8	0.9	1.0
10 (Reference)	Reference	Reference	Reference	Reference	Reference
15	0.4	0.5	0.8	1.0	1.5
20	0.4	0.5	0.8	1.0	1.5
25	0.5	0.6	0.8	1.2	2.0
30	0.5	0.6	0.8	1.2	2.0
35	0.6	0.7	1.0	1.8	3.0
40	0.6	0.7	1.0	1.8	3.0
45	0.7	1.0	1.3	2.2	3.4
50	0.7	1.0	1.3	2.2	3.4
55	0.9	1.1	1.6	2.7	3.5
60	0.9	1.1	1.6	2.7	3.5
65	1.0	1.6	2.0	3.2	3.8

	Specifications	Supplemental Information
Absolute Amplitude Accuracy		
At reference settings ^a	±0.4 dB	
Overall Amplitude Accuracy ^b		
20 to 30 °C	± (0.6 dB + Absolute Frequency Response)	

a. Settings are: reference level -20 dBm; input attenuation 10 dB; center frequency 50 MHz; RBW 1 kHz; VBW 1 kHz; scale linear or log; span 2 kHz; sweep time coupled, signal at reference level.

b. For reference level 0 to -50 dBm; input attenuation 10 dB; RBW 1 kHz; VBW 1 kHz; scale log, log range 0 to 50 dB from reference level; sweep time coupled; signal input 0 to -50 dBm; span ≤20 kHz.

	Specifications	Supplemental Information
RF Input VSWR (at tuned frequency)		
Attenuator setting 0 dB		
9 kHz to 26.5 GHz		3.0:1, characteristic
Attenuator setting 5 dB		
9 kHz to 100 kHz		2.0:1, characteristic
100 kHz to 6.7 GHz		1.4:1, characteristic
6.7 GHz to 13.2 GHz		1.7:1, characteristic
13.2 GHz to 22.0 GHz		2.3:1, characteristic
22.0 GHz to 26.5 GHz		2.6:1, characteristic
Attenuator setting 10 to 65 dB		
9 kHz to 6.7 GHz		1.3:1, characteristic
6.7 GHz to 13.2 GHz		1.5:1, characteristic
13.2 GHz to 22.0 GHz		2.0:1, characteristic
22.0 GHz to 26.5 GHz		2.2:1, characteristic

	Specifications	Supplemental Information
Auto Alignment ^a		
Sweep-to-sweep variation		±0.1 dB, characteristic

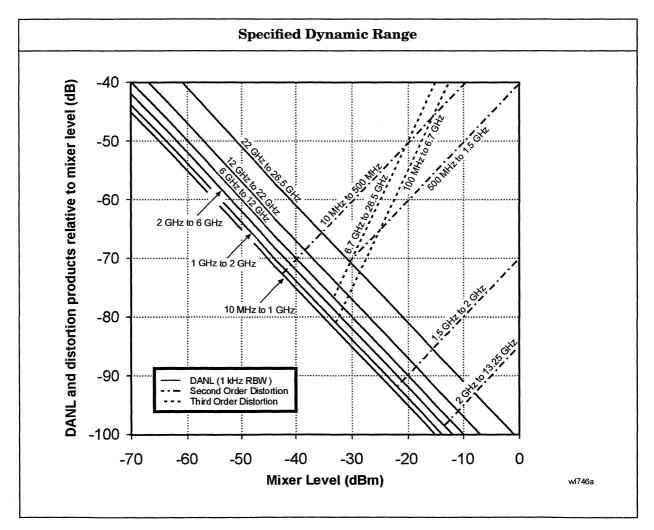
a. Set Auto Align to Off and use Align Now, All to eliminate this variation.

	Specifications	Supplemental Information
Resolution Bandwidth Switching Uncertainty (at Reference Level)		
1 kHz RBW	Reference	а. ж.
3 kHz to 3 MHz RBW	±0.3 dB	
5 MHz RBW	±0.6 dB	

	Specifications	Supplemental Information
Reference Level		
Range	Adjustable over Amplitude Measurement Range	
Resolution		
Log Scale	±0.1 dB	
Linear Scale	±0.12% of Reference Level	
Accuracy (at a fixed frequency, a fixed attenuator, and referenced to -30 dBm)		
Reference Level (dBm) – input attenuator setting (dB)		
–10 dBm to > –60 dBm	±0.3 dB	
–60 dBm to > –85 dBm	±0.5 dB	
–85 dBm to –90 dBm	±0.7 dB	

	Specifications	Supplemental Information
Display Scale Switching Uncertainty		
Switching between Linear and Log	±0.15 dB at Reference Level	
Log Scale Switching	No error	

	Specifications	Supplemental Information
Display Scale Fidelity		
Log Maximum Cumulative		х.
0 to –85 dB from Reference Level	$\pm (0.3 \text{ dB} + 0.01 \times \text{dB} \text{ from}$ Reference Level)	
Log Incremental Accuracy		
0 to -80 dB ^a from reference level	±0.4 dB/4 dB	
Linear Accuracy	$\pm 2\%$ of Reference Level	


a. 0 to -50 dB for RBWs $\leq 300 \text{ Hz}$ and span = 0 Hz, or when auto ranging is off.

	Specifications	Supplemental Information
Spurious Responses		
Second Harmonic Distortion		
Input Signal		
10 MHz to 500 MHz	< -60 dBc for -30 dBm signal at input mixer ^a	+30 dBm SHI (second harmonic intercept)
500 MHz to 1.5 GHz	< -70 dBc for -30 dBm signal at input mixer ^a	+40 dBm SHI
1.5 GHz to 2.0 GHz	< -80 dBc for -10 dBm signal at input mixer ^a	+70 dBm SHI
2.0 GHz to 3.35 GHz	<-95 dBc ^b for -10 dBm signal at input mixer ^a	+85 dBm SHI
3.35 GHz to 6.6 GHz	< -95 dBc ^b for -10 dBm signal at input mixer ^a	+85 dBm SHI
6.6 GHz to 13.25 GHz	<-95 dBc ^b for -10 dBm signal at input mixer ^a	+85 dBm SHI
Third Order Intermodulation Distortion		
10 MHz to 100 MHz		+5 dBm TOI (third order intercept), characteristic
100 MHz to 3 GHz	< –75 dBc for two –30 dBm signals at input mixer ^a and >50 kHz separation	+7.5 dBm TOI
3.0 GHz to 6.7 GHz	< –75 dBc for two –30 dBm signals at input mixer ^a and >50 kHz separation	+7.5 dBm TOI
6.7 GHz to 13.2 GHz	< –70 dBc for two –30 dBm signals at input mixer ^a and >50 kHz separation	+5.0 dBm TOI
13.2 GHz to 26.5 GHz	< –70 dBc for two –30 dBm signals at input mixer ^a and >50 kHz separation	+5.0 dBm TOI

	Specifications	Supplemental Information
Other Input Related Spurious		
Inband Responses		
>30 kHz offset	< –65 dBc for –20 dBm signal at input mixer ^a	
Out-of-band Responses	< –80 dBc for –10 dBm signal at input mixer ^a	

a. Mixer power level (dBm) = input power (dBm - input attentuation (dB)

b. or signal below displayed average noise level.

	Specifications	Supplemental Information
Residual Responses (Input terminated and 0 dB attenuation)		
150 kHz to 6.7 GHz	< -90 dBm	

Options

Tracking Generator (Option 1DN)

The spectrum analyzer tracking generator combination will meet its specification after a cable (8120-5148) and adapter are connected between RF OUT and INPUT and Align Now, TG has been run.

	Specifications	Supplemental Information
Warm-Up	5 minutes	

	Specifications	Supplemental Information
Output Frequency Range	9 kHz to 3.0 GHz	

	Specifications	Supplemental Information
Output Power Level		
Range	–2 to –66 dBm	
Resolution	0.1 dB	
Absolute Accuracy (at 50 MHz with coupled source attenuator, referenced to -20 dBm)	± 0.75 dB	
Vernier		
Range	8 dB	
Accuracy (with coupled source attenuator, 50 MHz, –20 dBm)		
Incremental	$\pm 0.2 \text{ dB/dB}$	
Cumulative	±0.5 dB, total	
Output Attenuator Range	0 to 56 dB in 8 dB steps	

	Specifications	Supplemental Information
Maximum Safe Reverse Level		+30 dBm (1 W), +30 Vdc, characteristic

	Specifications	Supplemental Information
Output Power Sweep		
Range	(-10 dBm to -2 dBm) – (Source Attenuator Setting)	
Resolution	0.1 dB	
Accuracy (zero span)	<1 dB peak-to-peak	

	Specifications	Supplemental Information
Output Flatness		
Referenced to 50 MHz, -20 dBm		
9 kHz to 10 MHz	±3 dB	
10 MHz to 3 GHz	±2 dB	

	Specifications	Supplemental Information
Spurious Outputs		
(-2 dBm output)		
Harmonic Spurs		
TG Output 9 kHz to 20 kHz	≤ –15 dBc	
TG Output 20 kHz to 3 GHz	\leq -25 dBc	
Non-harmonic Spurs		
TG Output 9 kHz to 2 GHz	\leq –27 dBc	
TG Output 2 GHz to 3 GHz	≤ –23 dBc	
LO Feedthrough		
LO Frequency 3.921409 to 6.9214 GHz	≤ –16 dBm	

	Specifications	Supplemental Information
Dynamic Range	Maximum Output Power Level – Displayed Average Noise Level	

	Specifications	Supplemental Information
Output Tracking		
Drift		1.5 kHz/5 minute, characteristic
Swept Tracking Error		Usable in 1 kHz RBW after 5 minutes of warm-up

	Specifications	Supplemental Information
RF Power-Off Residuals		
9 kHz to 3 GHz		< –120 dBm, characteristic

	Specifications	Supplemental Information
Output Attenuator Repeatability		
9 kHz to 300 MHz		±0.1 dB, characteristic
300 MHz to 2.0 GHz		± 0.2 dB, characteristic
2.0 GHz to 3 GHz		±0.3 dB, characteristic

	Specifications	Supplemental Information
Output VSWR		
0 dB attenuation		<2.0:1, characteristic
\geq 8 dB attenuation		<1.5:1, characteristic

Tracking Generator Output Accuracy	
Relative Accuracy (Referred to -20 dBm) = Output Attenuator Accuracy + Vernier Accuracy + Output Flatness	
Absolute Accuracy = Relative Accuracy (Referred to -20 dBm) + Absolute Accuracy at 50 MHz	

Options

	Specifications	Supplemental Information
Output Power Level		
Range	–2 to –66 dBm	
Resolution	0.1 dB	
Absolute Accuracy (at 50 MHz with coupled source attenuator, referenced to -20 dBm)	± 0.75 dB	
Vernier		
Range	8 dB	
Accuracy (with coupled source attenuator, 50 MHz, –20 dBm)		
Incremental	±0.2 dB/dB	
Cumulative	±0.5 dB, total	
Output Attenuator Range	0 to 56 dB in 8 dB steps	

General

	Specifications	Supplemental Information
Temperature Range		
Operating	0 to 55 °C	Floppy disk 10 to 40 $^{\circ}\mathrm{C}$
Storage	–40 to +75 °C	

	Specifications	Supplemental Information
Audible Noise (ISO 7779)		
Sound Pressure at 25 °C		<40 dBa, (<4.6 Bels power)

	Specifications	Supplemental Information
Military Specification	Has been type tested to the environmental specifications of MIL-PRF-28800F class 3.	

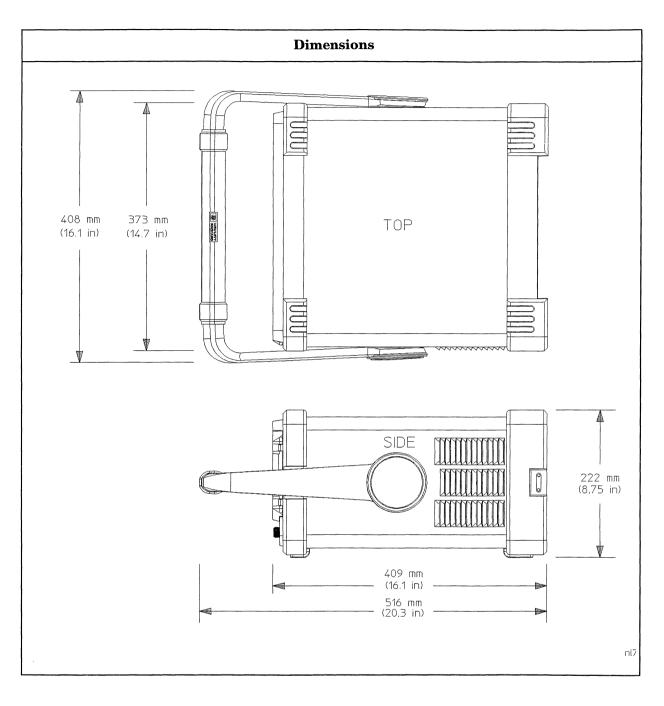
	Specifications	Supplemental Information
EMI Compatibility	Conducted and radiated emission is in compliance with CISPR Pub. 11/1990 Group 1 Class A.	

	Specifications	Supplemental Information
Immunity Testing		
Radiated Immunity		Testing was done at 3 V/m according to IEC 801-3/1984. When the analyzer tuned frequency is identical to the immunity test signal frequency there may be signals of up to -60 dBm displayed on the screen.
Electrostatic Discharge		Air discharges of up to 8 kV were applied according to IEC 801-2/1991. Discharges to center pins of any of the connectors may cause damage to the associated circuitry.

	Specifications	Supplemental Information
Power Requirements		Uses CUKonverter® topology in the power supply.
ac Operation		
Voltage, frequency	90 to $132 \mathrm{~V}$ rms, 47 to 440 Hz	
	195 to $250~\mathrm{V}$ rms, 47 to $66~\mathrm{Hz}$	
Power Consumption, On	<300 W	
Power Consumption, Standby	<5 W	
dc Operation		
Voltage	12 to 20 Vdc	
Power Consumption	<200 W	

	Specifications	Supplemental Information
Measurement Speed		
Local Measurement and Display Update rate ^a		\geq 28/s, characteristic
Remote Measurement and HP-IB Transfer Rate ^b (Option A4H)		≥ 19/s, characteristic

a. Auto align off, 5 ms sweep time, fixed center frequency.


b. Auto align off, 5 ms sweep time, fixed center frequency, 401 point trace, display off (DISPlay:ENABle off), and 32-bit integer data format (FORMat:DATA INT,32).

	Specifications	Supplemental Information
Data Storage		
Internal		200 Traces or States
External (10 to 40 °C) 3.5" 1.44 MB, MS-DOS® compatible floppy disk		200 Traces or States

	Specifications	Supplemental Information
Demod Tune Listen		
AM		Internal speaker, front-panel earphone jack and front-panel volume control.
(Option A4J)		An uncalibrated demodulated signal is available on the AUX VIDEO OUT connector at the rear panel.

	Specifications	Supplemental Information
Weight (without options)		
Net		16.2 kg (35.6 lb), characteristic
Shipping		31.0 kg (68 lb), characteristic

General

Inputs and Outputs

Front Panel

	Specifications	Supplemental Information
INPUT 50 Ω		
Connector	Type-N female	
(Option BAB)	APC 3.5 male	
Impedance		50 Ω nominal

	Specifications	Supplemental Information
RF OUT 50 Ω, (Option 1DN)		
Connector	Type-N female	
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
AMPTD REF OUT ^a		Amplitude Reference
Connector	BNC Female	
Impedance		50 Ω, nominal
Frequency		50 MHz
Frequency Accuracy		Frequency reference error ^b
50 Ω Amplitude ^c		–20 dBm, nominal

a. Turn the amplitude reference on/off by pressing the keys: Input, Amptd Ref Out.

b. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

c. The internal amplitude reference actual power is stored internally.

	Specifications	Supplemental Information
PROBE POWER		
Voltage/Current		+15 Vdc, ±7% at 150 mA max., characteristic -12.6 Vdc ±10% at 150 mA
		max., characteristic

	Specifications	Supplemental Information
EXT KEYBOARD		Feature not implemented.
Connector	6-pin mini-DIN	

	Specifications	Supplemental Information
Speaker		Front panel knob controls volume

	Specifications	Supplemental Information
Headphone		Front panel knob controls volume
Connector	3.5 mm (1/8 inch) miniature audio jack	
Power Output		0.2 W into 4Ω , characteristic

Rear Panel

	Specifications	Supplemental Information
10 MHz REF OUT		
Connector	BNC female	
Impedance		50 Ω, nominal
Output Amplitude		>0 dBm, characteristic

	Specifications	Supplemental Information
10 MHz REF IN		
Connector	BNC female	Note: Analyzer noise sidebands and spurious response performance may be affected by the quality of the external reference used.
Impedance		50 Ω, nominal
Input Amplitude Range		–15 to +10 dBm, characteristic
Frequency		10 MHz, nominal

	Specifications	Supplemental Information
GATE TRIG/EXT TRIG IN		
Connector	BNC female	
External Trigger Input		
Trigger Level		Selectable positive or negative edge initiates sweep in EXT TRIG mode (5 V TTL)

	Specifications	Supplemental Information
GATE/HI SWP OUT		
Connector	BNC female	
High Sweep Output		
Level		High = sweep; Low = retrace (5 V TTL)

	Specifications	Supplemental Information
VGA OUTPUT		
Connector	VGA compatible, 15-pin mini D-SUB	
Format		VGA (31.5 kHz horizontal, 60 Hz vertical sync rates, non-interlaced) Analog RGB
Resolution	640×480	

	Specifications	Supplemental Information
AUX IF OUT (Option A4J)		
Connector	BNC female	
Frequency		21.4 MHz, nominal
Amplitude Range (for signal at reference level and for reference levels – input attenuation of –10 to –70 dBm)		–10 dBm (uncorrected), characteristic
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
AUX VIDEO OUT (Option A4J)		
Connector	BNC female	
Amplitude Range (into >10 k Ω)	·	0 to 1 V (uncorrected), characteristic

	Specifications	Supplemental Information
HI SWP IN (Option A4J)		
Connector	BNC female	
Input		Open collector, low stops sweep (5 V TTL)

	Specifications	Supplemental Information
HI SWP OUT (Option A4J)		
Connector	BNC female	
Output		High = sweep, Low = retrace (5 V TTL)

	Specifications	Supplemental Information
SWP OUT (Option A4J)		
Connector	BNC female	
Amplitude		0 to +10 V ramp, characteristic

	Specifications	Supplemental Information
PRESEL TUNE OUTPUT		
Connector	BNC female	
Load Impedance (dc coupled)		> 10 kΩ, nominal
Range		0 to +10 V, characteristic
Sensitivity		0.33 V/GHz of tuned frequency > 3 GHz, characteristic

	Specifications	Supplemental Information
HP-IB Interface (Option A4H)		
Connector	IEEE-488 bus connector	
HP-IB Codes		SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and C28

	Specifications	Supplemental Information
Serial Interface (Option 1AX)		
Connector	9-pin D-SUB male	RS-232

	Specifications	Supplemental Information
Parallel Interface (Option A4H or 1AX)		Printer port only
Connector	25-pin D-SUB female	

Regulatory Information

CAUTION	This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 1010 and 664 respectively.
NOTE	This product has been designed and tested in accordance with IEC Publication 1010, Safety Requirements for Electronic Measuring Apparatus, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.
Œ	The CE mark is a registered trademark of the European Community (if accompanied by a year, it is the year when the design was proven).
	The CSA mark is the Canadian Standards Association safety mark.
ISM 1-A	This is a symbol of an Industrial Scientific and Medical Group 1 Class A product. (CISPR 11, Clause 4)

Declaration of Conformity

DECLARATION OF CONFORMITY According to ISO/IEC Guide 22 and EN 45014		
Manufacturer's Name:	Hewlett-Packard Co.	
Manufacturer's Address:	1400 Fountaingrove Parkway Santa Rosa, CA 95403-1799 USA	
Declares that the products		
Product Name:	Spectrum Analyzer	
Model Number:	HP E4401B, HP E4402B, HP E4403B, HP E4404B, HP E4405B, HP E4407B, HP E4408B, HP E4411B	
Product Options:	This declaration covers all options of the above products.	
Conform to the following Product	t specifications:	
Safety: IEC 61010-1:1990 / EN 61010-1:1993 CAN/CSA-C22.2 No. 1010.1-92		
EMC: CISPR 11:1990/EN 55011:1991 Group 1, Class A IEC 801-2:1984/EN 50082-1:1992 4 kV CD, 8 kV AD IEC 801-3:1984/EN 50082-1:1992 3 V/m, 27-500 MHz IEC 801-4:1988/EN 50082-1:1992 0.5 kV sig. lines, 1 kV power lines		
Supplementary Information:	e e e e e e e e e e e e e e e e e e e	
The products herewith comply with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC and carry the CE-marking accordingly.		
:	Hey Pfift	
Santa Rosa, CA, USA 7 Jan. 19	99 Greg Pfeiffer/Quality Engineering Manager	

Regulatory Information

11 HP E4411B Specifications and Characteristics

About This Chapter

This chapter contains specifications and characteristics for the HP E4411B spectrum analyzer. The distinction between specifications and characteristics is described as follows.

- Specifications describe the performance of parameters covered by the product warranty. (The temperature range is 0 °C to 55 °C, unless otherwise noted.)
- Characteristics describe product performance that is useful in the application of the product, but is not covered by the product warranty.
- Typical performance describes additional product performance information that is not covered by the product warranty. It is performance beyond an indicated specification, that most units will exhibit.
- Nominal values indicate the expected, but not warranted, value of a parameter.

The following conditions must be met for the analyzer to meet its specifications.

- **□** The analyzer is within the one year calibration cycle.
- □ If Auto Align All is selected:
 - After 2 hours of storage within the operating temperature range.
 - 5 minutes after the analyzer is turned on with sweep times less than 4 seconds.
- **If Auto Align Off** is selected:
 - When the analyzer is at a constant temperature, within the operating temperature range, for a minimum of 90 minutes,
 - After the analyzer is turned on for a minimum of 90 minutes, and Align Now All has been run.
 - When Align Now All is run:
 - Every hour
 - If the ambient temperature changes more than 3 °C
 - If the 10 MHz reference changes
- □ If Auto Align All but RF is selected:
 - When the analyzer is at a constant temperature, within the operating temperature range, for a minimum of 90 minutes.
 - After the analyzer is turned on for a minimum of 90 minutes, and

Align Now RF has been run.

— When Align Now RF is run:

- Every hour
- If the ambient temperature changes more than 3 $^{\circ}C$

Frequency

	Specifications	Supplemental Information
Frequency Range		
50 Ω	9 kHz to 1.5 GHz	
75Ω (Option 1DP)	1 MHz to 1.5 GHz	

	Specifications	Supplemental Information
Frequency Reference		
Aging Rate	$\pm 2 imes 10^{-6}$ /year	$\pm 1.0 imes 10^{-7}$ /day, characteristic
Settability	$\pm 5 imes 10^{-7}$	
Temperature Stability	$\pm 5 imes 10^{-6}$	

	Specifications	Supplemental Information
Frequency Readout Accuracy		
(Start, Stop, Center, Marker)	±(frequency indication × frequency reference error ^a + span accuracy + 15% of RBW + 10 Hz)	

a. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

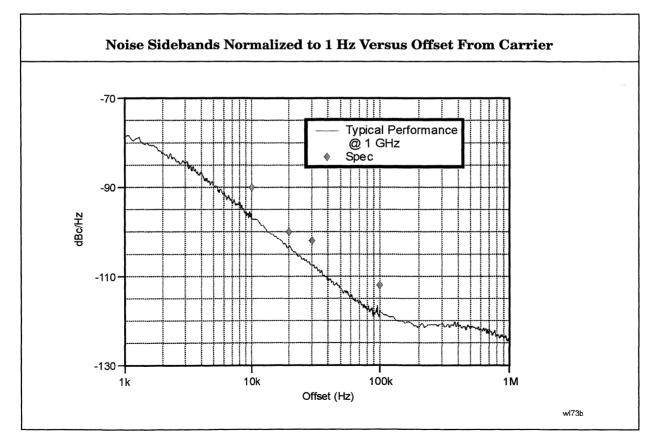
	Specifications	Supplemental Information
Marker Frequency Counter		
Resolution	Selectable from 1 Hz to 100 kHz	
Accuracy ^a	\pm (marker frequency \times frequency reference error ^b + counter resolution)	

a. Marker level to displayed noise level > 25 dB, RBW/ Span \ge 0.002, frequency offset = 0 Hz.

b. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

	Specifications	Supplemental Information
Frequency Span		
Range	0 Hz (zero span), 100 Hz to 1.5 GHz	
Resolution	2 Hz	
Accuracy	±1% of span	

	Specifications	Supplemental Information
Sweep Time		
Range	5 ms to 2000 s	50 ms is the minimum sweep time with the tracking generator in operation (Option 1DN or 1DQ)
Accuracy		
Span = 0 Hz 5 ms to 2000 s	±1%	
Sweep Trigger ^a	Free Run, Single, Line, Video, External, Delayed	
Delayed Trigger ^b		
Range	1 µs to 400 s	
Resolution	[(delay in seconds)/65000] rounded up to nearest μs	
Accuracy	±(500 ns +(0.01% of delay))	


a. Auto align is suspended in video, external, and delayed trigger modes while waiting for a trigger event to occur.

b. Delayed trigger is available with line and external trigger.

	Specifications	Supplemental Information
Resolution Bandwidth (RBW)		
Range		
–3 dB bandwidth	1 kHz to 3 MHz, in 1-3-10 sequence, 5 MHz	
–6 dB bandwidth (EMI)	9 kHz and 120 kHz	
Accuracy		
1 kHz to 3 MHz RBW	$\pm 15\%$	
5 MHz RBW	±30%	
Shape		
1 kHz to 5 MHz RBW		Synchronously tuned four poles, approximately Gaussian shape
Selectivity (60 dB/3 dB bandwidth ratio)		
1 kHz to 5 MHz RBW		<15:1, characteristic

	Specifications	Supplemental Information
Video Bandwidth (VBW) (–3 dB)		
Range	30 Hz to 1 MHz in 1-3-10 sequence	3 MHz, characteristic
Accuracy		±30%, characteristic
Shape		Post detection, single pole low- pass filter used to average displayed noise

	Specifications	Supplemental Information
Stability		
Noise Sidebands, offset from CW signal with 1 kHz RBW, 30 Hz VBW and sample detector		
≥10 kHz	≤ –90 dBc/Hz	
≥20 kHz	\leq -100 dBc/Hz	
≥30 kHz	\leq -102 dBc/Hz	
≥100 kHz	\leq -112 dBc/Hz	
Residual FM		
1 kHz RBW, 1 kHz VBW	≤150 Hz p–p in 100 ms	
System-Related Sidebands, offset from CW signal		
≥30 kHz	\leq -65 dBc	

11-7

Amplitude

Amplitude specifications do not apply for the negative peak detector mode.

	Specifications	Supplemental Information
Measurement Range	Displayed Average Noise Level to Maximum Safe Input Level	
Input Attenuator Range	0 to 60 dB, in 5 dB steps	

	Specifications	Supplemental Information
Maximum Safe Input Level		
Input attenuator setting ≥15 dB		Signals > +33 dBm (2 W) nominal may trigger input
Average Continuous Power or Peak Pulse Power		protection, which disconnects the input path. (75 Ω : signals > +79 dBmV (1 W))
50 Ω	+30 dBm (1 W)	
$75 \ \Omega \ (Option \ 1DP)$	+75 dBmV (0.4 W)	
dc	100 Vdc	dc transients may momentarily trigger input protection
Input attenuator setting <15 dB Average Continuous Power		Signals > +6 dBm (4 mW) nominal may trigger input protection, which
or Peak Pulse Power		automatically increases input attenuation to 15 dB. (75 Ω :
50 Ω	+3 dBm (2 mW)	signals > +61 dBmV (15 mW))
$75 \Omega (Option \ 1DP)$	+59 dBmV (10 mW)	
dc	100 Vdc	dc transients may trigger input protection

	Specifications	Supplemental Information
1 dB Gain Compression		
Total power at input mixer ^{ab}		
50 MHz to 1.5 GHz		
50 Ω	0 dBm	
75 Ω (Option 1DP)	+46.75 dBmV	

a. Mixer power level (dBm) = input power (dBm) – input attenuation (dB).

b. For resolution bandwidths 1 kHz to 30 kHz, the maximum input signal amplitude must be \leq reference level +10 dB. (Option 1DP: For resolution bandwidths 1 kHz to 30 kHz, the maximum input signal amplitude must be \leq reference level +5 dB).

	Specifications	Supplemental Information
Displayed Average Noise Level		
(Input terminated, 0 dB attenuation, sample detector, Reference Level = -70 dBm) (75 Ω : Reference Level = -21.24 dBmV)		·
50 Ω	1 kHz RBW 30 HzVBW	
400 kHz to 10 MHz	≤ –115 dBm	
10 MHz to 500 MHz	≤ –119 dBm	
500 MHz to 1.0 GHz	\leq -117 dBm	
1.0 GHz to 1.5 GHz	≤ –113 dBm	
75 Ω, (Option 1DP)	1 kHz RBW 30 Hz VBW	
1 MHz to 10 MHz	≤ –63 dBmV	
10 MHz to 500 MHz	≤ –65 dBmV	
500 MHz to 1.0 GHz	\leq -60 dBmV	
1.0 GHz to 1.5 GHz	\leq -53 dBmV	

	Specifications	Supplemental Information
Display Range		
Log Scale	Ten divisions displayed; 0.1, 0.2, 0.5 dB/division and 1 to 20 dB/division in 1 dB steps Calibrated 0 to -85 dB from Reference Level	
Linear Scale	Ten divisions	
Scale Units	dBm, dBmV, dBµV, V and W	

	Specifications	Supplemental Information
Marker Readout Resolution		
Log scale		
0 to -85 dB from ref level	0.04 dB	
Linear scale	0.01% of Reference Level	

	Specifications	Supplemental Information
Frequency Response		
50 Ω, Absolute ^a /Relative		
9 kHz to 1.5 GHz		
10 dB attenuation		
20 to 30 °C	±0.5 dB	
0 to 55 °C	±1.0 dB	
0 dB, 5 dB, 15 to 60 dB attenuation		±1.0 dB, characteristic
75 Ω, Absolute ^a /Relative (Option 1DP)		
1 MHz to 1.5 GHz		
10 dB attenuation		
20 to 30 °C	±0.5 dB	
0 to 55 °C	±1.0 dB	
0, 5, 15 to 50 dB attenuation		±1.0 dB, characteristic
55 to 60 dB attenuation		
1 MHz to 1 GHz		±1.0 dB, characteristic
1 GHz to 1.5 GHz		±1.25 dB, characteristic

a. Absolute flatness values are referenced to the amplitude at 50 MHz.

	Specifications	Supplemental Information
Input Attenuation Switching Uncertainty at 50 MHz		
Attenuator Setting		
0 dB to 5 dB	±0.3 dB	
10 dB	Reference	
15 dB	±0.3 dB	
20 to 60 dB	$\pm (0.1 \text{ dB} + 0.01 \times \text{Attenuator})$	

	Specifications	Supplemental Information
Absolute Amplitude Accuracy		
At reference settings ^a	±0.4 dB	
Overall Amplitude Accuracy ^b		
20 to 30 °C	± (0.6 dB + Absolute Frequency Response)	

a. Settings are: reference level -25 dBm; (75 Ω reference level +28.75 dBmV); input attenuation 10 dB; center frequency 50 MHz; RBW 1 kHz; VBW 1 kHz; scale linear or log; span 2 kHz; sweep time coupled, signal at reference level.

b. For reference level 0 to -50 dBm; input attenuation 10 dB; RBW 1 kHz; VBW 1 kHz; scale log, log range 0 to 50 dB from reference level; sweep time coupled; signal input 0 to -50 dBm; span \leq 20 kHz.

	Specifications	Supplemental Information
RF Input VSWR (at tuned frequency)		
Attenuator setting		
50 Ω		
0 to 5 dB attenuation		1.55:1, characteristic
10 to 60 dB attenuation		1.35:1, characteristic
75 Ω		
1 MHz to 1.1 GHz		
0 to 5 dB attenuation		1.55:1, characteristic
10 to 60 dB attenuation		1.35:1, characteristic
1.1 GHz to 1.5 GHz		
0 to 60 dB attenuation		2.0:1, characteristic
Input protection is tripped		Open input, characteristic
Amptd Ref is On		Open input, characteristic
Auto Align All is selected		Open input momentarily during retrace, characteristic

	Specifications	Supplemental Information
Auto Alignment ^a		
Sweep-to-sweep variation		±0.1 dB, characteristic

a. Set Auto Align to Off and use Align Now, All to eliminate this variation.

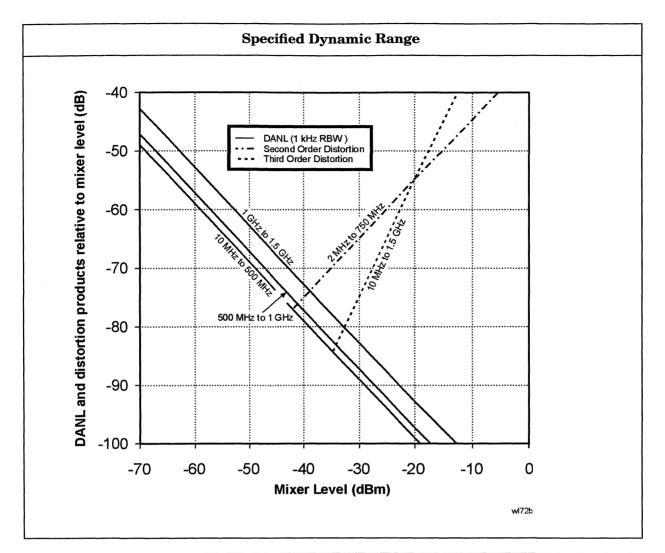
	Specifications	Supplemental Information
Resolution Bandwidth Switching Uncertainty (at Reference Level)		
1 kHz RBW	Reference	
3 kHz to 3 MHz RBW	±0.3 dB	
5 MHz RBW	±0.6 dB	

	Specifications	Supplemental Information
Reference Level		
Range	Adjustable over Amplitude Measurement Range	
Resolution		
Log Scale	±0.1 dB	
Linear Scale	±0.12% of Reference Level	
50 Ω, Accuracy (at a fixed frequency, a fixed attenuator, and referenced to –35 dBm)		
Reference Level (dBm) – input attenuator setting (dB)		
-10 dBm to > -60 dBm	±0.3 dB	
–60 dBm to > –85 dBm	±0.5 dB	
–85 dBm to –90 dBm	±0.7 dB	
75 Ω (Option 1DP), Accuracy (at a fixed frequency, a fixed attenuator, and referenced to 18.75 dBmV)		
Reference Level (dBmV) – input attenuator setting (dB)		
38.75 dBmV to > –11.25 dBmV	±0.3 dB	
–11.25 dBmV to > –26.25 dBmV	±0.5 dB	
–26.25 dBmV to –41.25 dBmV	±0.7 dB	

	Specifications	Supplemental Information
Display Scale Switching Uncertainty		
Switching between Linear and Log	±0.15 dB at Reference Level	
Log Scale Switching	No error	

	Specifications	Supplemental Information
Display Scale Fidelity		
Log Maximum Cumulative		
0 to –85 dB from Reference Level	$\pm (0.3 \text{ dB} + 0.01 \times \text{dB} \text{ from}$ Reference Level)	
Log Incremental Accuracy		
0 to –80 dB ^a from reference level	±0.4 dB/4 dB	
Linear Accuracy	±2% of Reference Level	

a. 0 to -50 dB for RBWs ≤ 300 Hz and span = 0 Hz, or when auto ranging is off.


	Specifications	Supplemental Information
Spurious Responses		
50 Ω		
Second Harmonic Distortion		
Input Signal		
2 MHz to 750 MHz	< –75 dBc for –40 dBm signal at input mixer. ^a	+35 dBm SHI (second harmonic intercept)
Third Order Intermodulation Distortion		
2 MHz to 10 MHz		+5 dBm TOI (third order intercept), characteristic
10 MHz to 1.5 GHz	< –75 dBc for two –30 dBm signals at input mixer ^a and >50 kHz separation.	+7.5 dBm TOI
Other Input Related Spurious		
30 kHz ≤ offset ≤1200 MHz	< −65 dBc for −20 dBm signals at input mixer ^a ≤1.5 GHz.	
Offset >1200 MHz	< −45 dBc for −20 dBm signal at input mixer ^a ≤1.5 GHz.	
Noise Floor Degradation		
Input frequency = 1210.7 MHz ± RBW		< -62 dBc for -45 dBm signal at input mixer ^a

a. Mixer Power Level (dBm) = Input Power (dBm) – Input Attenuation (dB).

	Specifications	Supplemental Information
Spurious Responses		
75 Ω, (Option 1DP)		
Second Harmonic Distortion Input signal		
2 MHz to 750 MHz	< –75 dBc for +8.75 dBmV signal at input mixer. ^a	
Third Order Intermodulation Distortion		
10 MHz to 1.5 GHz	< –75 dBc for two +18.75 dBmV signals at input mixer ^a and >50 kHz separation.	
Other Input Related Spurious		
30 kHz ≤ offset	< -65 dBc for +28.75 dBmV	
≤1200 MHz	signal at input mixer ^a ≤1.5 GHz.	
Offset >1200 MHz	< −45 dBc, for +28.75 dBmV signal at input mixer ^a ≤1.5 GHz.	
Noise Floor Degradation		
Input frequency = 1210.7 MHz ± RBW		< –62 dBc, for +3.75 dBmV signal at input mixer ^a

a. Mixer Power Level (dBm) = Input Power (dBm) - Input Attenuation (dB)

Amplitude

	Specifications	Supplemental Information
Residual Responses (Input terminated and 0 dB attenuation)		
50 Ω		
150 kHz to 1.5 GHz	< -90 dBm	
75Ω , (Option 1DP)		
1 MHz to 1.5 GHz	< -36 dBmV	

Options

Options

Tracking Generator (Option 1DN or 1DQ)

	Specifications	Supplemental Information
Warm-Up	5 minutes	
	Specifications	Supplemental Information

	Specifications	Supplemental Information
Output Frequency Range		
$50 \ \Omega$ (Option 1DN)	9 kHz to 1.5 GHz	
$75 \ \Omega \ (Option \ 1DQ)$	1 MHz to 1.5 GHz	

	Specifications	Supplemental Information
Output Power Level		
20 to 30 °C		
Range		
$50 \ \Omega$ (Option 1DN)	0 to –70 dBm	
$75\Omega(Option1DQ)$	+42.75 to -27.25 dBmV	
Resolution	0.1 dB	
Absolute Accuracy (at 50 MHz with coupled source attenuator)		
50 Ω (Option 1DN) referenced to 0 dBm	± 0.5 dB	
$75 \ \Omega \ (Option \ 1DQ)$ referenced to +42.75 dBmV	± 1.5 dB	
Vernier		
Range	10 dB	
Accuracy (with coupled source attenuator)		
50 Ω (Option 1DN) referenced to 0 dBm	±0.75 dB, for 0 to –10 dBm	
75 Ω (Option 1DQ) referenced to 42.75 dBmV	±0.9 dB, for +42.75 to +32.75 dBmV	
Output Attenuator Range	0 to 60 dB in 10 dB steps	

	Specifications	Supplemental Information
Maximum Safe Reverse Level		dc transients may trigger output protection
50 Ω (Option 1DN) ^a		+20 dBm (0.1 W), 100 Vdc, characteristic
75 Ω (Option 1DQ) ^a		+69 dBmV (0.1 W), 100 Vdc, characteristic

a. dc transients may trigger reverse power protection.

	Specifications	Supplemental Information
Output Power Sweep		
20 to 30 °C		
Range		
$50 \ \Omega \ (Option \ 1DN)$	(–15 dBm to 0 dBm) – (Source Attenuator Setting)	
75 Ω (Option 1DQ)	(+27.75 dBm to +42.75 dBmV) – (Source Attenuator Setting)	
Resolution	0.1 dB	
Accuracy (zero span)		
$50 \ \Omega$ (Option 1DN)	<1.5 dB peak-to-peak	
$75 \ \Omega \ (Option \ 1DQ)$	<1.8 dB peak-to-peak	

	Specifications	Supplemental Information
Output Flatness		
Referenced to 50 MHz, 0 dB attenuator		
$50 \ \Omega \ (Option \ 1DN)$		
9 kHz to 10 MHz	±2 dB	
10 MHz to 1.5 GHz	±1.5 dB	
75 Ω (Option 1DQ)		
1 MHz to 10 MHz	±2.5 dB	
10 MHz to 1.5 GHz	$\pm 2 \text{ dB}$	

	Specifications	Supplemental Information
Spurious Outputs		
50 Ω (Option 1DN) (0 dBm output), 75 Ω (Option 1DQ) (+42.75 dBmV output)		
Harmonic Spurs		
9 kHz to 20 MHz	< -20 dBc	
20 MHz to 1.5 GHz	< –25 dBc	
Non-harmonic Spurs	< –35 dBc	

	Specifications	Supplemental Information
Dynamic Range	Maximum Output Power Level – Displayed Average Noise Level	

	Specifications	Supplemental Information
Output Tracking		
Drift		No error
Swept Tracking Error		No error for coupled sweep times

	Specifications	Supplemental Information
RF Power-Off Residuals		
50 Ω (<i>Option 1DN</i>) 100 kHz to 1.5 GHz		< –120 dBm, characteristic
75 Ω (<i>Option 1DQ</i>) 1 MHz to 1.5 GHz		< -65 dBmV, characteristic

	Specifications	Supplemental Information
Output Attenuator Repeatability		±0.2 dB, characteristic

	Specifications	Supplemental Information
Output VSWR		
$50 \ \Omega$ (Option 1DN)		<2.5:1, characteristic
$75 \ \Omega \ (Option \ 1DQ)$		<2.0:1, characteristic

Options

	Specifications	Supplemental Information
Output Attenuator Accuracy		
0 dB	Reference	
10 dB		±0.6 dB, characteristic
20 dB		±0.9 dB, characteristic
30 dB		±1.2 dB, characteristic
40 dB		±1.5 dB, characteristic
50 dB		±1.8 dB, characteristic
60 dB		±2.1 dB, characteristic

Tracking	Generator	Output A	ccuracy 5	0Ω(Ο	ption 1DN)
----------	-----------	-----------------	-----------	------	------------

Relative Accuracy (Referred to 0 dBm) = Output Attenuator Accuracy + Vernier Accuracy + Output Flatness

Absolute Accuracy = Relative Accuracy (Referred to 0 dBm) + Absolute Accuracy at 50 MHz

Tracking Generator Output Accuracy 75 Ω (Option 1DQ)

Relative Accuracy (Referred to +42.75 dBmV) = Output Attenuator Accuracy + Vernier Accuracy + Output Flatness

Absolute Accuracy = Relative Accuracy (Referred to +42.75 dBmV) + Absolute Accuracy at 50 MHz

General

	Specifications	Supplemental Information
Temperature Range		
Operating	0 to 55 °C	Floppy disk 10 to 40 °C
Storage	–40 to +75 °C	

	Specifications	Supplemental Information
Audible Noise (ISO 7779)		
Sound Pressure at 25 °C		<40 dBa, (<4.6 Bels power)

	Specifications	Supplemental Information
Military Specification	Has been type tested to the environmental specifications of MIL-PRF-28800F class 3.	

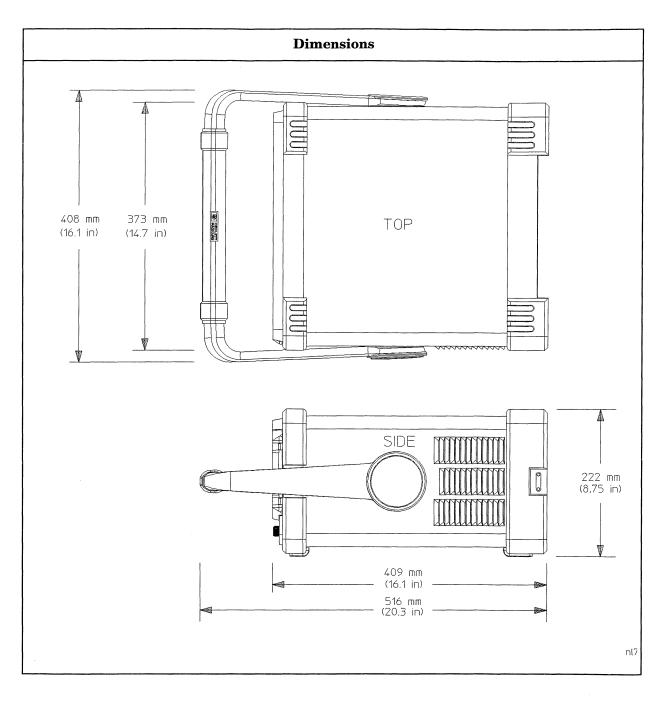
	Specifications	Supplemental Information
EMI Compatibility	Conducted and radiated emission is in compliance with CISPR Pub. 11/1990 Group 1 Class A.	

	Specifications	Supplemental Information
Immunity Testing		
Radiated Immunity		Testing was done at 3 V/m according to IEC 801-3/1984. When the analyzer tuned frequency is identical to the immunity test signal frequency there may be signals of up to -60 dBm displayed on the screen.
Electrostatic Discharge		Air discharges of up to 8 kV were applied according to IEC 801-2/1991. Discharges to center pins of any of the connectors may cause damage to the associated circuitry.

	Specifications	Supplemental Information
Power Requirements		Uses CUKonverter® topology in the power supply.
ac Operation		
Voltage, frequency	90 to 132 V rms, 47 to 440 Hz	
	195 to 250 V rms, 47 to 66 Hz $$	
Power Consumption, On	<300 W	
Power Consumption, Standby	<5 W	
dc Operation		
Voltage	12 to 20 Vdc	
Power Consumption	<200 W	

	Specifications	Supplemental Information
Measurement Speed		
Local Measurement and Display Update rate ^a		\geq 28/s, characteristic
Remote Measurement and HP-IB Transfer Rate ^b (Option A4H)		≥ 19/s, characteristic

a. Auto align off, 5 ms sweep time, fixed center frequency.


 b. Auto align off, 5 ms sweep time, fixed center frequency, 401 point trace, display off (DISPlay:ENABle off), and 32-bit integer data format (FORMat:DATA INT,32).

	Specifications	Supplemental Information
Data Storage		
Internal		200 Traces or States
External (10 to 40 °C) 3.5" 1.44 MB, MS-DOS® compatible floppy disk		200 Traces or States

	Specifications	Supplemental Information
Demod Tune Listen		
AM		Internal speaker, front-panel earphone jack and front-panel volume control.
(Option A4J)		An uncalibrated demodulated signal is available on the AUX VIDEO OUT connector at the rear panel.

	Specifications	Supplemental Information
Weight (without options)		
Net		12.6 kg (27.7 lb), characteristic
Shipping		27.3 kg (60 lb), characteristic

General

Inputs and Outputs

Internal

	Specifications	Supplemental Information
Amptd Ref ^a		Amplitude reference
Frequency		50 MHz
Frequency Accuracy		Frequency reference error ^b
$50 \ \Omega$ Amplitude		–25 dBm ^c , nominal
75 Ω Amplitude (Option 1DP)		+28.75 dBmV ^c , nominal

a. Turn the amplitude reference signal on/off by pressing the keys: Input/Output, Amptd Ref.

b. Frequency reference error = (aging rate × period of time since adjustment + settability + temperature stability).

c. The internal amplitude reference actual power is stored internally.

Front Panel

	Specifications	Supplemental Information
INPUT 50 Ω		
Connector	Type-N female	
Impedance		50 Ω, nominal
INPUT 75 Ω (Option 1DP)		
Connector	BNC female	
Impedance		75 Ω nominal

	Specifications	Supplemental Information
RF OUT 50 Ω, (Option 1DN)		
Connector	Type-N female	
Impedance		50 Ω, nominal
RF OUT 75 Ω, (Option 1DQ)		
Connector	BNC female	
Impedance		75 Ω, nominal

	Specifications	Supplemental Information
PROBE POWER		
Voltage/Current		+15 Vdc, ±7% at 150 mA max., characteristic
		–12.6 Vdc ±10% at 150 mA max., characteristic

	Specifications	Supplemental Information
EXT KEYBOARD		Feature not implemented.
Connector	6-pin mini-DIN	

	Specifications	Supplemental Information
Speaker		Front panel knob controls volume

	Specifications	Supplemental Information
Headphone		Front panel knob controls volume
Connector	3.5 mm (1/8 inch) miniature audio jack	
Power Output		0.2 W into 4 Ω, characteristic

Rear Panel

	Specifications	Supplemental Information
10 MHz REF OUT		
Connector	BNC female	
Impedance		50 Ω, nominal
Output Amplitude		>0 dBm, characteristic

	Specifications	Supplemental Information
10 MHz REF IN		
Connector	BNC female	Note: Analyzer noise sidebands and spurious response performance may be affected by the quality of the external reference used.
Impedance		50 Ω, nominal
Input Amplitude Range		–15 to +10 dBm, characteristic
Frequency		10 MHz, nominal

	Specifications	Supplemental Information
GATE TRIG/EXT TRIG IN		
Connector	BNC female	
External Trigger Input		
Trigger Level		Selectable positive or negative edge initiates sweep in EXT TRIG mode (5 V TTL)

	Specifications	Supplemental Information
GATE/HI SWP OUT		
Connector	BNC female	
High Sweep Output		
Level		High = sweep; Low = retrace (5 V TTL)

	Specifications	Supplemental Information
VGA OUTPUT		
Connector	VGA compatible, 15-pin mini D-SUB	
Format		VGA (31.5 kHz horizontal, 60 Hz vertical sync rates, non-interlaced) Analog RGB
Resolution	640×480	

	Specifications	Supplemental Information
AUX IF OUT (Option A4J)		
Connector	BNC female	
Frequency		21.4 MHz, nominal
Amplitude Range (for signal at reference level and for reference levels – input attenuation of –10 to –70 dBm)		–10 dBm (uncorrected), characteristic
Impedance		50 Ω, nominal

	Specifications	Supplemental Information
AUX VIDEO OUT (Option A4J)		
Connector	BNC female	
Amplitude Range (into >10 $k\Omega$)		0 to 1 V (uncorrected), characteristic

	Specifications	Supplemental Information
HI SWP IN (Option A4J)		
Connector	BNC female	
Input		Open collector, low stops sweep (5 V TTL)

	Specifications	Supplemental Information
HI SWP OUT (Option A4J)		
Connector	BNC female	
Output		High = sweep, Low = retrace (5 V TTL)

	Specifications	Supplemental Information
SWP OUT (Option A4J)		
Connector	BNC female	
Amplitude		0 to +10 V ramp, characteristic

	Specifications	Supplemental Information
HP-IB Interface (Option A4H)		
Connector	IEEE-488 bus connector	
HP-IB Codes		SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and C28

	Specifications	Supplemental Information
Serial Interface (Option 1AX)		
Connector	9-pin D-SUB male	RS-232

	Specifications	Supplemental Information
Parallel Interface (Option A4H or 1AX)		Printer port only
Connector	25-pin D-SUB female	

Regulatory Information

	This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 1010 and 664 respectively.
NOTE	This product has been designed and tested in accordance with IEC Publication 1010, Safety Requirements for Electronic Measuring Apparatus, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.
CE	The CE mark is a registered trademark of the European Community (if accompanied by a year, it is the year when the design was proven).
SP •	The CSA mark is the Canadian Standards Association safety mark.
ISM 1-A	This is a symbol of an Industrial Scientific and Medical Group 1 Class A product. (CISPR 11, Clause 4)

Declaration of Conformity

DECLARATION OF CONFORMITY According to ISO/IEC Guide 22 and EN 45014		
Manufacturer's Name:	Hewlett-Packard Co.	
Manufacturer's Address:	1400 Fountaingrove Parkway Santa Rosa, CA 95403-1799 USA	
Declares that the products		
Product Name:	Spectrum Analyzer	
Model Number:	HP E4401B, HP E4402B, HP E4403B, HP E4404B, HP E4405B, HP E4407B, HP E4408B, HP E4411B	
Product Options:	This declaration covers all options of the above products.	
Conform to the following Product	specifications:	
Safety: IEC 61010-1:1990 / EN 6 CAN/CSA-C22.2 No. 10		
IEC 801-3:1984/EN 5008	11:1991 Group 1, Class A 32-1:1992 4 kV CD, 8 kV AD 32-1:1992 3 V/m, 27-500 MHz 32-1:1992 0.5 kV sig. lines, 1 kV power lines	
Supplementary Information:		
The products herewith comply with 73/23/EEC and the EMC Directive 8	the requirements of the Low Voltage Directive 9/336/EEC and carry the CE-marking accordingly.	
	they Pleith	
Santa Rosa, CA, USA 7 Jan. 1999	9 Greg Pfeiffer/Quality Engineering Manager	
European Contact: Your local Hewlett-Packard S TRE, Herreneberger Strasse 130, D71034 Boblin	ales and Service Office or Hewlett-Packard GmbH Department HQ- Igen, Germany (FAX +49-7031-14-3143)	

Regulatory Information

If You Have a Problem

12

This chapter includes information on how to check for a problem with your HP ESA spectrum analyzer, and how to return it for service. It also includes descriptions of the types of built-in messages.

12-1

If You Have a Problem What You'll Find in This Chapter

What You'll Find in This Chapter

This chapter includes information on how to check for a problem with your HP ESA spectrum analyzer, and how to return it for service. It also includes descriptions of all of the analyzer built-in messages.

Your analyzer is built to provide dependable service. However, if you experience a problem, or if you desire additional information or wish to order parts, options, or accessories, Hewlett-Packard's worldwide sales and service organization is ready to provide the support you need.

In general, a problem can be caused by a hardware failure, a software error, or a user error. Follow these general steps to determine the cause and to resolve the problem.

- 1. Perform the quick checks listed in "Check the Basics" in this chapter. It is possible that a quick check may eliminate your problem altogether.
- 2. If the problem is a hardware problem, you have several options:
 - Repair it yourself; see the "Service Options" section in this chapter.
 - Return the analyzer to Hewlett-Packard for repair; if the analyzer is still under warranty or is covered by an HP maintenance contract, it will be repaired under the terms of the warranty or plan (the warranty is at the front of this manual).

If the analyzer is no longer under warranty or is not covered by an HP maintenance plan, Hewlett-Packard will notify you of the cost of the repair after examining the instrument. See "How to Call Hewlett-Packard" and "How to Return Your Analyzer for Service" for more information.

WARNING No operator serviceable parts inside the analyzer. Refer servicing to qualified personnel. To prevent electrical shock do not remove covers.

If You Have a Problem Before You Call Hewlett-Packard

Before You Call Hewlett-Packard

Check the Basics

A problem can often be resolved by repeating the procedure you were following when the problem occurred. Before calling Hewlett-Packard or returning the analyzer for service, please make the following checks:

- \Box Check the line fuse.
- □ Is there power at the receptacle?
- □ Is the analyzer turned on? Make sure the fan is running, which indicates that the power supply is on.
- □ If the display is dark or dim, press the upper Viewing Angle key in the upper-left corner of the front panel. If the display is too bright, adjust the lower Viewing Angle key in the upper-left corner of the front panel.
- □ If other equipment, cables, and connectors are being used with your HP ESA spectrum analyzer, make sure they are connected properly and operating correctly.
- □ Review the procedure for the measurement being performed when the problem appeared. Are all the settings correct?
- □ If the analyzer is not functioning as expected, return the analyzer to a known state by pressing the **Preset** key.

Some analyzer settings are not affected by a Preset. If you wish to reset the analyzer configuration to the state it was in when it was originally sent from the factory, press **System**, **Power On/Preset**, **Preset (Factory)**.

□ Is the measurement being performed, and the results that are expected, within the specifications and capabilities of the analyzer? Refer to the "Specifications" chapters in this guide for analyzer specifications.

If You Have a Problem Before You Call Hewlett-Packard

- □ In order to meet specifications, the analyzer must be aligned. Either Auto Align All must be selected (press System, Alignments, Auto Align, All), or the analyzer must be manually aligned at least once per hour, or whenever the temperature changes more than 3 °C. When Auto Align, All is selected, AA appears on the left edge of the display.
- □ If the necessary test equipment is available, perform the Chapter 2, "Performance Verification Tests" of this guide. Record all results on the appropriate form in Chapter 3, "Performance Verification Test Records" which follows the tests chapter.
- □ If the equipment to perform the performance verification tests is not available, you may still be able to perform the functional checks in the *HP ESA Spectrum Analyzers User's Guide*.

Read the Warranty

The warranty for your analyzer is at the front of this manual. Please read it and become familiar with its terms.

If your analyzer is covered by a separate maintenance agreement, please be familiar with its terms.

Service Options

Hewlett-Packard offers several optional maintenance plans to service your analyzer after the warranty has expired. Call your Hewlett-Packard sales and service office for full details.

If you want to service the analyzer yourself after the warranty expires, you can purchase the service documentation that provides all necessary test and maintenance information.

You can order the service documentation, Option 0BV (component level information including parts lists, component location diagrams and schematic diagrams) and Option 0BW (assembly level troubleshooting and adjustment procedures), through your Hewlett-Packard sales and service office. Service documentation is described under "Component Level Service Documentation (Option 0BV)" and "Service Documentation and Adjustment Software (Option 0BW)" in Chapter 6 of the user's guide.

If You Have a Problem Before You Call Hewlett-Packard

How to Call Hewlett-Packard

Hewlett-Packard has sales and service offices around the world to provide you with complete support for your analyzer. To obtain servicing information or to order replacement parts, contact the nearest Hewlett-Packard sales and service office listed in Table 12-1. In any correspondence or telephone conversations, refer to your analyzer by its product number, full serial number, and firmware revision. (Press **System, More 1 of 3, Show System**, and the product number, serial number, and firmware revision information will be displayed on your analyzer screen.) A serial number label is also attached to the rear panel of the analyzer.

If You Have a Problem Before You Call Hewlett-Packard

Table 12-1 Hewlett-Packard Sales and Service Offices

	UNITED STATES		
Instrument Support Center Hewlett-Packard Company (800) 403-0801			
EUROPEAN FIELD OPERATIONS			
Headquarters Hewlett-Packard S.A. 150, Route du Nant-d'Avril 1217 Meyrin 2/ Geneva Switzerland (41 22) 780.8111	France Hewlett-Packard France 1 Avenue Du Canada Zone D'Activite De Courtaboeuf F-91947 Les Ulis Cedex France (33 1) 69 82 60 60	Germany Hewlett-Packard GmbH Hewlett-Packard Strasse 61352 Bad Homburg v.d.H Germany (49 6172) 16-0	
Great Britain Hewlett-Packard Ltd. Eskdale Road, Winnersh Triangle Wokingham, Berkshire RG41 5DZ England (44 118) 9696622			
	INTERCON FIELD OPERATIONS		
Headquarters Hewlett-Packard Company 3495 Deer Creek Rd. Palo Alto, CA 94304-1316 USA (415) 857-5027	Australia Hewlett-Packard Australia Ltd. 31-41 Joseph Street Blackburn, Victoria 3130 (61 3) 895-2895	Canada Hewlett-Packard (Canada) Ltd. 17500 South Service Road Trans-Canada Highway Kirkland, Quebec H9J 2X8 Canada (514) 697-4232	
Japan Hewlett-Packard Japan, Ltd. 9-1 Takakura-Cho, Hachioji Tokyo 192, Japan (81 426) 60-2111	Singapore Hewlett-Packard Singapore (Pte.) Ltd. 150 Beach Road #29-00 Gateway West Singapore 0718 (65) 291-9088	Taiwan Hewlett-Packard Taiwan 8th Floor, H-P Building 337 Fu Hsing North Road Taipei, Taiwan (886 2) 712-0404	
China China Hewlett-Packard Co. 38 Bei San Huan X1 Road Shuang Yu Shu Hai Dian District Beijing, China (86 1) 256-6888			

Chapter 12

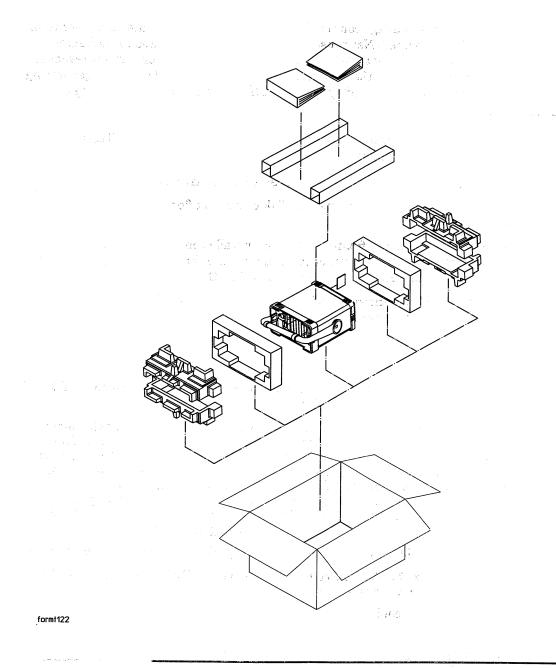
If You Have a Problem How to Return Your Analyzer for Service

How to Return Your Analyzer for Service

Service Tag

If you are returning your analyzer to Hewlett-Packard for servicing, fill in and attach a blue service tag. Several service tags are supplied at the rear of this chapter. Please be as specific as possible about the nature of the problem. If you have recorded any error messages that appeared on the display, or have completed a Performance Test Record, or have any other specific data on the performance of your analyzer, please send a copy of this information with your return.

Original Packaging


Before shipping, pack the unit in the original factory packaging materials if they are available. If the original materials were not retained, see "Other Packaging".

NOTE Ensure that the instrument handle is in the rear-facing position in order to reduce the possibility of damage during shipping. Refer to Figure 12-1.

NOTE Install the transportation disk into the floppy drive to reduce the possibility of damage during shipping. If the original transportation disk is not available, a blank floppy may be substituted.

addate the second second if You Have a Problem a second second and the second sec

Figure 12-1

Chapter 12

12-8

How to Return Your Analyzer for Service

Other Packaging

for strack

CAUTION

Analyzer damage can result from using packaging materials other than those specified. Never use styrene pellets in any shape as packaging materials. They do not adequately cushion the equipment or prevent it from shifting in the carton. They cause equipment damage by generating static electricity and by lodging in the analyzer louvers, blocking airflow.

You can repackage the instrument with commercially available materials, as follows:

- 1. Attach a completed service tag to the instrument.
- 2. Install the transportation disk or a blank floppy disk into the disk drive.
- 3. If you have a front-panel cover, install it on the instrument. If you do not have a front panel cover, make sure the instrument handle is in the forward-facing position to protect the control panel.
- 4. Wrap the instrument in antistatic plastic to reduce the possibility of damage caused by electrostatic discharge.
- 5. Use a strong shipping container. A double-walled, corrugated cardboard carton with 159 kg (350 lb) bursting strength is adequate. The carton must be both large enough and strong enough to accommodate the analyzer. Allow at least 3 to 4 inches on all sides of the analyzer for packing material.
- 6. Surround the equipment with three to four inches of packing material and prevent the equipment from moving in the carton. If packing foam is not available, the best alternative is S.D.-240 Air Cap[™] from Sealed Air Corporation (Hayward, California, 94545). Air Cap looks like a plastic sheet filled with 1-1/4 inch air bubbles. Use the pink-colored Air Cap to reduce static electricity. Wrapping the equipment several times in this material should both protect the equipment and prevent it from moving in the carton.
- 7. Seal the shipping container securely with strong nylon adhesive tape.
- 8. Mark the shipping container "FRAGILE, HANDLE WITH CARE" to assure careful handling.
- 9. Retain copies of all shipping papers.

Chapter 12

If You Have a Problem Error Messages

Error Messages

The analyzer can generate various messages that appear on the display during operation. There are four types of messages.

- Status Messages appear on the right side of the analyzer display and/or set status bits in the SCPI Status Register system. These messages indicate a condition that may result in erroneous data being displayed. Although most messages display and set a status bit, some will only be displayed until the error condition is corrected. Multiple messages can be displayed and will be listed in the display area.
- **Informational Messages** provide information that requires no intervention. These messages appear in the status line at the bottom of the display, in green if you have a color display. The message will remain until you preset the analyzer, press **ESC**, or another message is displayed in the status line.
- ^b User Error Messages appear when an attempt has been made to set a parameter incorrectly or an operation has failed (such as saving a file). These messages are often generated during remote operation when an invalid programming command has been entered. These messages appear in the status line at the bottom of the display, in yellow if you have a color display. The message will remain until you preset the analyzer, press **ESC**, or another message is displayed in the status line. A summary of the last 11 error messages may be viewed by pressing, **System** then **Show Errors**. When generated by activity on the remote bus, the messages are output to the remote bus. When output to the remote bus, they are preceded by an error number. Note that the error number is not displayed under the **System**, **Show Errors** key sequence.
- **Pop-up Messages** indicate a condition that may require intervention. They display in the middle of the display in a framed box. The message will remain until the appropriate intervention has taken place or the condition has corrected.